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Abstract:



A Bayesian measure of evidence for precise hypotheses is presented. The intention is to give a Bayesian alternative to significance tests or, equivalently, to p-values. In fact, a set is defined in the parameter space and the posterior probability, its credibility, is evaluated. This set is the “Highest Posterior Density Region” that is “tangent” to the set that defines the null hypothesis. Our measure of evidence is the complement of the credibility of the “tangent” region.
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1. Introduction


The objective of this paper is to provide a coherent Bayesian measure of evidence for precise null hypotheses. Significance tests [1] are regarded as procedures for measuring the consistency of data with a null hypothesis by the calculation of a p-value (tail area under the null hypothesis). [2] and [3] consider the p-value as a measure of evidence of the null hypothesis and present alternative Bayesian measures of evidence, the Bayes Factor and the posterior probability of the null hypothesis. As pointed out in [1], the first difficult to define the p-value is the way the sample space is ordered under the null hypothesis. [4] suggested a p-value that always regards the alternative hypothesis. To each of these measures of evidence one could find a great number of counter arguments. The most important argument against Bayesian test for precise hypothesis is presented by [5]. Arguments against the classical p-value are full in the literature. The book by [6] and its review by [7] present interesting and relevant arguments to the statisticians start to thing about new methods of measuring evidence. In a more philosophical terms, [8] discuss, in a great detail, the concept of evidence. The method we suggest in the present paper has simple arguments and a geometric interpretation. It can be easily implemented using modern numerical optimization and integration techniques. To illustrate the method we apply it to standard statistical problems with multinomial distributions. Also, to show its broad spectrum, we consider the case of comparing two gamma distributions, which has no simple solution with standard procedures. It is not a situation that appears in regular textbooks. These examples will make clear how the method should be used in most situations. The method is “Full” Bayesian and consists in the analysis of credible sets. By Full we mean that one needs only to use the posterior distribution without the need for any adhockery, a term used by [8].




2. The Evidence Calculus


Consider the random variable D that, when observed, produces the data d. The statistical space is represented by the triplet [image: there is no content] where [image: there is no content] is the sample space, the set of possible values of d, [image: there is no content] is the family of measurable subsets of [image: there is no content] and [image: there is no content] is the parameter space. We define now a prior model [image: there is no content], which is a probability space defined over [image: there is no content]. Note that this model has to be consistent, so that [image: there is no content] turns out to be well defined. As usual after observing data d, we obtain the posterior probability model [image: there is no content], where [image: there is no content] is the conditional probability measure on [image: there is no content] given the observed sample point, [image: there is no content]. In this paper we restrict ourselves to the case where the function [image: there is no content] has a probability density function.



To define our procedure we should concentrate only on the posterior probability space [image: there is no content]. First we will define [image: there is no content] as the subset of the parameter space where the posterior density is greater than [image: there is no content].


[image: there is no content]








The credibility of [image: there is no content] is its posterior probability,


[image: there is no content]








where [image: there is no content] if [image: there is no content] and zero otherwise.



Now, we define f* as the maximum of the posterior density over the null hypothesis, attained at the argument [image: there is no content],


[image: there is no content]








and define [image: there is no content] as the set “tangent” to the null hypothesis, H, whose credibility is [image: there is no content]. Figure 1 and Figure 2 show the null hypothesis and the contour of set T* for Examples 2 and 3 of Section 4.


Figure 1. Homogeneity test with [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Entropy 01 00099 g001]





Figure 2. Hardy-Weinberg test with [image: there is no content], [image: there is no content] and [image: there is no content].
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The measure of evidence we propose in this article is the complement of the probability of the set T*. That is, the evidence of the null hypothesis is


[image: there is no content]











If the probability of the set T* is “large”, it means that the null set is in a region of low probability and the evidence in the data is against the null hypothesis. On the other hand, if the probability of T* is “small”, then the null set is in a region of high probability and the evidence in the data is in favor of the null hypothesis.



Although the definition of evidence above is quite general, it was created with the objective of testing precise hypotheses. That is, a null hypothesis for which the dimension is smaller than that of the parameter space, i.e. [image: there is no content].




