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Abstract: Background: The relative availability of the essential amino acid tryptophan in the brain,
as indicated by the tryptophan index, which is the ratio of tryptophan to its competing amino acids
(CAAs) in circulation, has been related to major depression. However, it remains unknown whether
tryptophan availability is involved in the pathogenesis of ischemic stroke. Aims: We aimed to
investigate the relationship between the tryptophan index and the risk of ischemic stroke. Methods:
We performed a nested case–control study within a community-based cohort in eastern China
over the period 2013 to 2018. The analysis included 321 cases of ischemic stroke and 321 controls
matched by sex and date of birth. The plasma levels of tryptophan and CAAs, including tyrosine,
valine, phenylalanine, leucine, and isoleucine, were measured by ultra-high-performance liquid
chromatography–tandem mass spectrometry. Conditional logistic regression analyses were employed
to determine incidence rate ratios (IRRs) and their 95% confidence intervals (CIs). Results: After
adjustment for body mass index, current smoking status, educational attainment, physical activity,
family history of stroke, hypertension, diabetes, hyperlipidemia, and estimated glomerular filtration
rate, an elevated tryptophan index was significantly associated with a reduced risk of ischemic
stroke in a dose–response manner (IRR, 0.76; 95% CI, 0.63–0.93, per standard deviation increment).
The plasma tryptophan or CAAs were not separately associated with the risk of ischemic stroke.
Conclusions: The tryptophan index was inversely associated with the risk of ischemic stroke. Our
novel observations suggest that the availability of the essential amino acid tryptophan in the brain is
involved in the pathogenesis of ischemic stroke.

Keywords: tryptophan; tryptophan index; competing amino acids; ischemic stroke

1. Introduction

Stroke continues to be the leading cause of mortality in China, with the incidence rate
reaching to 276.7 per 100,000 people in 2019 [1]. About 71% of total strokes worldwide are
ischemic, usually manifesting as a cerebrovascular infarction [2]. The blood–brain barrier
(BBB), serving as the guardian of the central nervous system, plays a crucial role in nutrient
transportation, brain hemodynamics, paracellular permeability, and the development of
neurological dysfunction [3].

As an essential amino acid, tryptophan must be acquired through dietary sources [4].
Notably, the availability of circulating tryptophan after penetrating the BBB determines the
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rate of synthesis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine
(5-HT), in the brain [5]. Once arrived, nearly half of the tryptophan is utilized for serotonin
synthesis, whose shortage is considered to be associated with disorders of the central
nervous system [6,7]. However, during its transport from circulation via the large neu-
tral amino acid transporter system, tryptophan faces competition from other amino acids
(competing amino acids, CAAs), namely tyrosine, valine, phenylalanine, leucine, and
isoleucine [5,8,9]. Therefore, a higher tryptophan index (calculated as the ratio trypto-
phan/total CAAs) has been used as an indicator for increased tryptophan availability in
the brain [5]. An animal study observed that mice being fed a diet with the lowest ratio
of tryptophan to branched-chain amino acids (BCAAs: valine, leucine, and isoleucine)
had central serotonin depletion and hyperphagia, which was reversed by the intervention
of tryptophan or a serotonin reuptake inhibitor (SSRI) [10]. As shown in Figure 1, the
initial and rate-limiting stage involves the conversion of tryptophan to the short-lived 5-
hydroxytryptophan (5-HTP), followed by amino acid decarboxylation to produce 5-HT [11].
Previous studies have linked a reduced tryptophan index and decreased brain serotonin
levels with depression and suicide [7,12]. A cross-sectional study suggested that tryptophan
and the tryptophan index was significantly lower among acute ischemic stroke patients
than their controls [13]. Notably, SSRIs are the most widely prescribed antidepressants with
the ability to increase serotonin levels in synapses, compared to non-SSRIs [14]. Rasha et al.
recently reported that the use of SSRIs was inversely associated with non-cardioembolic
ischemic stroke risk compared with other antidepressants [15].
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Figure 1. Tryptophan’s competing pathways from blood to brain. Abbreviations: 5-HT, 5-
hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; BBB, blood–brain barrier; CAAs: competing
amino acids; TPH, tryptophan hydroxylase.

