
Supplementary Materials

Part A. Mathematical Proofs
A. Proof of Corollary 1

Di¤erentiating Equation (24) with respect to parameters � and g
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which completes the proof. �

B. Proof of Corollary 2

Di¤erentiating each component of the pro�t function expressed in Equation (31)
with respect to parameters � and g
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holds true, which consists of a regularity condition that is imposed to ensure
that the manager e¤ectively incurs in a positive level of e¤ort at this stage, as
observed in Equation (26). Economically speaking, this restriction means that
the indirect network externality promoted by viewers on online gamers cannot
be excessively strong. Otherwise, online gamers would have an extremely high
incentive on attracting viewers that the manager would face the risk of not
obtaining any kind of compensation. Moreover
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for
g� (1� ) < 1 8� > 0; � > 0; �d > 0; �u > 0; p > 0; 0 <  < 1:

If inequality g� (1� ) < 1 holds, then inequality g� (1� ) < 2 is necessarily
satis�ed. Part (II) is a direct consequence from solving Part (I) because the
pro�t function of the platform corresponds to a linear combination of both
components: � = �1 + �2. Therefore, even without additional computation
one can immediately con�rm that Corollary 2 is satis�ed. �

C. Proof of Proposition 1

Since equilibrium outcomes result from the direct substitution of Equation (32)
into Equations (26)�(31), this step is omitted for the sake of brevity. However,
one needs to justify restrictions imposed on parameters �, �d and g. Focusing
on the second order condition (SOC) of the price stage follows that
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Pro�t maximization requires
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as claimed in Proposition 1. Nevertheless, one still needs to con�rm that this
new inequality is more restrictive than the one imposed in Corollary 2. De�neeg := 1=� (1� ) and suppose by contradiction that eg is more restrictive than g
such that
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By de�nition, this inequality is impossible. Focusing on the equilibrium price
charged to viewers given by Equation (32), one must ensure that it is non-
negative since one assumes that viewers are not subsidized to join the platform.
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as claimed in Proposition 1. The reader may observe that the lowest possible
price corresponds to

lim
�!�

p� = 0

and it corresponds to a free access regime applied to viewers when the risk
aversion faced by this side of the market reaches the highest possible level.
Lastly, one must ensure that the surplus enjoyed by viewers is strictly positive,
but not excessive. Knowing that the surplus enjoyed by viewers is generically
given by
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because v� < 0 is, by de�nition, impossible. This means that one must ensure
that the previous inequality never holds in equilibrium, which is equivalent to

3



say that one must solve the equality v� = 0 and identify the region of parame-
ters where v� � 0 is unambiguously veri�ed, while disregarding the region of
parameters associated with v� < 0. Two zeros are found
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coe¢ cient associated with the quadratic term of the respective polynomial func-
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D. Proof of Lemma 1

Di¤erentiating the equilibrium price charged to viewers with respect to �
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as clari�ed in Lemma 1. By de�nition,  2 (0; 1) must hold in equilibrium. It
is straightforward to check that

e < 1 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g

Evaluating at the �oor follows
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as clari�ed in Lemma 1. Since this critical value is strictly positive, we only
need to con�rm that the inequality eg < g constitutes a non-empty space (i.e.
that it holds in equilibrium). Suppose, by contradiction, that the opposite is
true. Then
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but this inequality is never satis�ed, 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u.

In turn, di¤erentiating the equilibrium price charged to viewers with respect to
g
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Solving the previous equation one obtains
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Knowing that the lowest (highest) zero is strictly negative (positive) and given
the negative value of the coe¢ cient associated with the quadratic term of the
respective polynomial function, it follows that Part (II) of Lemma 1 becomes
straightforward, respectively. Naturally, the critical threshold
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indicated in Lemma 1 is immediately identi�ed. �
E. Proof of Lemma 2

Substituting � := g(1 � d) in the equilibrium variable incentive exposed in
Proposition 1 one obtains
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Considering only the presence of uncertainty on the side of viewers one obtains
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Di¤erentiating it with respect to the parameter s := �2u, which can considered
the parameter under evaluation rather than �u for the sake of simplicity, yields
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Considering only the presence of uncertainty on the side of online gamers follows
that
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and

f(:) := g3(1� )2 + 2�g�2d(1� d)[1� g2(1� d)(1� )]2[1� g2(1� )]2:

The sign of @��1=@dj�u!0 is dependent on the sign of the derivative of f(:) and
g(:) with respect to the transformed parameter t := �2d, which can be considered
the parameter under evaluation rather than �d just for the sake of simplicity.
The di¤erence relies on the magnitude of e¤ect, which is leveraged by the factor
g[1+g2(1�)] in the case of @��1=@dj�u!0. Both @f(:)=@t < 0 and @g(:)=@t < 0
hold for the relevant region of parameters, thus, one necessarily has
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because g[1+g2(1�)] is strictly positive for the relevant region of parameters.
With a simple linear transformation by applying the rule on the derivative of
the composite function on t and s follows that8>>><>>>:
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are also satis�ed, which completes the proof. �

F. Proof of Lemma 3

Substituting � := g(1 � d) in the equilibrium variable incentive exposed in
Proposition 1 follows

e� =
1 + g2(1� )

1 + 2g2(1� d)(1� ) + 2�[(1� d)2g2�2d + �2u]f1� g2[1� d� (1� d)]g

Di¤erentiating the equilibrium e¤ort level with respect to d
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�
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2

First, one needs to identify the relevant zero in the domain of �: The relevant
part of @e�=@d that must be solved is given by

�1 +  � �f�2u � �2d(1� d)[2� 3(1� d)g2]g+ �[�2u + 3(1� d)2g2�2d] = 0

such that

� = b� := 1� 
�2d(1� d)[2� 3g2(1� d)(1� )]� �2u(1� )
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as claimed in Lemma 3. Based on the behavior of the polynomial function
�1 +  � �f�2u � �2d(1 � d)[2 � 3(1 � d)g2]g + �[�2u + 3(1 � d)2g2�2d] in the
domain of �; it is also straightforward to check that

@e�

@d
> (<)0, � > (<)b�:

Then, one needs to con�rm that the corresponding parameter space is non-
empty (i.e. that it holds in equilibrium). Since b� is strictly positive for any
0 <  < 1, one needs to show that � 2 [b�; �] exists. De�ne �� := � � b� and
solve

�� = 0, �2d = e�d := g2�2u(1� )2
(1� d)f2� g2(1� d)(1� )[4� g2(1� )(2� 2d+ ) + 2g4(1� d)(1� )2g

Since e�d is strictly positive in the relevant region of parameters follows that
�� > 0, �2d > e�d 80 < d < 1; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

thereby con�rming Lemma 3. With a simple rearrangement one can alterna-
tively consider that

�� > 0 , �d >
pe�d 80 < d < 1; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1

and the proof is �nalized. �

G. Proof of Corollary 3

After de�ning �n := n�u � n�d follows

�n =
[1 + g2(1� )][1� g(1� )][1� �(�2�2d + �2u)]
1� 2g�(1� ) + 2�[1� g�(1� )](�2�2d + �2u)

such that

�n > 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1

thereby allowing us to validate the claim of Corollary 3. �

H. Proof of Lemma 4

Di¤erentiating n�u with respect to parameter g
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=
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2�2d + �
2
u)f� + �g[1� g(1� )]g

f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�
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2
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such that
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> 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:
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Di¤erentiating n�u with respect to parameter t := �
2
d

@n�u
@t

= � �2�[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@n�u
@t

< 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Di¤erentiating n�d with respect to parameter �

@n�d
@�

= � g(1� )(�2�2d + �2u)[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@n�d
@�

< 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Di¤erentiating n�d with respect to parameter �

@n�d
@�

=
2g(1� )[1 + g2(1� )]

f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�
2�2d + �

2
u)]g2

�
g(1� )[1 + �(�2�2d + �2u)]2 � ���2d

	
such that

@n�d
@�

> (<)0, g(1� )[1 + �(�2�2d + �2u)] > (<)���2d

thereby con�rming the ambiguity mentioned in Lemma 4.