3. Numerical Computation


In this paper the parameter space, [image: there is no content], is always a subset of Rn, and the hypothesis is defined as a further restricted subset [image: there is no content]. Usually, [image: there is no content]is defined by vector valued inequality and equality constraints:


[image: there is no content]











Since we are working with precise hypotheses, we have at least one equality constraint, hence [image: there is no content]. Let [image: there is no content] be the probability density function for the measure [image: there is no content], i.e.,


[image: there is no content]











The computation of the evidence measure defined in the last section is performed in two steps, a numerical optimization step, and a numerical integration step. The numerical optimization step consists of finding an argument [image: there is no content] that maximizes the posterior density [image: there is no content]under the null hypothesis. The numerical integration step consists of integrating the posterior density over the region where it is greater than [image: there is no content]. That is,

	
Numerical Optimization step:


[image: there is no content]











	
Numerical Integration step:










[image: there is no content]








where [image: there is no content] if [image: there is no content] and zero otherwise.



Efficient computational algorithms are available for local and global optimization as well as for numerical integration in [9], [10], [11], [12], [13], and [14]. Computer codes for several such algorithms can be found at software libraries as NAG and ACM, or at internet sites as www.ornl.org.



We notice that the method used to obtain T* and to calculate [image: there is no content] can be used under general conditions. Our purpose, however, is to discuss precise hypothesis testing, under absolute continuity of the posterior probability model, the case for which most solutions presented in the literature are controversial.




4. Examples


In the sequel we will discuss five examples with increasing computational difficulty. The first four are about the Multinomial model. The first example presents the test for a specific success rate in the standard binomial model, and the second is about the equality of two such rates. For these two examples the null hypotheses are linear restrictions of the original parameter spaces. The third example introduces the Hardy-Weinberg equilibrium hypothesis in a trinomial distribution. In this case the hypothesis is quadratic.



Forth example considers the test of independence of two events in a [image: there is no content] contingency table. In this case the parameter space has dimension three, and the null hypothesis, which is not linear, defines a set of dimension two.



Finally, the last example presents two parametric comparisons for two gamma distributions. Although straightforward in our paradigm, it is not presented by standard statistical textbooks. We believe that, the reason for this gap in the literature is the non-existence of closed analytical forms for the test. In order to be able to fairly compare our evidence measure with standard tests, like Chi-square tail (pV), Bayes Factor (BF), and Posterior-Probability (PP), we always assume a uniform prior distribution. In these examples the likelihood has finite integral over the parameter space. Hence we have posterior density functions that are proportional to the respective likelihood functions. In order to achieve better numerical stability we optimize a function proportional to the log-likelihood, [image: there is no content], and make explicit use of its first and second derivatives (gradient and Jacobian).



For the 4 examples concerning multinomial distributions we present the following figures (Table 1, Table 2, and Table 3):

	
Our measure of evidence, Ev, for each d;



	
the p-value, pV obtained by the [image: there is no content] test; that is, the tail area;



	
the Bayes Factor,


[image: there is no content]











	
the posterior probability of H,


[image: there is no content]
















Table 1. Standard binomial model.







	
d

	
Ev

	
PV

	
BF

	
PP






	
0

	
0.00

	
0.00

	
0.00

	
0.00




	
1

	
0.00

	
0.00

	
0.00

	
0.00




	
2

	
0.00

	
0.00

	
0.00

	
0.00




	
3

	
0.00

	
0.00

	
0.02

	
0.02




	
4

	
0.01

	
0.01

	
0.10

	
0.09




	
5

	
0.02

	
0.03

	
0.31

	
0.24




	
6

	
0.06

	
0.07

	
0.78

	
0.44




	
7

	
0.16

	
0.18

	
1.55

	
0.61




	
8

	
0.35

	
0.37

	
2.52

	
0.72




	
9

	
0.64

	
0.65

	
3.36

	
0.77




	
10

	
1.00

	
1.00

	
3.70

	
0.79










Table 2. Tests of homogeneity and Hardy-Weinberg equilibrium.