Despite advancements in understanding the brain’s tryptophan/serotonin completing
theory published in Science, 1972 [5], there remains a knowledge gap regarding prospective
association between tryptophan availability and stroke risk. Therefore, it motivated us to
examine the associations of plasma tryptophan, CAAs, and the tryptophan index with the
incidence of ischemic stroke using a case–control study nested within a community-based
cohort.
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2. Material and Methods
2.1. Study Participants

Details of the Prospective Follow-up Study on Cardiovascular Morbidity and Mortality
in China (PFS-CMMC), including study strategy and enrollment, have been previously
described [16,17]. In summary, after excluding individuals with severe cancer, severe
disability, and/or severe psychiatric disturbance, a total of 16,457 residents aged 35 to
74 years in Changshu (Jiangsu province, China) were recruited in 2013. In the baseline
survey, well-trained staff conducted face-to-face interviews with participants to collect
information on demographic characteristics, education, lifestyle factors, and history of
diseases using standard questionnaires. Written informed consent was obtained from each
participant. Ethical approval for record linkage between the baseline survey data and
study outcomes was acquired from the Ethics Committee of Soochow University (No.:
SUDA20210127H01, Suzhou, China).

2.2. Follow-Up and Definition of Ischemic Stroke

The follow-up began with the baseline survey conducted in 2013, and continued
until the date of death, occurrence of stroke, or 31 December 2018, whichever occurred
first. Hospital records of discharge diagnoses and the Cause of Death Registry were
used to accurately obtain the data linkage of disease or cause of death. The International
Classification of Diseases, Tenth Revision (ICD-10 codes: I63 except for I63.9) was applied
to define ischemic stroke [17]. If a participant experienced more than one stroke event
during the follow-up period, only the first event was taken into consideration.

2.3. Selection of Cases and Controls

As shown in Figure 2, a total of 137 participants were excluded due to stroke history
prior to enrolment, as well as 207 participants with missing baseline information. Over
a median follow-up of 5.3 years, a total of 321 incident cases of ischemic stroke were
identified. For each case, one control was matched by date of birth (±1 year) and sex using
the incidence density sampling method [18].
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2.4. Measurements of Biomarkers

Venous blood samples were collected from participants after a minimum of 8 h fasting
overnight [16,17]. Procedures of plasma separation and preservation have been mentioned
in a previous study [19]. Plasma tryptophan, tyrosine, valine, phenylalanine, leucine,
isoleucine, and cotinine were detected by ultra-high-performance liquid chromatography–
tandem mass spectrometry (UHPLC–MS/MS) [20,21]. All laboratory staff were blinded to
the plasma case/control status. The within-day and between-day coefficients of variation
were 0.70–3.50% (tryptophan: 1.85%, tyrosine: 3.50%, valine: 0.70%, phenylalanine: 1.70%,
leucine: 1.40%, isoleucine: 1.25%, and cotinine: 2.47%) and 2.45–17.3% (tryptophan: 4.81%,
tyrosine: 4.65%, valine: 3.70%, phenylalanine: 4.88%, leucine: 2.68%, isoleucine: 17.3%, and
cotinine: 2.45%), respectively. Serum glucose levels were determined using the oxidase en-
zymatic method; creatinine was measured via the picric acid method; and total cholesterol
(TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) were assessed
using enzymatic methods [22,23].