Indeed, note that in the absence of uncertainty

n�dj(�2d;�2u)=(0;0) =
g(1� )[1 + g2(1� )]

1� 2g�(1� )

and
@n�d
@�

����
(�2d;�2u)=(0;0)

=
2g2(1� )2[1 + g2(1� )]

[1� 2g�(1� )]2

such that

@n�d
@�

����
(�2d;�2u)=(0;0)

> 0 8� > 0; 0 < g < g; 0 <  < 1:

In the absence of uncertainty, a higher externality of online gamers on viewers
has a positive e¤ect on the equilibrium number of online gamers. As a result,
this impact is dissuaded as the uncertainty in the opposite side of the market
increases.
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Di¤erentiating n�d with respect to parameter s := �
2
u

@n�d
@s

= � g(1� )�[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@n�d
@s

< 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

which completes the proof. �

I. Proof of Lemma 5

Focus on part (I) of Lemma 5. Recall that CS�d = f
�2=2: Therefore, the impact

of a parameter change on CS�d is directly proportional to the same impact on
f�. For the sake of simplicity, one exposes the comparative statics with respect
to f�. It follows that

@f�

@�
=

2g(1� )[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

�
g(1� )[1 + �(�2�2d + �2u)]2 � ���2d

	
such that

@f�

@�
> (<)0, g(1� )[1 + �(�2�2d + �2u)]2 > (<)���2d:

Therefore

@CS�d
@g

=
@CS�d
@f�

� @f
�

@g
= f� � @f

�

@g
> (<)0, g(1� )[1 + �(�2�2d + �2u)]2 > (<)���2d

8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1

thereby con�rming the claim expressed in Lemma 5.

Recall that CS�u = 1=2� v�2=2, thus, the impact of a parameter change on CS�u
is inversely related to the same impact on v�. For the sake of simplicity, one
exposes the comparative statics with respect to v�. It follows that

@v�

@�
=

2[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

�
���2d � g(1� )[1 + �(�2�2d + �2u)]2

	
such that

@v�

@�
> (<)0, ���2d > (<)g(1� )[1 + �(�

2�2d + �
2
u)]

2

8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Consequently

@CS�u
@�

=
@CS�u
@v�

� @v
�

@�
= �v� � @f

�

@�
> (<)0, g(1� )[1 + �(�2�2d + �2u)]2 > (<)���2d

8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1
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thereby con�rming the claim expressed in Lemma 5.

Recall that

@n�d
@�

=
2g(1� )[1 + g2(1� )]

f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�
2�2d + �

2
u)]g2

�
g(1� )[1 + �(�2�2d + �2u)]2 � ���2d

	
:

Then compute

@��

@�
=

[1 + g2(1� )]2

f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�
2�2d + �

2
u)]g2

�
g(1� )[1 + �(�2�2d + �2u)]2 � ���2d

	
such that a similar conclusion is obtained relative to that observed for n�d

@��

@�
> (<)0, g(1� )[1 + �(�2�2d + �2u)] > (<)���2d

thereby allowing to con�rm the claim expressed in Lemma 5.

Focus on part (II) of Lemma 5. Recall that CS�d = f
�2=2: Therefore, the impact

on CS�d is directly proportional to the impact on f
�. For the sake of simplicity,

one exposes the comparative statics with respect to f�. It follows that

@f�

@g
=

2g(1� )[1 + g2(1� )]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@f�

@g
> 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Therefore

@CS�d
@g

=
@CS�d
@f�

�@f
�

@g
= f��@f

�

@g
> 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Moreover, recall that CS�u = 1=2� v�2=2: Therefore, the impact of a parameter
change on CS�u is inversely related to the same impact on v

�. For the sake of
simplicity, one exposes the comparative statics with respect to v�. It follows
that

@v�

@g
= �

2(1� )[1 + �(�2�2d + �2u)]


� + g[1� g�(1� )] + �(�2�2d + �2u)f� + g[2� g�(1� )]g

�
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@v�

@g
< 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

Therefore

@CS�u
@g

=
@CS�u
@v�

�@v
�

@g
= �v��@f

�

@g
> 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:
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Finally

@��

@g
=

(1� )[1 + g2(1� )][1 + �(�2�2d + �2u)]
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

�

� + g[2� 3g�(1� )] + �(�2�2d + �2u)f� + g[4� 3g�(1� )]g

�
f1 + 2�(�2�2d + �2u)� 2g�(1� )[1 + �(�

2�2d + �
2
u)]g2

such that

@��

@g
> 0 8� > 0; 0 < � � �; �d > 0; 0 < �u � �u; 0 < g < g; 0 <  < 1:

which �nalizes the proof. �
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Part B. Figures and Tables  
 

Figure S1. Optimal number of principal components for each dependent variable 
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Table S1. Influence of indirect network effects on effectiveness and risk  

 Null network effect Indirect network effects 

Effectiveness2 1 
1

[1 −  𝑔𝜃(1 − 𝛾)]2
 

Risk 2
  

𝜃2𝜎𝑑
2 + 𝜎𝑢

2

[1 −  𝑔𝜃(1 − 𝛾)]2
 



 

Table S2. Summary statistics 

Acronym Description Mean Std. Dev. Max. Min. 

