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Abstract: Maximum entropy states or statistical mechanical equilibrium solutions have
played an important role in the development of a fundamental understanding of turbulence
and its role in geophysical flows. In modern general circulation models of the earth’s atmo-
sphere and oceans most parameterizations of the subgrid-scale energy and enstrophy transfers
are based on ad hoc methods or ideas developed from equilibrium statistical mechanics or en-
tropy production hypotheses. In this paper we review recent developments in nonequilibrium
statistical dynamical closure theory, its application to subgrid-scale modeling of eddy-eddy,
eddy-mean field and eddy-topographic interactions and the relationship to minimum enstro-
phy, maximum entropy and entropy production arguments.
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1. Introduction

The complexity of geophysical flows has made the understanding of the dynamics of the oceans
and the atmosphere difficult. This complexity arises in part due to the nonlinear coupling across many
scales of motion that occurs for turbulent flows and due to inhomogeneities such as those introduced
by Rossby waves, topography and land-sea contrasts in heating. Large-scale atmospheric motions are
quasigeostrophic, with an approximate balance between Coriolis and pressure forces. The reasons that
the macro turbulence of the atmosphere shares many properties with two-dimensional turbulence is due
to geostrophy and the fact that the earth’s troposphere is relatively thin, being about one thousandth of
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the diameter of the earth. Kraichnan (1967) [1] first demonstrated that, in contrast to three-dimensional
turbulence in which the energy undergoes a forward cascade from small to large wavenumbers (Kol-
mogorov (1941) [2]), in two-dimensional isotropic turbulence the energy cascades inversely whereas
the enstrophy cascades toward larger wavenumber and that the inertial range enstrophy cascading power
law is k−3. Nastrom & Gage (1985) [3] subsequently showed that the kinetic energy spectrum of at-
mospheric transients also displays a k−3 inertial range power law between 400-2000 km [3]. Many
large scale dynamical processes in the atmosphere are equivalent barotropic. Indeed the first numerical
weather predictions nearly 60 years ago were carried out with the barotropic vorticity equation, which
describes two-dimensional turbulence, but also including differential rotation, the so-called β-effect, and
long-wave stabilization. More generally baroclinic models, that allow vertical variations in flow proper-
ties and the conversion of available potential energy to transient kinetic energy, are needed to describe
important phenomena such as storm formation (Frederiksen (2007) [4] reviews the literature).

Turbulent flows are generally forced and dissipative with fluxes of energy and enstrophy through
the system. Nevertheless, much has been learned about the behavior of geophysical flows from the
study of the inviscid unforced equations of motion. In particular, maximum entropy states described by
equilibrium statistical mechanics have proved very useful in determining the climate of inviscid systems.
Onsager (1949) [5] considered the statistical mechanics of point vortices including vortex condensation
and negative temperature states (see also Kraichnan & Montgomery (1980) [6]).

Kraichnan (1975) [7] developed the statistical equilibrium theory of isotropic two-dimensional tur-
bulent flow via a spectral truncation of the Euler equations in wavenumber space. He considered the
micro-canonical distribution, and the canonical equilibrium distribution

P ∝ exp(−aE − bQ), (1)

in terms of the energy, E, and enstrophy, Q, invariants of the truncated spectral equations. The parame-
ters a & b in Eqs. (1)-(2) are determined by the initial or prescribed values of the energy and enstrophy.
Frederiksen & Sawford (1980) [8] developed the corresponding statistical mechanics for spectrally trun-
cated flows on the sphere, for which angular momentum, as well as kinetic energy and enstrophy are
conserved. They were able to relate the resolution dependence of atmospheric general circulation model
spectra to that of the canonical equilibria.