2.5. Covariates

We selected the covariates mainly following the basic criteria of confoundment and
based on the current literature [24,25]. Body mass index (BMI) was calculated as body
weight divided by the square of height, kg/m2. Smoking status was determined by self-
report and plasma cotinine levels. Briefly, individuals with plasma cotinine levels of
85 nmol/L or above were classified as current smokers, regardless of their self-reported sta-
tus [16]. Physical activity was assessed using a standardized questionnaire and estimated
as metabolic equivalent-hours/day (MET-h/d) [26], including occupation, transportation,
home activity exercise, etc. [27]. Educational attainment was classified into three groups:
0 years (no formal education), 1–5 years (primary school), and ≥6 years (middle school or
higher). Hypertension was identified by self-report, readings of mean systolic (diastolic)
blood pressure ≥140 (90) mm Hg, or the use of antihypertensive drugs. Diabetes was deter-
mined by self-report, the use of insulin/glucose-lowering drugs, or a fasting blood glucose
level of ≥7.0 mmol/L. Hyperlipidemia was determined by self-report, the use of lipid-
lowering treatment, or laboratory measurement (TC > 6.20 mmol/L, TG > 2.30 mmol/L,
or HDL-C < 1.00 mmol/L) [28]. In addition, the equation from Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) was used to compute the estimated glomerular
filtration rate (eGFR, mL/min/1.73 m2) [29].

2.6. Statistical Analyses

Continuous variables are presented as medians (interquartile ranges), while categor-
ical variables are presented as numbers (percentages). We assessed differences between
cases and their matched controls using the Wilcoxon test for continuous variables and
the Chi-squared test for categorical variables. To evaluate p trends across quartiles of
biomarkers or the tryptophan index at baseline, we used the Jonckheere–Terpstra test for
all continuous variables due to their skewed distributions. For binary categorical variables,
we employed the Cochran–Armitage Trend test, and the Cochran–Mantel–Haenszel test
for other categorical variables.

Conditional logistic regression models were applied to assess the associations of tryp-
tophan, its CAAs, and the tryptophan index with the risk of ischemic stroke, separately.
In a nested case–control study using incidence density sampling, this method estimates
incidence rate ratios (IRRs) [30]. IRRs and corresponding 95% confidence intervals (CIs)
were calculated across quartiles according to the distribution of controls or per standard
deviation (SD) increment of natural-log-transformed biomarkers. We constructed three
models. Model 1 was an unadjusted model conditioning on the individual case set. Model
2 was adjusted for educational attainment (0 years, 1–5 years, or ≥6 years), current smok-
ing status (yes or no), BMI (continuous), and physical activity (quartiles). Model 3 was
adjusted for family history of stroke (yes or no), hypertension (yes or no), diabetes (yes
or no), hyperlipidemia (yes or no), and eGFR (continuous). Moreover, we additionally
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included total CAAs in the multivariable model for tryptophan to check for a potential
confounding effect.

Moreover, we conducted stratified analyses by sex (male or female), age (median), BMI
(median), physical activity (median), hypertension (yes or no), hyperlipidemia (yes or no),
and eGFR (<90 or ≥90 mL/min/1.73 m2) using unconditional logistic regression [16,31–33].
Statistical interaction was evaluated at the multiplicative scale [34]. Meanwhile, those
cases that developed stroke and their matching controls in the first year of follow-up
were excluded to check for potential reverse causation bias and the robustness of the
primary findings. Furthermore, we calculated the E-value to examine the potential impact
of unmeasured confounders [35]. A two-sided p-value less than 0.05 was considered to
indicate statistical significance. All analyses of the data were conducted using R software,
version 4.1.2 (available at https://www.r-project.org, accessed on 1 November 2021).

3. Results
3.1. Baseline Characteristics

The characteristics at baseline of 321 ischemic stroke cases and their controls are
illustrated in Table 1. There was no statistical difference between the two groups in BMI,
current smoking status, physical activity, or educational attainment (p > 0.1). The cases were
more likely to have diabetes (p = 0.004) and hypertension (p < 0.001), but not hyperlipidemia.
Furthermore, these participants with incident ischemic stroke had lower baseline levels
of the tryptophan index (p = 0.010) and a higher fasting glucose (p = 0.013) and isoleucine
(p = 0.038) than the controls, whereas no significant difference was observed in other amino
acids, eGFR, lipid profiles, or total CAAs (all p > 0.05).