	
Homogeneity

	
Hardy-Weinberg




	
x

	
y

	
Ev

	
pV

	
BF

	
PP

	
x1

	
x3

	
Ev

	
pV

	
BF

	
PP






	
5

	
0

	
0.05

	
0.02

	
0.25

	
0.20

	
1

	
2

	
0.01

	
0.00

	
0.01

	
0.01




	
5

	
1

	
0.18

	
0.08

	
0.87

	
0.46

	
1

	
3

	
0.01

	
0.01

	
0.04

	
0.04




	
5

	
2

	
0.43

	
0.21

	
1.70

	
0.63

	
1

	
4

	
0.04

	
0.02

	
0.11

	
0.10




	
5

	
3

	
0.71

	
0.43

	
2.47

	
0.71

	
1

	
5

	
0.09

	
0.04

	
0.25

	
0.20




	
5

	
4

	
0.93

	
0.71

	
2.95

	
0.75

	
1

	
6

	
0.18

	
0.08

	
0.46

	
0.32




	
5

	
5

	
1.00

	
1.00

	
3.05

	
0.75

	
1

	
7

	
0.31

	
0.15

	
0.77

	
0.44




	
5

	
6

	
0.94

	
0.72

	
2.80

	
0.74

	
1

	
8

	
0.48

	
0.26

	
1.16

	
0.54




	
5

	
7

	
0.77

	
0.49

	
2.31

	
0.70

	
1

	
9

	
0.66

	
0.39

	
1.59

	
0.61




	
5

	
8

	
0.58

	
0.31

	
1.75

	
0.64

	
1

	
10

	
0.83

	
0.57

	
2.00

	
0.67




	
5

	
9

	
0.39

	
0.18

	
1.21

	
0.55

	
1

	
11

	
0.95

	
0.77

	
2.34

	
0.70




	
5

	
10

	
0.24

	
0.10

	
0.77

	
0.43

	
1

	
12

	
1.00

	
0.99

	
2.55

	
0.72




	
10

	
0

	
0.00

	
0.00

	
0.00

	
0.00

	
1

	
13

	
0.96

	
0.78

	
2.57

	
0.72




	
10

	
1

	
0.00

	
0.00

	
0.02

	
0.02

	
1

	
14

	
0.84

	
0.55

	
2.39

	
0.71




	
10

	
2

	
0.01

	
0.01

	
0.07

	
0.06

	
1

	
15

	
0.66

	
0.33

	
2.05

	
0.67




	
10

	
3

	
0.05

	
0.02

	
0.19

	
0.16

	
1

	
16

	
0.47

	
0.16

	
1.58

	
0.61




	
10

	
4

	
0.12

	
0.05

	
0.41

	
0.29

	
1

	
17

	
0.27

	
0.05

	
1.06

	
0.51




	
10

	
5

	
0.24

	
0.10

	
0.77

	
0.43

	
1

	
18

	
0.12

	
0.00

	
0.58

	
0.37




	
10

	
6

	
0.41

	
0.20

	
1.23

	
0.55

	
5

	
0

	
0.02

	
0.01

	
0.05

	
0.05




	
10

	
7

	
0.61

	
0.34

	
1.74

	
0.63

	
5

	
1

	
0.09

	
0.04

	
0.25

	
0.20




	
10

	
8

	
0.81

	
0.53

	
2.21

	
0.69

	
5

	
2

	
0.29

	
0.14

	
0.60

	
0.38




	
10

	
9

	
0.95

	
0.75

	
2.54

	
0.72

	
5

	
3

	
0.61

	
0.34

	
1.00

	
0.50




	
10

	
10

	
1.00

	
1.00

	
2.66

	
0.73

	
5

	
4

	
0.89

	
0.65

	
1.29

	
0.56




	
12

	
0

	
0.00

	
0.00

	
0.00

	
0.00

	
5

	
5

	
1.00

	
1.00

	
1.34

	
0.57




	
12

	
1

	
0.00

	
0.00

	
0.00

	
0.00

	
5

	
6

	
0.90

	
0.66

	
1.18

	
0.54




	
12

	
2

	
0.00

	
0.00

	
0.01

	
0.01

	
5

	
7

	
0.66

	
0.39

	
0.89

	
0.47




	
12

	
3

	
0.01

	
0.00

	
0.04

	
0.04

	
5

	
8

	
0.40

	
0.20

	
0.58

	
0.37




	
12

	
4

	
0.03

	
0.01

	
0.10

	
0.09

	
5

	
9

	
0.21

	
0.09

	
0.32

	
0.24




	
12

	
5

	
0.07

	
0.03

	
0.24

	
0.19

	
5

	
10

	
0.09

	
0.04

	
0.16

	
0.13




	
12

	
6

	
0.14

	
0.06

	
0.46

	
0.32

	
9

	
0

	
0.21

	
0.09

	
0.73

	
0.42




	
12

	
7

	
0.26

	
0.11

	
0.80

	
0.44

	
9

	
1

	
0.66

	
0.39

	
1.59

	
0.61




	
12

	
8

	
0.42

	
0.21

	
1.24

	
0.55

	
9

	
2

	
0.99

	
0.91

	
1.77

	
0.64




	
12

	
9

	
0.62

	
0.34

	
1.73

	
0.63

	
9

	
3

	
0.86

	
0.59

	
1.33

	
0.57




	
12

	
10

	
0.81

	
0.53

	
2.21

	
0.69

	
9

	
4

	
0.49

	
0.26

	
0.74

	
0.43




	