 

Dependent variables 

zTR Total revenues 0 1 −1.704 1.395 

zSR Subscription revenues 0 1 −1.697 1.398 

zNSR Non-subscription revenues 0 1 −1.986 1.224 

      

Covariates 

zNewFollowers New followers 0 1 −1.426 1.886 

zSubscribers Subscribers of the type I, II and III 0 1 −1.901 1.205 

zLiveViews Live views 0 1 −1.179 2.042 

zAvgViewers Average number of viewers 0 1 −2.392 3.494 

zMaxViewers Maximum number of viewers 0 1 −1.768 4.782 

zUniqViewers Unique number of viewers 0 1 −2.028 5.533 

zHostRaidViewers Percentage of host/raid viewers 0 1 −1.720 4.807 

zTimeStreamed Total streaming time in minutes 0 1 −3.421 4.332 

zChatAud Number of unique viewers who chatted with the gamer 0 1 −2.554 4.790 

zChatMess Total number of messages sent 0 1 −2.463 5.134 

zClipsCreated Number of clips created from streams 0 1 −1.386 3.982 

zClipViews Total views of clips created from streams 0 1 −2.470 5.137 

zAdBreaks Time of ad breaks ran by the gamer during streams in minutes 0 1 −2.197 4.196 

zAdTimeHour Average time per hour of ads running during streams in minutes 0 1 −1.458 6.248 

zNotif Number of notifications to the gamer 0 1 −1.695 3.394 

zIntSpeed Average download speed in day 𝑡 0 1 −2.061 5.806 

PsyC Psychological state of the online gamer in day 𝑡 − 1 0.572 0.495 0 1 

zTR_L1 Total revenues lagged one day −0.004 0.999 −1.704 1.394 

zTR_L2 Total revenues lagged two days −0.007 0.998 −1.704 1.393 

zTR_L3 Total revenues lagged three days −0.011 0.996 −1.704 1.393 

zTR_L4 Total revenues lagged four days −0.014 0.995 −1.704 1.392 

zTR_L5 Total revenues lagged five days −0.018 0.994 −1.704 1.390 

zSR_L1 Subscription revenues lagged one day −0.004 0.999 −1.697 1.397 

zSR_L2 Subscription revenues lagged two days −0.007 0.998 −1.697 1.397 

zSR_L3 Subscription revenues lagged three days −0.011 0.996 −1.697 1.396 

zSR_L4 Subscription revenues lagged four days −0.014 0.995 −1.697 1.395 

zSR_L5 Subscription revenues lagged five days −0.018 0.994 −1.697 1.393 

zNSR_L1 Non-subscription revenues lagged one day −0.003 0.999 −1.986 1.222 

zNSR_L2 Non-subscription revenues lagged two days −0.006 0.999 −1.986 1.221 

zNSR_L3 Non-subscription revenues lagged three days −0.009 0.998 −1.986 1.219 

zNSR_L4 Non-subscription revenues lagged four days −0.012 0.997 −1.986 1.219 

zNSR_L5 Non-subscription revenues lagged five days −0.016 0.997 −1.986 1.219 
Notes: Standardized values follow a 𝑁 ~ (0, 1) distribution. Hence, mean (standard deviation) is equal to 0 (1) for all 

variables except for the psychological state of the online gamer and lagged dependent variables, respectively.  
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Table S3. Component matrix with rotation and KMO measure of sampling adequacy 

Component Type of dependent variable Variance Difference Proportion of variance explained Cumulative 