Salmon et al. (1976) [9] developed the statistical mechanics of spectrally truncated quasigeostrophic
flow over topography in planar geometry. The canonical equilibrium distribution for barotropic flow is
again given by Eq. (1) and the variance of the fluctuating part of the vorticity, ζ̂k, is again given by

〈ζ̂kζ̂−l〉 =
k2

a+ bk2
δk,l. (2)

where k = (kx, ky) are wavenumbers, k = |k| and δk,l is the Kronecker delta function. Thus the fluctu-
ations are isotropic and the variance independent of the underlying topography, but the mean vorticity,
〈ζk〉, and streamfunction, 〈ψk〉,

〈ζk〉 =
−bk2hk

a+ bk2
; 〈ψk〉 =

hk

a/b+ k2
(3)

are non-zero with a structural complexity comparable to the topography. Frederiksen & Sawford (1981,1983)
[10, 11] formulated the corresponding canonical equilibrium theory for flow over topography on a sphere
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and used it to understand the structure of the low level atmospheric flow and atmospheric angular mo-
mentum balance.

Parallel with these developments in statistical mechanical equilibrium theory for geophysical fluids
there have been important developments in nonlinear stability theory. Bretherton and Haidvogel (1976)
[12] found that in the presence of weak dissipation turbulent eddies in barotropic flow over topography
decay through a sequence of minimum enstrophy states. The minimum enstrophy states are states for
which the potential vorticity is proportional to the streamfunction. Such inviscid states are nonlinearly
stable in the sense of Arnold (1965) [13] and have a streamfunction which is a filtered version of the
topography. That is, analogous to Eq. (3)

ψk =
hk

µ+ k2
(4)

where µ is the constant of proportionality between the potential enstrophy and streamfunction.
Frederiksen (1982) [14] compared steady state solutions with canonical equilibrium solutions for

barotropic flow over topography on a sphere. For westward zonal flows and variable Coriolis parame-
ter he found that the steady states, corresponding to minimum enstrophy, compared very closely with
the canonical equilibrium states of maximum entropy (Table 3 of [14]). This suggested a fundamental
relationship between minimum enstrophy states and canonical equilibrium states with vanishing fluctua-
tions. This connection was established for barotropic flow over topography in spherical geometry in the
work of Frederiksen & Carnevale (1986) [15]. Carnevale & Frederiksen (1987) [16] formulated the cor-
responding results for planar geometry and also considered the equilibrium state in the thermodynamic
limit of infinite resolution showing that it is statistically sharp, without fluctuations, and identical to the
nonlinear minimum enstrophy state. In these works it was also recognized that for the corresponding
continuum dynamics of fluids more general nonlinear stable structures are possible because of the in-
finity of dynamical invariants that then exist. It was shown that it was possible to generalize the two
quadratic invariant energy-potential enstrophy statistical mechanics to construct more general canoni-
cal distributions that are consistent with the many-invariant nonlinearly stable structures. Generalized
many-invariant statistical mechanical equilibrium states have been applied to Jupiter’s red spot (Miller et
al. (1990, 1992) [17, 18], Robert et al. (1991a, b) [19, 20], Turkington et al. (2001) [21]), to magnetohy-
drodynamics (Isichenko & Gruzinov (1994) [22]) and to two-dimensional flows and turbulence (Majda
& Holen (1997) [23], Ellis et al. (2002) [24], Abramov & Majda (2003) [25]).

For baroclinic flows the corresponding relationships between nonlinearly stable minimum enstrophy
states and canonical equilibrium solutions were established by Frederiksen (1991a & b) [26, 27]. As well
as applications to understand and explain the behavior of atmospheric circulation models (Frederiksen
& Sawford (1980) [8], Frederiksen et al. (1996) [28]) maximum entropy states have also been used
to explain ocean circulations including in the presence of forcing and dissipation (Treguier (1989) [29],
Treguier & McWilliams (1990) [30], Griffa & Salmon (1989) [31], Cummins (1992) [32], Wang & Vallis
(1994) [33], Zou & Holloway (1994) [34] and Nost et al. (2008) [35]). Further references to the literature
may be found in Holloway (1986) [36] and Majda & Wang (2006) [37]. Very recent studies include the
works of Dubinkina and Frank (2007) [38], Timofeyev (2007) [39] and Kurgansky (2008) [40].