Table 1. Demographic and clinical characteristics at baseline between ischemic stroke cases and
controls (n = 642).

Cases (n = 321) Controls (n = 321) p-Value

Age (years) 69.5 (63.2, 75.2) 69.6 (63.4, 75.1)
Male (%) 142 (44.2) 142 (44.2)
BMI (kg/m2) 23.6 (21.4, 25.9) 23.3 (21.4, 25.7) 0.53
Currently smoking (%) 83 (25.9) 80 (24.9) 0.79
Physical activity (MET-h/d) 20.4 (12.3, 34.8) 21.8 (13.5, 34.4) 0.37
Educational attainment (%) 0.85

0 year 157 (49.1) 153 (47.7)
1–5 years 121 (37.8) 121 (37.7)
≥6 years 42 (13.1) 47 (14.6)

TC (mmol/L) 4.95 (4.30, 5.61) 4.84 (4.21, 5.51) 0.24
TG (mmol/L) 1.32 (0.95, 1.88) 1.23 (0.92, 1.70) 0.23
HDL-C (mmol/L) 1.40 (1.16, 1.69) 1.48 (1.21, 1.71) 0.05
Fasting glucose (mmol/L) 5.54 (5.07, 6.23) 5.40 (4.98, 5.96) 0.013
Diabetes (%) 61 (19.0) 35 (10.9) 0.004
Hypertension (%) 260 (81.0) 214 (66.7) <0.001
eGFR (mL/min/1.73 m2) 84.5 (72.4, 91.0) 85.4 (74.3, 93.2) 0.06
Hyperlipidemia (%) 89 (27.7) 80 (24.9) 0.42
Tryptophan (µmol/L) 76.6 (66.2, 87.9) 79.2 (67.0, 90.3) 0.19
Tyrosine (µmol/L) 89.5 (77.3, 106) 91.4 (80.0, 107) 0.23
Valine (µmol/L) 268 (237, 301) 264 (233, 296) 0.20
Phenylalanine (µmol/L) 69.3 (61.4, 80.1) 69.6 (62.2, 79.9) 0.83
Isoleucine (µmol/L) 86.8 (73.3, 106) 83.7 (71.1, 99.4) 0.038
Leucine (µmol/L) 115 (100, 134) 114 (100, 129) 0.29
Total CAAs (µmol/L) 636 (569, 700) 626 (561, 696) 0.28
Tryptophan index (×100) 12.1 (10.7, 13.6) 12.5 (11.3, 13.8) 0.010

The differences between cases and controls were assessed using Chi-squared tests for categorical variables,
presented as a number and percentage, and Wilcoxon test for continuous variables, presented as a median and
interquartile range. Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; HDL-C,
high-density lipoprotein cholesterol; MET, metabolic equivalent; TC, total cholesterol; TG, triglyceride.

https://www.r-project.org
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As presented in Supplementary Table S1, participants possessing a higher tryptophan
index were generally younger (p trend = 0.010) and more likely to be female (p trend = 0.032).
Moreover, no significant difference was observed in current smoking status, physical
activity levels, educational attainment, or prevalence of hypertension across quartiles (all p
trend > 0.05). Notably, individuals with higher quartiles of the tryptophan index showed
a lower prevalence of diabetes (p trend < 0.001) and hyperlipidemia (p trend = 0.003),
a decreased trend in TG (p trend = 0.017) and fasting glucose (p trend < 0.001), and an
elevated trend in HDL-C and eGFR (p trend < 0.001).