	

	

	

	

	

	
9

	
5

	
0.21

	
0.09

	
0.32

	
0.24




	

	

	

	

	

	

	
9

	
6

	
0.06

	
0.03

	
0.11

	
0.10




	

	

	

	

	

	

	
9

	
7

	
0.01

	
0.01

	
0.03

	
0.03










Table 3. Test of independence.







	
x00

	
x01

	
x10

	
x11

	
Ev

	
pV

	
BF

	
PP






	
12

	
6

	
95

	
35

	
0.96

	
0.57

	
4.73

	
0.83




	
48

	
25

	
9

	
10

	
0.54

	
0.14

	
1.04

	
0.51




	
96

	
50

	
18

	
20

	
0.24

	
0.04

	
0.50

	
0.33




	
18

	
5

	
39

	
30

	
0.29

	
0.06

	
0.50

	
0.33




	
36

	
10

	
78

	
60

	
0.06

	
0.01

	
0.11

	
0.10










For the definition of the Bayes Factor and properties we refer to [8] and [15].



4.1. Success rate in standard binomial model


This is a standard example about testing that a proportion, [image: there is no content], is equal to a specific value, p. Consider the random variable, D being binomial with parameter [image: there is no content] and sample size n. Here we consider [image: there is no content] trials, [image: there is no content] and d is the observed success number. The parameter space is the unit interval [image: there is no content]. The null hypothesis is defined as [image: there is no content]. For all possible values of d, Table 1 presents the figures to compare our measure with the standard ones. To compute the Bayes Factor, we consider a priori [image: there is no content] and a uniform density for [image: there is no content] under the “alternative” hypothesis, [image: there is no content]. That is,


[image: there is no content]














4.2. Homogeneity test in 2× 2 contingency table


This model is useful in many applications, like comparison of two communities with relation to a disease incidence, consumer behavior, electoral preference, etc. Two samples are taken from two binomial populations, and the objective is to test whether the success ratios are equal. Let x and y be the number of successes of two independent binomial experiments of sample sizes m and n, respectively. The posterior density for this multinomial model is


[image: there is no content]








The parameter space and the null hypothesis set are:


[image: there is no content]










[image: there is no content]











The Bayes Factor considering a priori [image: there is no content] and uniform densities over [image: there is no content] and [image: there is no content] is given in the equation below. See [16] and [17] for details and discussion about properties.


[image: there is no content]











Left side of Table 2 presents figures to compare Ev(d) with the other standard measures for [image: there is no content]. Figure 1 presents H and T* for [image: there is no content] and [image: there is no content] with [image: there is no content].








4.3. Hardy-Weinberg equilibrium law


In this biological application there is a sample of n individuals, where x1 and x3 are the two homozigote sample counts and [image: there is no content] is hetherozigote sample count. [image: there is no content] is the parameter vector. The posterior density for this trinomial model is


[image: there is no content]








The parameter space and the null hypothesis set are:


[image: there is no content]










[image: there is no content]











The problem of testing the Hardy-Weinberg equilibrium law using the Bayes Factor is discussed in detail by [18] and [19].



The Bayes Factor considering uniform priors over [image: there is no content] and [image: there is no content] is given by the following expression:


[image: there is no content]











Here [image: there is no content] is a sufficient statistic under H. This means that the likelihood under H depends on data d only through t.



Right side of Table 2 presents figures to compare Ev(d) with the other standard measures for [image: there is no content]. Figure 2 presents H and T* for [image: there is no content], [image: there is no content] and [image: there is no content].




4.4. Independence test in a 2× 2 contingency table


Suppose that laboratory test is used to help in the diagnostic of a disease. It should be interesting to check if the test results are really related to the health conditions of a patient. A patient chosen from a clinic is classified as one of the four states of the set


[image: there is no content]








in such a way that h is the indicator of the occurrence or not of the disease and t is the indicator for the laboratory test being positive or negative. For a sample of size n we record [image: there is no content], the vector whose components are the sample frequency of each the possibilities of (t,h). The parameter space is the simplex


[image: there is no content]








and the null hypothesis, h and t are independent, is defined by


[image: there is no content]













The Bayes Factor for this case is discussed by [17] and has the following expression:


[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].