The use of maximum entropy states has led to great insight into both atmospheric and oceanic circu-
lations, however they are unable to provide quantitative results for general forced dissipative flows. For
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such flows one must rely on direct numerical simulations or develop statistical closure theories. In or-
der to describe the statistical behavior of a turbulent flow the underlying nonlinear dynamical equations
must be averaged producing an infinite hierarchy of moment or cumulant equations. Most works on the
closure problem have considered homogeneous turbulence for which the mean field is zero. In this case
the problem can be stated simply: consider a generic equation of motion with quadratic nonlinearity in
the fluctuating part of the vorticity, ζ̂k, in Fourier space:

∂

∂t
ζ̂k = Kkpqζ̂−pζ̂−q. (5)

HereKkpq are the interaction or mode coupling coefficients. The correlation between the eddies can now
be represented by an equation for the covariance which is found to depend on the third order cumulant
in Fourier space

∂

∂t
〈ζ̂k(t)ζ̂−l(t

′)〉 = Kkpq〈ζ̂−p(t)ζ̂−q(t)ζ̂−l(t
′)〉 (6)

and similarly the three-point cumulant depends on the fourth and so on. Statistical turbulence theory is
principally concerned with the methods by which this moment hierarchy is closed and the subsequent
dynamics of the closure equations. The fact that for homogeneous turbulence the off-diagonal elements
of the covariance matrix vanish greatly simplifies the problem. The majority of closure schemes are
derived using perturbative expansions of the nonlinear terms in the primitive dynamical equations. The
most successful theories utilize formal renormalization techniques.

The development of modern turbulence closures based on renormalized perturbation theory was pio-
neered by Kraichnan (1958, 1959) [41, 42] who formulated the Eulerian direct interaction approximation
(DIA) for homogeneous turbulence. Herring’s self consistent field theory (SCFT, Herring (1965, 1966)
[43, 44]) and McComb’s local energy transfer theory (LET, McComb (1974) [45], McComb et al. (1992)
[46], McComb & Quinn (2003) [47]) were independently developed. The SCFT has the same equations
for the single-time cumulant and response function as the DIA but obtains the two-time two-point cu-
mulant from a fluctuation dissipation theorem (FDT; Kraichnan (1959) [48], Leith (1975) [49], Deker
& Haake (1975) [50], Carnevale & Frederiksen (1983) [51]). In retrospect the LET may also be shown
to be derivable from the DIA equations by replacing instead the response function equation by the FDT
(Frederiksen, Davies & Bell (1994) [52], Kiyani & McComb (2004) [53]). These closures and related
Markovianized versions such as the eddy-damped quasi-normal Markovian model (EDQNM, Orszag
(1970) [54], Leith (1971) [55], Bowman, Krommes & Ottaviani (1993) [56], Frederiksen & Davies
(1997) [57]), test field model (TFM, Kraichnan (1971) [58], [59], Leith & Kraichnan (1972) [60]) and
realizable TFM (Bowman & Krommes (1997) [61]) have been successfully applied to a variety of impor-
tant problems. Their performance has been compared with direct numerical simulations and experimen-
tal data (e.g., Herring et al. (1974) [62], Pouquet et al. (1975) [63], Kraichnan & Herring (1978) [64],
McComb (1990) [65], McComb et al. (1992) [46], Frederiksen, Davies & Bell (1994) [52], Frederiksen
& Davies (2000, 2004) [66, 67]). Importantly turbulence closures allow the study of the statistics of
the predictability of homogeneous turbulent flows (Kraichnan (1970) [68], Leith (1971, 1974) [55, 69],
Leith & Kraichnan (1972) [60], Métais & Lesieur (1986) [70]) and most recently of inhomogeneous
turbulent flows (O’Kane & Frederiksen (2008a) [71]).
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Kraichnan’s (1958, 1959) [41, 42] DIA closure was derived through heuristic methods as reviewed by
Frederiksen (2003) [72]. Subsequently more systematic mathematical approaches were employed that
have their origins in quantum field theories. Wyld (1961) [73] and Lee (1965) [74] used the Feynman
diagrammatic approach to develop the DIA closure and higher order approximations for hydrodynamic
and hydromagnetic turbulence respectively. Martin et al. (1973) [75] (and Phythian (1975) [76]) used
a functional formalism to derive the Schwinger-Dyson equations for turbulent flows. They established
the form of the vertex functions and noted that Kraichnan’s DIA is a bare vertex approximation with
the bare vertex equal to the interaction coefficient. The powerful path integral formalism was employed
by Phythian (1977) [77], Jouvet & Phythian (1979) [78], Jensen (1981) [79] to underpin and extend the
applicability of the methodology of Martin et al. (1973) [75].