3.2. The Tryptophan Index, Its Components, and the Risk of Ischemic Stroke

As illustrated in Table 2, the tryptophan index was found to be inversely associated
with the risk of ischemic stroke yielding an adjusted IRR of 0.76 (95% CI: 0.63–0.93, p = 0.006)
per one SD increment of log-transformed level and E-value of 1.96 (1.36). Likewise, com-
pared with the first quartile (Q1), the adjusted IRR for the highest quartile (Q4) of the
tryptophan index was 0.53 (95% CI: 0.31–0.88, p trend = 0.008) and the corresponding
E-value was 3.18 (1.53). In contrast, there was no significant association of tryptophan with
ischemic stroke risk, either as a continuous variable or by quartile. The same was true for
total CAAs and the individual amino acids tyrosine, valine, phenylalanine, isoleucine, and
leucine after multivariable adjustment (Supplementary Table S2). However, the associa-
tion between tryptophan and the risk for ischemic stroke became significant after further
adjustment for total CAAs. Compared with the Q1, the IRR was 1.02 (95% CI: 0.61–1.71)
for the second quartile (Q2) [E-value: 1.16 (1.00)], 0.51 (95% CI: 0.29–0.88) for the third
quartile (Q3) [E-value: 3.33 (1.53)], and 0.57 (95% CI: 0.30–1.07) for Q4 [E-value: 2.90 (1.00)].
The corresponding IRR was 0.75 (95% CI: 0.59–0.94, p = 0.015) per one SD increment of
log-transformed level, and the E-value was 2.00 (1.32).

Table 2. Incidence rate ratio (IRR) and 95% confidence intervals (CIs) for ischemic risk by conditional
logistic regression models.

Cases/Controls
Model 1 Model 2 Model 3

IRR (95% CI) IRR (95% CI) IRR (95% CI)

Tryptophan
index (×100)

Q1 (<11.2) 101/81 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Q2 (11.3, 12.5) 88/81 0.87 (0.56, 1.34) 0.86 (0.55, 1.33) 0.91 (0.58, 1.45)
Q3 (12.6, 13.7) 68/78 0.68 (0.43, 1.07) 0.62 (0.39, 1.01) 0.63 (0.38, 1.05)
Q4 (>13.8) 64/81 0.62 (0.40, 0.98) 0.56 (0.35, 0.90) 0.53 (0.31, 0.88)

p for trend 0.023 0.008 0.008
Continuous 321/321 0.79 (0.67, 0.93) 0.76 (0.64, 0.90) 0.76 (0.63, 0.93)
p-value 0.005 0.002 0.006
Tryptophan
(µmol/L)

Q1 (<67.0) 89/81 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Q2 (67.1, 79.1) 99/80 1.16 (0.75, 1.79) 1.16 (0.74, 1.82) 1.22 (0.76, 1.79)
Q3 (79.2, 90.3) 60/80 0.70 (0.45, 1.09) 0.67 (0.43, 1.05) 0.63 (0.39, 1.03)
Q4 (>90.4) 73/80 0.82 (0.52, 1.29) 0.75 (0.47, 1.22) 0.72 (0.44, 1.21)

p for trend 0.13 0.06 0.05
Continuous 321/321 0.89 (0.76, 1.05) 0.85 (0.72, 1.10) 0.83 (0.69, 1.00)
p-value 0.17 0.07 0.05

Model 1: Unadjusted model, based on individual case set; Model 2: adjusted for BMI (continuous), current
smoking status (yes or no), educational attainment (0 year, 1–5 years, or ≥6 years), and physical activity (by
quartiles), based on individual case set; Model 3: further adjusted for family history of stroke (yes or no),
hypertension (yes or no), diabetes (yes or no), hyperlipidemia (yes or no), and eGFR (continuous). To normalize
the distribution of the continuous tryptophan index, a natural logarithmic (log) transformation was applied.
Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate.
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3.3. Sensitivity Analyses

After exclusion of the cases that developed ischemic stroke within the first year, the
significant association of the tryptophan index with ischemic stroke risk was still essentially
unchanged (adjusted IRR: 0.51 (95% CI: 0.29–0.88), p trend = 0.012, Q4 vs. Q1; 0.71 (95% CI:
0.55–0.91), p = 0.007, per one SD increment).