PC1 

Total revenues 9.477 6.445    0.431 0.431 

Subscription revenues 9.479 6.447    0.431 0.431 

Non-subscription revenues 9.301 6.270    0.423 0.423 

PC2 

Total revenues 3.032 1.777    0.138 0.569 

Subscription revenues 3.032 1.777    0.138 0.569 

Non-subscription revenues 3.031 1.775    0.138 0.561 

PC3 

Total revenues 1.255 0.084    0.057 0.626 

Subscription revenues 1.255 0.085    0.057 0.626 

Non-subscription revenues 1.256 0.019    0.057 0.618 

PC4 

Total revenues 1.170 0.008    0.053 0.679 

Subscription revenues 1.170 0.007    0.053 0.679 

Non-subscription revenues 1.237 0.065    0.056 0.674 

PC5 

Total revenues 1.163 0    0.053 0.732 

Subscription revenues 1.163 0    0.053 0.732 

Non-subscription revenues 1.172 0    0.053 0.727 

 Variable PC1 PC2 PC3 PC4 PC5 UV (%) KMO 

Total Revenues 

 zNewFollowers 0.317     0.029 0.879 

 zSubscribers 0.315     0.062 0.881 

 zLiveViews 0.311     0.052 0.856 

 zAvgViewers      0.266 0.856 

 zMaxViewers      0.259 0.847 

 zUniqViewers  0.537    0.118 0.592 

 zHostRaidViewers     −0.680 0.434 0.565 

 zTimeStreamed  0.510    0.186 0.850 

 zChatAud     0.401 0.656 0.657 

 zChatMess  0.339    0.591 0.905 

 zClipsCreated      0.648 0.888 

 zClipViews  0.538    0.084 0.635 

 zAdBreaks   0.630   0.384 0.713 

 zAdTimeHour   0.647   0.400 0.413 

 zNotif    0.497  0.604 0.704 

 zIntSpeed    0.697  0.374 0.669 

 PsyC     0.494 0.640 0.808 

 zTR_L1 0.322     0.019 0.906 

 zTR_L2 0.322     0.019 0.933 

 zTR_L3 0.322     0.022 0.940 

 zTR_L4 0.322     0.026 0.914 

 zTR_L5 0.320     0.031 0.928 

Overall KMO measure of sampling adequacy       0.870 

Average interitem covariance       0.260 

Number of items in the scale               22 

Scale reliability coefficient  (Cronbach’s α)          0.891 

Subscription Revenues 

 zNewFollowers 0.317     0.043 0.862 

 zSubscribers 0.315     0.047 0.941 

 zLiveViews 0.312     0.085 0.869 

 zAvgViewers      0.256 0.843 

 zMaxViewers      0.253 0.839 



 zUniqViewers  0.537    0.118 0.590 

 zHostRaidViewers     −0.680 0.434 0.594 

 zTimeStreamed  0.510    0.188 0.872 

 zChatAud     0.402 0.611 0. 710 

 zChatMess  0.340    0.593 0.890 

 zClipsCreated      0.653 0.893 

 zClipViews  0.538    0.083 0.629 

 zAdBreaks   0.630   0.378 0.765 

 zAdTimeHour   0.647   0.409 0.379 

 zNotif    0.499  0.653 0.814 

 zIntSpeed    0.696  0.353 0.631 

 PsyC     0.494 0.687 0.853 

 zSR_L1 0.323     0.028 0.915 

 zSR_L2 0.322     0.028 0.925 

 zSR_L3 0.322     0.029 0.938 

 zSR_L4 0.322     0.034 0.910 

 zSR_L5 0.320     0.039 0.926 

Overall KMO measure of sampling adequacy       0.873 

Average interitem covariance       0.259 

Number of items in the scale               22 

Scale reliability coefficient  (Cronbach’s α)          0.890 

Non-subscription Revenues 

 zNewFollowers 0.313     0.043 0.862 

 zSubscribers 0.323     0.047 0.941 

 zLiveViews      0.085 0.869 

 zAvgViewers      0.256 0.843 

 zMaxViewers      0.253 0.839 

 zUniqViewers  0.537    0.118 0.590 

 zHostRaidViewers     −0.684 0.434 0.594 

 zTimeStreamed  0.510    0.188 0.872 

 zChatAud     0.408 0.611 0. 710 

 zChatMess  0.340    0.593 0.890 

 zClipsCreated      0.653 0.893 

 zClipViews  0.539    0.083 0.629 

 zAdBreaks   0.617   0.378 0.765 

 zAdTimeHour   0.643   0.409 0.379 

 zNotif    0.395  0.653 0.814 

 zIntSpeed    0.707  0.353 0.631 

 PsyC     0.452 0.687 0.853 

 zNSR_L1 0.325     0.028 0.915 

 zNSR_L2 0.324     0.028 0.925 

 zNSR_L3 0.324     0.029 0.938 

 zNSR_L4 0.324     0.034 0.910 

 zNSR_L5 0.322     0.039 0.926 

Overall KMO measure of sampling adequacy       0.873 

Average interitem covariance       0.259 

Number of items in the scale               22 

Scale reliability coefficient  (Cronbach’s α)          0.890 

Notes: method of extraction is PCA. Method of rotation is orthogonal varimax (Kaiser off). Rotation has converged 

with n = 397, trace = 22 and ρ ≈ 0.7 with 5 PCs being the optimal outcome for all possible dependent variables. Blank 

spaces correspond to the absolute value of loadings below threshold 0.3. UV stands for unexplained variance, whereas 