The DIA is physically realizable ensuring positive energy spectra unlike closures based on the quasi-
normal hypothesis (Ogura 1963 [80]). We note that both the eddy damped quasi-normal Markovian
closure (Orszag 1970, 1973 [54, 81]) and the realizable Markovian closure (Bowman et al. (1993) [56],
Bowman & Krommes (1997) [61]) are modifications of the original quasi-normal approach that have
been formulated to ensure realizability. The DIA has been shown to be in good agreement with exper-
imental wind tunnel measurements (Herring & Kraichnan (1972) [82]) at moderate Reynolds number
and more generally are in good agreement with direct numerical simulations (DNS) in the energy con-
taining range at the large scales (see Kraichnan (1964) [83], McComb (1990) [65] and Frederiksen &
Davies (2000) [66]). However, at high Reynolds number the Eulerian DIA leads to power laws that
differ slightly from the k−5/3 energy and k−3 enstrophy cascading power laws. Kraichnan (1964) [83]
showed that the physical foundation of the failure of the Eulerian DIA to produce inertial ranges consis-
tent with the Kolmogorov hypothesis is its inability to distinguish between convection (advection) effects
and intrinsic distortion effects (see also Frederiksen and Davies (2004) [67]). Nevertheless, the DIA has
led to great insights into the nature of the cascade of energy from large to small scales in 3-D turbu-
lence (Herring & Kerr (1993) [84]) as well as the associated enstrophy cascade to smaller scales in 2-D
turbulence. Notably the SCFT of Herring (1965, 1966) [43, 44] and the LET of McComb (1974) ([45],
McComb, Filipiak & Shanmugasundaram (1992) [46], McComb & Quinn (2003) [47]) have been shown
by Frederiksen & Davies (2000) [66] to give results comparable to the DIA for decaying two-dimensional
isotropic turbulence with large-scale Reynolds numbers up to ≈ 4000. Non-Markovian closures such
as the DIA, LET and SCFT are integro-diferential equations with potentially long time-history integrals
and are computationally challenging. One way to overcome this problem is to periodically truncate the
integrals, calculate the three-point cumulant and use this in the new non-Gaussian initial conditions for
subsequent integrations. Rose (1985) [85] developed such a DIA cumulant update scheme for a three
component system in plasma physics. Frederiksen et al. (1994, 2000, 2004) [52, 66, 67] developed
three-point cumulant restart methods for the DIA, LET and SCFT closures for two-dimensional turbu-
lence at resolutions up to circular truncation wavenumber kmax = 96 and found large improvements in
computational efficiency.

Renormalized Eulerian closures have been employed for studies of three-dimensional and two-dimensional
homogeneous turbulence; reviews of the literature are given in the books of Lesieur (1990) [86] and Mc-
Comb (1990) [65] (see also Frederiksen (2003) [72], O’Kane (2003) [87], Frederiksen & Davies (2004)
[67] and O’Kane & Frederiksen (2004) [88]). They have been applied to studies of plasmas (Bowman
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et al. (1993) [56], Bowman & Krommes (1997) [61], Krommes (2002) [89] and references therein) and
internal gravity waves (Carnevale & Frederiksen (1983) [51]). Kraichnan (1964) [90] also formulated
the DIA closure for the case of Bousinesq convection with a mean horizontally averaged temperature
field with zero fluctuations using a diagonalizing approximation.

Lagrangian direct interaction type closures were developed by Kraichnan (1965) [91], Kraichnan &
Herring (1978) [64] and Kaneda (1981) [92] (see also Kaneda (2007) [93] and references therein) in
an attempt to obtain the correct inertial range spectra. These quasi-Lagrangian theories contain no ad
hoc parameters, but they depend on the formulation and on the choice of the basic variable used. This
contrasts with the Eulerian DIA results which are independent of the choice of basic variables such as
velocity, vorticity, strain etc.