3.4. Stratified Analyses

The findings remained consistent across various stratifications, including sex (male or
female), age (median), BMI (median), physical activity (median), hypertension (yes or no),
hyperlipidemia (yes or no), and eGFR (<90 or ≥90 mL/min/1.73 m2). No significant effect
modification was observed among these stratified factors for the association between the
tryptophan index and the risk of ischemic stroke (Figure 3).

Nutrients 2024, 16, x FOR PEER REVIEW  8  of  12 
 

 

 

Figure  3.  Stratified  analyses  for  the  association between  tryptophan  index  and  risk of  ischemic 

stroke. The model was adjusted for age (continuous), sex (male or female), BMI (continuous), cur-

rent smoking status  (yes or no), educational attainment  (0 year, 1–5 years, or  ≥6 years), physical 

activity (quartiles), family history of stroke (yes or no), hypertension (yes or no), diabetes (yes or 

no), hyperlipidemia  (yes or no), and  eGFR  (continuous). Abbreviations: BMI, body mass  index; 

eGFR, estimated glomerular filtration rate; MET, metabolic equivalent. 

4. Discussion 

4.1. Principal Findings 

In the present nested case–control study, we found that an elevated tryptophan in-

dex, indicating a higher availability of tryptophan in the brain, was significantly associ-

ated with a lower risk of ischemic stroke. The individual CAAs were not associated with 

the risk after multivariable adjustment.   

4.2. The Tryptophan Index and Ischemic Stroke Risk 

Amino acid neurotransmitters, including excitatory amino acids (such as glutamate 

and aspartate) and non-excitatory amino acids (such as glycine, serine, and threonine), 

have been suggested to contribute the progression of ischemia [17,36]. Certainly, the ho-

meostasis of extracellular amino acids in the central nervous system is essential for main-

taining brain function. As illustrated by our recent study, the elevated ratio of glycine to 

lysine was associated with the decreased risk of ischemic stroke [17]. However, there is 

still a lack of prospective studies to systematically investigate the association between the 

neurotransmitter-related amino acids and stroke risk, especially  for  tryptophan and  its 

CAAs. The established evidence has shown that the decreased utilization of tryptophan 

due to elevated circulating levels of CAAs may decrease serotonin concentration in the 

brain [37]. In the present study, upon additional adjustment for total CAAs, the initially 

observed association between tryptophan and ischemic risk became significant. Therefore, 

the protective effect of  tryptophan on  ischemic stroke might  largely be offset by CAAs 

across the BBB. Also, our findings suggested that the elevated tryptophan index, which 

means  a  relatively high  availability of  tryptophan  in  the brain, was mainly driven by 

higher plasma levels of tryptophan when it was linked with the risk of ischemic stroke. 

These findings support dietary recommendations  to  increase  the  intake of  tryptophan-

rich  foods, which  could  enhance  brain  health  and  reduce  stroke  risk.  These  insights 

Figure 3. Stratified analyses for the association between tryptophan index and risk of ischemic stroke.
The model was adjusted for age (continuous), sex (male or female), BMI (continuous), current smoking
status (yes or no), educational attainment (0 year, 1–5 years, or ≥6 years), physical activity (quartiles),
family history of stroke (yes or no), hypertension (yes or no), diabetes (yes or no), hyperlipidemia (yes
or no), and eGFR (continuous). Abbreviations: BMI, body mass index; eGFR, estimated glomerular
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4. Discussion
4.1. Principal Findings

In the present nested case–control study, we found that an elevated tryptophan index,
indicating a higher availability of tryptophan in the brain, was significantly associated with
a lower risk of ischemic stroke. The individual CAAs were not associated with the risk
after multivariable adjustment.