KMO stands for Kaiser-Mayer-Olkin. 
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Table S4. Estimated coefficients with PCA 

Component 
Coefficient (Std. Error) 

M1 – Total Revenues M2 – Subscription Revenues M3 – Non-subscription Revenues 

PC1 (Committed viewers) 0.318*** 

(0.002) 

0.318*** 

(0.002) 

0.318*** 

(0.003) 

PC2 (Non-committed viewers) −0.032*** 

(0.005) 

−0.032*** 

(0.005) 

−0.031*** 

(0.005) 

PC3 (Publicity dimension) −0.001 

(0.007) 

−0.001 

(0.007) 

−0.041*** 

(0.008) 

PC4 (Structural dimension) −0.013 

(0.010) 

−0.013 

(0.010) 

−0.009 

(0.013) 

PC5 (Emotional dimension) −0.024* 

(0.013) 

−0.023* 

(0.013) 

−0.060*** 

(0.016) 

R2 0.976 0.976 0.963 

AIC (BIC) −345.099 (−325.180) −348.003 (−328.083) −176.725 (−156.806) 

RMSE 0.156 0.155 0.192 

Notes: Symbol *** (**) [*] represents 1% (5%) [10%] of significance level, respectively. The regression includes 

robust standard errors and the constant term was omitted. 
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Table S5. Estimated coefficients with LASSO  

Period       One day step-ahead Thirty days steps-ahead 

Technique      k-fold CV Rolling h-step ahead CV Rolling h-step ahead CV 

Model LASSO Post−est OLS LASSO Post−est OLS LASSO Post−est OLS LASSO Post−est OLS 

M1  (𝛌𝐋𝐎𝐏𝐓
∗  = 1.841; 𝛂𝐋𝐎𝐏𝐓

∗ = 1) (𝛌𝐋𝐒𝐄
∗  = 11.836; 𝛂𝐋𝐒𝐄

∗ = 1) (𝛌𝐋𝐎𝐏𝐓
∗  = 39.668) (𝛌𝐋𝐎𝐏𝐓

∗  = 52.439) 

zSubscribers 0.614*** 0.611*** 0.619*** 0.613*** 0.616*** 0.642*** 0.608*** 0.642*** 

zLiveViewers 0.384*** 0.394*** 0.370*** 0.379*** 0.349*** 0.375*** 0.340*** 0.375*** 

zAvgViewers 0.026*** 0.041*** 0.007*** 0.016***     

zMaxViewers −0.021*** −0.045***       

zHostRaidViewer 0.002*** 0.003***       

zChatAud −0.002*** −0.002***       

zChatMess −0.003*** −0.005***       

zClipsCreated −0.019*** −0.021*** −0.010*** −0.021***     

zClipViews −0.001*** −0.003***       

zAdBreaks −0.028*** −0.030*** 0.015*** 0.028***     

zAdTimeH −0.008*** −0.009***       

zNotif −0.010*** −0.013***       

zIntSpeed 0.011*** 0.012***       

M2  (𝛌𝐋𝐎𝐏𝐓
∗  = 1.840; 𝛂𝐋𝐎𝐏𝐓

∗ = 1) (𝛌𝐋𝐒𝐄
∗  = 11.829; 𝛂𝐋𝐒𝐄

∗ = 1) (𝛌𝐋𝐎𝐏𝐓
∗  = 43.511) (𝛌𝐋𝐎𝐏𝐓

∗  = 52.409) 

zSubscribers 0.606*** 0.603*** 0.611*** 0.605*** 0.605*** 0.634*** 0.599*** 0.634*** 

zLiveViewers 0.393*** 0.403*** 0.379*** 0.387*** 0.355*** 0.383*** 0.349*** 0.384*** 