Neither the Eulerian or quasi-Lagrangian DIA closures account for vertex renormalization and as
noted by Martin et al. (1973) [75] “the whole problem of strong turbulence is contained in a proper
treatment of vertex renormalization”. This is an exceedingly difficult problem whose solution has been
elusive. However, a one parameter regularization of the DIA, or empirical vertex renormalization, fol-
lowing the suggestion of Kraichnan (1964) [90], results in good agreement between the regularized DIA
(RDIA) and DNS (Frederiksen & Davies (2004) [67]). Furthermore, the regularization parameter is
almost universal for both homogeneous (Frederiksen & Davies (2004) [67]) and inhomogeneous turbu-
lence (O’Kane & Frederiksen (2004, 2008a) [71, 88]). Frederiksen & Davies (2004) [67] note that their
RDIA closure generally performs better than quasi-Lagrangian closures.

It has also been possible to study the effect of random ensembles of topography on homogeneous
turbulence using closures that are only slightly more complex than for straight homogeneous turbulence.
Herring (1977) [94] and Holloway (1978, 1987) [95, 96] examined the problem of the interaction of
homogeneous turbulence with ensembles of random topography with zero mean value using DIA, TFM
and EDQNM closures. These studies elucidated the role that the statistical properties of random topog-
raphy play in determining spectra of transient vorticity variance and determined a number of spectral
subranges with quite different dynamics.

The inclusion of inhomogeneities such as mean flows in renormalized closures is a difficult problem.
Since the statistics are no longer homogeneous, the full covariance in Eq. (6) must be calculated. In
addition, to this equation must be added terms involving the mean field. The mean field in turn is related
to the covariance through an equation of the form:

∂

∂t
〈ζk〉 = Kkpq[〈ζ−p〉〈ζ−q〉+ 〈ζ̂−p(t)ζ̂−q(t)〉]. (7)

The addition of mean topography adds further terms to the prognostic equations for the mean and the
covariances. Kraichnan (1972) [97] formulated generalizations of the DIA and TFM closures for inho-
mogeneous turbulence interacting with mean fields but noted that his general form of the inhomogeneous
DIA with full covariances was computationally intractable at any reasonable resolution.

Frederiksen (1999) [98] formulated a computationally tractable non-Markovian closure, the quasi-
diagonal direct interaction approximation (QDIA), for the interaction of general mean and fluctuat-
ing flow components with inhomogeneous turbulence and topography. The closure was developed for
barotropic flows on an f -plane and applied to the subgrid-scale parameterization problem. O’Kane and
Frederiksen (2004) [88] examined the performance of the closure compared with the statistics of direct
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numerical simulations (DNS). They found in their simulations that the QDIA for inhomogeneous tur-
bulence has similar performance to the DIA for homogeneous turbulence (Frederiksen & Davies (2000)
[66]), and that it is only a few times more computationally intensive than the DIA for homogeneous tur-
bulence. Furthermore, they found that a regularized version of the QDIA (RQDIA), in which transfers
are localized is in excellent agreement with DNS at all scales. Frederiksen and O’Kane (2005) [99] gen-
eralized the QDIA closure to apply to the interaction of inhomogeneous turbulence with Rossby waves,
mean flows and topography on a β-plane. In studies of topographic Rossby wave dispersion in a turbu-
lent environment and ensemble prediction they found generally very good agreement between the QDIA
closure results and the statistics of DNS. O’Kane & Frederiksen (2004) [88] and Frederiksen & O’Kane
(2005) [99] also implemented a cumulant update restart methodology to improve the efficiency of the
QDIA closure calculations. Recently, the QDIA closure has been applied in studies of predictability,
subgrid modeling and data assimilation (O’Kane and Frederiksen (2008a, b, c) [71, 100, 101]).