4.5. Comparison of two gamma distributions


This model may be used when comparing two survival distributions, for example, medical procedures and pharmacological efficiency, component reliability, financial market assets, etc. Let [image: there is no content] and [image: there is no content] be samples of two gamma distributed survival times. The sufficient statistic for the gamma distribution is the vector [n,s,p], i.e. the sample size, the observations sum and product. Let [image: there is no content] and [image: there is no content], all positive, be these gamma parameters. The likelihood function is:


[image: there is no content]











This likelihood function is integrable on the parameter space. In order to allow comparisons with classical procedures, we will not consider any informative prior, i.e., the likelihood function will define by itself the posterior density.



Table 4 presents time to failure of coin comparators, a component of gaming machines, of two different brands. An entrepreneur was offered to replace brand 1 by the less expensive brand 2. The entrepreneur tested 10 coin comparators of each brand, and computed the sample means and standard deviations. The gamma distribution fits nicely this type of failure time, and was used to model the process. Denoting the gamma mean and standard deviation by [image: there is no content] and [image: there is no content], the first hypothesis to be considered is [image: there is no content]. The high evidence of H', [image: there is no content], corroborates the entrepreneur decision of changing its supplier. Note that the naive comparison of the sample means could be misleading. In the same direction, the low evidence of [image: there is no content], [image: there is no content], indicates that the new brand should have smaller variation on the time to failure. The low evidence of H suggests that costs could be further diminished by na improved maintenance policy [20].



Table 4. Comparing two gamma distributions.







	
Brand 1 sample




	
39.27

	
31.72

	
12.33

	
27.67

	
56.66




	
28.32

	
53.72

	
29.71

	
23.76

	
33.55




	
mean1=33.67

	

	
std1=13.33




	
Brand 2 sample




	
28.32

	
53.72

	
29.71

	
23.76

	
33.55




	
24.07

	
33.79

	
33.10

	
26.93

	
27.23




	
mean2=29.25

	

	
std2=3.62




	
Evidence




	
[image: there is no content]

	

	
[image: there is no content]














5. Final Remarks


The theory presented in this paper, grew out of the necessity of testing precise hypotheses made on the behavior of software controlled machines [21]. The hypotheses being tested are software requirements and specifications. The real machine software is not available, but the machine can be used for input-output black-box simulation. The authors had the responsibility of certifying whether gaming machines were working according to Brazilian law (requirements) and manufacturer's game description (specifications). Many of these requirements and specifications can be formulated as precise hypotheses on contingency tables, like the simple cases of Examples 1, 2 and 4. The standard methodologies, in our opinion, where not adequate to our needs and responsibilities. The classical p-value does not consider the alternative hypothesis that, in our case, is as important as the null hypothesis. Also the p-value is the measure of a tail in the sample space, whereas our concerns are formulated in the parameter space. On the other hand, we like the idea of measuring the significance of a precise hypothesis.



The Bayes factor is indeed formulated directly in the parameter space, but needs an ad hoc positive prior probability on the precise hypothesis. First we had no criterion to assess the required positive prior probability. Second we would be subject to Lindley's paradox, that would privilegiate the null hypothesis [5], [22].



The methodology of evidence calculus based on credible sets presented in this paper is computed in the parameter space, considers only the observed sample, has the significance flavor as in the p-value, and takes in to account the geometry of the null hypothesis as a surface (manifold) imbedded in the whole parameter space. Furthermore, this methodology takes into account only the location of the maximum likelihood under the null hypothesis, making it consistent with “benefit of the doubt” juridical principle. This methodology is also independent of the null hypothesis parametrization. This parametrization independence gives the methodology a geometric characterization, and is in sharp contrast with some well known procedures, like the Fisher exact test [23].



Recalling [6] in its Chapter 6, - “...recognizing that likelihoods are the proper means for representing statistical evidence simplifies and unifies statistical analysis.”- the measure Ev(H) defined in this paper is in accord with this Royall's principle.