4.2. The Tryptophan Index and Ischemic Stroke Risk

Amino acid neurotransmitters, including excitatory amino acids (such as glutamate
and aspartate) and non-excitatory amino acids (such as glycine, serine, and threonine), have
been suggested to contribute the progression of ischemia [17,36]. Certainly, the homeostasis
of extracellular amino acids in the central nervous system is essential for maintaining
brain function. As illustrated by our recent study, the elevated ratio of glycine to lysine
was associated with the decreased risk of ischemic stroke [17]. However, there is still
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a lack of prospective studies to systematically investigate the association between the
neurotransmitter-related amino acids and stroke risk, especially for tryptophan and its
CAAs. The established evidence has shown that the decreased utilization of tryptophan
due to elevated circulating levels of CAAs may decrease serotonin concentration in the
brain [37]. In the present study, upon additional adjustment for total CAAs, the initially
observed association between tryptophan and ischemic risk became significant. Therefore,
the protective effect of tryptophan on ischemic stroke might largely be offset by CAAs
across the BBB. Also, our findings suggested that the elevated tryptophan index, which
means a relatively high availability of tryptophan in the brain, was mainly driven by
higher plasma levels of tryptophan when it was linked with the risk of ischemic stroke.
These findings support dietary recommendations to increase the intake of tryptophan-rich
foods, which could enhance brain health and reduce stroke risk. These insights encourage
further interdisciplinary research to explore nutritional strategies for stroke prevention
and treatment.

4.3. Mechanisms

It has been reported that the tryptophan index was a marker of immune-inflammatory
response [38] and positively related to the level of anti-inflammatory interleukin-10, which
may play a neuroprotective role and inhibit the reduced synthesis of 5-hydroxytryptamine
in the brain [13]. Given the close relationship with serotonin, the decreased tryptophan
index blunted the neurotransmitter synthesis that was associated with depression [39,40]. In
addition, serotonin as a strong vasoconstrictor could innervate cerebral arteries, arterioles,
and veins [41,42], whereas a weak vasoconstrictive effect due to a decreased tryptophan
index might increase blood flow [42]. Moreover, the higher brain serotonin levels could
attenuate platelet activation and improve the thrombotic pathway, which could decrease
the risk of myocardial infarction [43], and may also relate to a reduced risk of stroke [44].

4.4. Strengths and Limitations

The main strengths include a comprehensive measurement of tryptophan and its
CAAs, a complete follow-up, and high generalizability by recruiting community residents,
which could minimize selection bias. However, the present study also has several limita-
tions. Firstly, the residual confoundment by unknown or untested covariates cannot be
excluded. For instance, we lacked data on the use of antidepressants or prior diagnoses
of depression before blood sampling. Both factors are known to influence the tryptophan
index [7,12,45]. However, we have excluded those residents with severe psychiatric dis-
turbance, which may help to reduce this potential confounding effect. In addition, statin
treatment may also have affected our observed associations, because of its potential regu-
lating roles in both tryptophan metabolism and cholesterol reduction [46]. Secondly, our
study did not assess the relationship between the tryptophan index and specific subtypes of
ischemic stroke due to the absence of relevant data. Thirdly, we did not measure tryptophan
metabolites involved in the serotonin pathway, such as serotonin itself, which restricts
further investigative possibilities.

5. Conclusions

In the present study, we observed that an elevated tryptophan index, mainly driven by
increased plasma tryptophan, was independently associated with a lower risk of ischemic
stroke in community residents. In contrast, the CAAs tyrosine, valine, phenylalanine,
leucine, and isoleucine were not associated. Our novel findings underscore the critical role
of the availability of the essential amino acid tryptophan in the brain in the pathogenesis of
ischemic stroke.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16111544/s1, Supplementary Table S1 Demographic and clinical
characteristics by quartiles of tryptophan index at baseline (n = 642). Supplementary Table S2
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Incidence rate ratio (IRRs) and 95% confidence intervals (CI) for ischemic risk by conditional logistic
regression models.
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