zAvgViewers 0.026*** 0.042*** 0.007*** 0.016***     

zMaxViewers −0.022*** −0.046***       

zHostRaidViewer 0.002*** 0.003***       

zChatAud −0.002*** −0.002***       

zChatMess −0.003*** −0.005***       

zClipsCreated −0.018*** −0.021*** −0.010*** −0.021***     

zClipViews −0.002*** −0.003***       

zAdBreaks 0.027*** 0.030*** 0.014*** 0.027***     

zAdTimeH −0.008*** −0.009***       

zNotif −0.010*** −0.014***       

zIntSpeed 0.011*** 0.012***       

M3  (𝛌𝐋𝐎𝐏𝐓
∗  = 3.547; 𝛂𝐋𝐎𝐏𝐓

∗ = 1) (𝛌𝐋𝐒𝐄
∗  = 15.714; 𝛂𝐋𝐒𝐄

∗ = 1)  (𝛌𝐋𝐎𝐏𝐓
∗  = 47.989) (𝛌𝐋𝐎𝐏𝐓

∗  = 33.077) 

zNewFollowers 0.050*** 0.048*** 0.046*** 0.056*** 0.009*** 0.065*** 0.026*** 0.065*** 

zSubscribers 0.905*** 0.907*** 0.907*** 0.902*** 0.916*** 0.912*** 0.915*** 0.912*** 

zUniqViewers 0.020*** 0.023*** 0.007*** 0.024***     

zChatAud 0.018*** 0.022*** 0.004*** 0.022***     

zChatMess 0.0003*** 0.004***       

zClipsCreated −0.026*** −0.030*** −0.014*** −0.030***     

zAdBreaks 0.052*** 0.057*** 0.039*** 0.056*** 0.005*** 0.057*** 0.021*** 0.057*** 

zAdTimeH −0.004*** −0.011***       

zIntSpeed 0.005*** 0.010***       

PsyC −0.014*** −0.020***       

Notes: M1 is the model whose dependent variable is the Total Revenue, M2 is the model whose dependent variable 

corresponds to Subscription Revenues and M3 is the model whose dependent variable corresponds to Non-subscription 

Revenues. CV stands for cross-validation. Under k-fold CV considering 10 folds by assumption, α equal to 1 means 

that the LASSO is preferred to elastic net and ridge regressions. LOPT stands for the λ that minimizes the mean square 

prediction error (MSPE). LSE stands for largest λ for which MSPE is within one standard error of the minimal MSPE. 

*** p < 0.01. 
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Table S6. CL model: first-step descriptive statistics of the predicted values of each dependent 

variable with RF and second-step estimated coefficients with OLS and ARIMA 

First-step statistics �̅�𝐑𝐅 𝝈𝑹𝑭 𝐕𝐚𝐫𝐢𝐚𝐧𝐜𝐞𝐑𝐅 𝐌𝐢𝐧𝐑𝐅 𝐌𝐚𝐱𝐑𝐅 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬𝐑𝐅 𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬𝐑𝐅 

M1  −0.083 0.882 0.779 −1.541 0.872 −0.284 1.580 

M2  −0.085 0.879 0.773 −1.501 0.873 −0.277 1.571 

M3  −0.084 0.894 0.773 −1.747 0.710 −0.706 1.859 

Second-step coefficients     M1 – Total Revenues M2 – Subscription Revenues M3 – Non-subscription Revenues 

 OLS ARIMA  OLS ARIMA    OLS ARIMA 

Predicted_Viewers_RF −0.001*** 

(0.0003) 

−0.002*** 

(0.0003) 

−0.002 

(0.002) 

−0.001*** 

(0.0003) 

−0.002*** 

(0.0003) 

−0.002 

(0.003) 

−0.003*** 

(0.0003) 

−0.008*** 

(0.001) 

−0.001 

(0.006) 

Predicted__Viewers_RF2  −0.002*** 

(0.0005) 
  −0.002*** 

(0.0005) 

  −0.006*** 

(0.001) 

 

Const 0.008*** 

(0.0003) 

0.010*** 

(0.0005) 
 0.008*** 

(0.0003) 

0.010*** 

(0.0005) 

 0.008*** 

(0.0003) 

0.012*** 

(0.001) 

 

dzTR_AR_L1   0.981*** 

(0.019) 
      

dzSR_AR_L1      0.981*** 

(0.020) 