References and Notes


	1. 
Cox, D.R. The role of significance tests. Scand. J. Statist. 1977, 4, 49–70. [Google Scholar]

	2. 
Berger, J.O.; Delampady, M. Testing precise hypothesis. Statistical Science 1987, 3, 315–352. [Google Scholar]

	3. 
Berger, J.O.; Boukai, B.; Wang, Y. Unified frequentist and Bayesian testing of a precise hypothesis. Statistical Science 1997, 3, 315–352. [Google Scholar]

	4. 
Pereira, C.A.B; Wechsler, S. On the concept of p-value. Braz. J. Prob. Statist. 1993, 7, 159–177. [Google Scholar]

	5. 
Lindley, D.V. A statistical paradox. Biometrika 1957, 44, 187–192. [Google Scholar] [CrossRef]

	6. 
Royall, R. Statistical Evidence: A Likelihood Paradigm; Chapman & Hall: London, 1997; p. 191. [Google Scholar]

	7. 
Vieland, V.J.; Hodge, S.E. Book Reviews: Statistical Evidence by R Royall (1997). Am. J. Hum. Genet. 1998, 63, 283–289. [Google Scholar]

	8. 
Good, I.J. Good thinking: The foundations of probability and its applications; University of Minnesota Press, 1983; p. 332. [Google Scholar]

	9. 
Fletcher, R. Practical Methods of Optimization; J Wiley: Essex, 1987; p. 436. [Google Scholar]

	10. 
Horst, R.; Pardalos, P.M.; Thoai, N. Introduction to Global Optimization; Kluwer Academic Publishers: Boston, 1995. [Google Scholar]

	11. 
Pintér, J.D. Global Optimization in Action. Continous and Lipschitz Optimization: Algorithms, Implementations ans Applications; Kluwer Academic Publishers: Boston, 1996. [Google Scholar]

	12. 
Krommer, A.R.; Ueberhuber, C.W. Computational Integration; SIAM: Philadelphia, 1998; p. 445. [Google Scholar]

	13. 
Nemhauser, G.L.; Rinnooy Kan, A.H.G.; Todd, M.J. Optimization, Handbooks in Operations Research; North-Holland: Amsterdam, 1989; Vol. 1, p. 709. [Google Scholar]

	14. 
Sloan, I.H.; Joe, S. Latice Methods for Multiple Integration; Oxford University Press: Oxford, 1994; p. 239. [Google Scholar]

	15. 
Aitkin, M. Posterior Bayes Factors. J. R. Statist. Soc. B. 1991, 1, 111–142. [Google Scholar]

	16. 
Irony, T.Z.; Pereira, C.A.B. Exact test for equality of two proportions: Fisher×Bayes. J. Statist. Comp. & Simulation 1986, 25, 93–114. [Google Scholar]

	17. 
Irony, T.Z.; Pereira, C.A.B. Bayesian Hypothesis test: Using surface integrals to distribute prior information among hypotheses. Resenhas 1986, 2, 27–46. [Google Scholar]

	18. 
Pereira, C.A.B.; Rogatko, A. The Hardy-Weinberg equilibrium under a Bayesian perspective. Braz. J. Genet. 1984, 7, 689–707. [Google Scholar]

	19. 
Montoya-Delgado, L.E.; Irony, T.Z.; Pereira, C.A.B.; Whittle, M. Unconditional exact test for the Hardy-Weinberg law. Submitted for publication 1998. [Google Scholar]

	20. 
Marshall, A.; Prochan, F. Classes of distributions applicable in replacement, with renewal theory implications. Proc. 6th Berkeley Symp. Math. Statist. Prob. 1972, 395–415. [Google Scholar]

	21. 
Pereira, C.A.B.; Stern, J.M. A Dynamic Software Certification and Verification Procedure. Proc. ISAS’99 - International Conference on Informations System Analysis and Synthesis 1999, II, 426–435. [Google Scholar]

	22. 
Lindley, D.V. The Bayesian approach. Scand. J. Statist. 1978, 5, 1–26. [Google Scholar]

	23. 
Pereira, C.A.B.; Lindley, D.V. Examples questioning the use of partial likelihood. The Statistician 1987, 36, 15–20. [Google Scholar] [CrossRef]





© 1999 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.







media/file4.png
0.9°






nav.xhtml


  entropy-01-00099


  
    		
      entropy-01-00099
    


  




  





media/file3.png





media/file0.png





media/file1.png
0.9t

0.8f

0.4}

0.3f

0.2

0.1}

<« 0

0.8






media/file2.png
0.91

0.8]

0.7]

0.6

0.5

0.4f

0.3

0.2

017

T*

«— 07

<~ 0O

0.2 0.4 0.6

0.8