   

dzNSR_AR_L1         1.134*** 

(0.096) 

dzNSR_AR_L2         −0.140 

(0.095) 

dzNSR_MA_L1         −0.817*** 

(0.069) 

Sigma   0.002*** 

(0.0004) 
  0.002*** 

(0.0004) 
  0.005*** 

(0.0003) 

AIC  

(BIC) 
  −3843.999 

(−3832.046) 
  −3820.519 

(−3808.575) 
  −3127.604 

(−3107.697) 

Log pseudo-likelihood   1924.995   1913.260   1568.802 
Notes: In the first step, RF is applied to predict the different types of dependent variables by relying on representative 

covariates of active and passive data covering the opposite side of the market: zNewFollowers, zSubscribers, 

zLiveViews, zAvgViewers, zMaxViewers, zUniqViewers, zHostRaidViewers and lagged dependent variables up to 

the fifth lag. In the second step, we regress effective values of each type of revenue enjoyed by the online gamer as a 

function of the predicted values previously estimated in the first-step which, in turn, depend on active and passive data 

related to the opposite side of the market, thereby meaning that in the second-step one obtains OLS estimations for the 

different types of dependent variables as a function of information exclusively related to viewers. As a robustness 

check, we also consider ARIMA models. For these, the dependent variable corresponds to the first difference of the 

original variable given the results obtained from Augmented Dickey-Fuller tests. Focusing on M1 and considering the 

original dependent variable, it follows that: (𝑧(𝑡) = 3.757; p-value = 1.000) without trend nor lags, (𝑧(𝑡) = −1.560; p-

value = 0.808) with trend and one period lag, and (𝑧(𝑡) = −1.700; p-value = 0.751) with trend and five lagged periods. 

Once considering the first difference, one obtains: (𝑧(𝑡) = −3.627; p-value = 0.028) without trend nor lags, (𝑧(𝑡) = 

−3.719; p-value = 0.021) with trend and one period lag, and (𝑧(𝑡) = −3.317; p-value = 0.064) with trend and five lagged 

periods. Therefore, the null hypothesis of a unit root is certainly rejected for a significant level of 10% when the first 

difference of the original variable is adopted. Focusing on M2 and considering the original dependent variable, it 

follows that: (𝑧(𝑡) = 3.572; p-value = 1.000) without trend nor lags, (𝑧(𝑡) = −1.628; p-value = 0.781) with trend and 

one period lag, and (𝑧(𝑡) = −1.763; p-value = 0.722) with trend and five lagged periods. Once considering the first 

difference, one obtains: (𝑧(𝑡) = −3.676; p-value = 0.024) without trend nor lags, (𝑧(𝑡) = −3.689; p-value = 0.023) with 

trend and one period lag, and (𝑧(𝑡) = −3.315; p-value = 0.064) with trend and five lagged periods. Therefore, the null 

hypothesis of a unit root is certainly rejected for a significant level of 10% when the first difference of the original 

variable is adopted. Focusing on M3 and considering the original dependent variable, it follows that: (𝑧(𝑡) = 1.973; p-

value = 1.000) without trend nor lags, (𝑧(𝑡) = 0.812; p-value = 1.000) with trend and one period lag, and (𝑧(𝑡) = −1.700; 

p-value = 0.751) with trend and five lagged periods. Once considering the first difference, one obtains: (𝑧(𝑡) = −12.035; 

p-value = 0.000) without trend nor lags, (𝑧(𝑡) = −8.274; p-value = 0.000) with trend and one period lag, and (𝑧(𝑡) = 

−4.516; p-value = 0.001) with trend and five lagged periods. Therefore, the null hypothesis of a unit root is certainly 

rejected for a significant level of 1% when the first difference of the original variable is adopted. Mutatis mutandis, 

similar outcomes are found with Phillips-Perron, Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) and Elliott, 

Rothenberg and Stock (ERS) tests. Based on the highest log pseudo-likelihood value and lowest Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) values, only the best autoregressive models are presented 

here for each one of the possible dependent variables. Both M1 and M2 are characterized by the presence of one 

autoregressive (AR) component and by the absence of moving average (MA) components. M3 is characterized by two 

AR components and one MA component. Symbol *** (**) [*] represents 1% (5%) [10%] of significance level, 

respectively. The regression includes robust standard errors and the constant term was omitted for ARIMA models. 