For some systems it is possible to prove a Boltzmann H theorem that ensures that the entropy
S(= −H) will increase monotonically to canonical equilibrium. This is the case for a rarefied gas where
the particle distribution function satisfies Boltzmann’s transport equation. In Hasselmann’s (1966) [102]
resonant interaction formalism for internal gravity waves the wave action again satisfies a Boltzmann
equation. The collisional term for nonlinear interactions drives the system monotonically towards equi-
librium (in the absence of forcing and dissipation) and the H theorem is valid. Carnevale et al. (1981)
[103] showed that for inviscid dynamical systems described by the EDQNM closure the H theorem
again holds. Carnevale & Frederiksen (1983) [51] established that the EDQNM closure for internal
gravity wave-turbulence reduces to Hasselmann’s resonant interaction formalism in the limit of weakly
interacting waves. However, the canonical equilibrium for the Boltzmann equation in the resonant in-
teraction limit is anisotropic and different from that for the EDQNM closure (and the DIA). This was
shown to be due to an additional invariant called z-momentum that is conserved in the resonant inter-
action limit, but not by the EDQNM closure equations or the basic field equations for DNS. The fact
that the resonant interaction limit is singular in this sense would appear to be a problem for resonant
interaction wave turbulence theories in general (Biven et al. (2003) [104]).

The DIA type non-Markovian theories and the basic dynamical equations for DNS do not satisfy a
Boltzmann H-theorem. However canonical equilibrium states are exact statistically steady states for
the DIA and QDIA closures and there is also a general increase of entropy in DNS toward equilibrium
although not always monotonically, as discussed by Frederiksen & Bell (1983) [105], (1984) [106] for
the internal gravity wave-turbulence problem. These authors and others (Kleeman (2002) [107] and
references therein) have also used entropy as a measure of dynamical development and predictability.

Rhines (1975) [108], Holloway & Hendershott (1977) [109], Carnevale (1982) [110], Vallis & Mal-
trud (1993) [111], Maltrud & Vallis (1993) [112], Frederiksen, Dix & Kepert (1996) [28] analyzed the
reasons why Rossby-wave turbulence on a β-plane tends to produce anisotropic energy transfer and spec-
tra. Further studies of the role of the β-effect in the formation of persistent zonal multi-band jets have
been carried out by Huang and Robinson (1998) [113], Galperin et al. (2001) [114] and Sukoriansky et
al. (2002) [115]. Frederiksen, Dix & Kepert (1996) [28] developed a statistical mechanical equilibrium
model of zonalization due to the β-effect in which the meridionally elongated large-scale Rossby waves
are regarded as adiabatic invariants while the zonal flow and other eddies are allowed to interact and
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equilibrate on a short time-scale. They also provided an explanation for the “tail wagging the dog” effect
where ad hoc scale selective dissipation operators cause a drop in the tail of energy spectra and, surpris-
ingly, also an increase in the large-scale energy. Some of these studies have emphasized the desirability
of developing more fundamentally based subgrid-scale parameterizations for modeling of the effect of
the unresolved scales of motion on the resolved scales.

It has long been recognized that subgrid-scale processes play important roles in determining the accu-
racy of the circulations and energy spectra of climate simulations with atmospheric GCMs (Smagorinsky
(1963) [116]). For example, Figure 9 of Manabe et al. (1979) [117] depicts typical variations of eddy
kinetic energy spectra with varying resolution. The same qualitative changes in energy spectra with
varying horizontal resolution were found in early studies with the barotropic vorticity equation and were
analyzed on the sphere using canonical equilibrium theory by Frederiksen & Sawford (1980) [8]. The de-
pendence of climate simulations on the specified subgrid-scale processes such as dissipation has been an
ongoing issue (Laursen & Eliasen (1989) [118], Koshyk and Boer (1995) [119], Kaas et al. (1999) [120],
Frederiksen et al. (2003) [121]). In oceanic GCMs the need to parameterize the effects of the subgrid-
scale eddies is perhaps even more important because baroclinic instability for the formation of mesoscale
eddies occurs at much smaller scales that are generally not resolvable in climate simulations. Smagorin-
sky (1963) [116] formulated an empirical representation for the eddy viscosity which was subsequently
found to be more appropriate for three-dimensional turbulence than for quasigeostrophic turbulence.
Leith (1971) [55] calculated an eddy dissipation function that would preserve a stationary k−3 kinetic
energy spectrum for two-dimensional turbulence based on the EDQNM closure. Kraichnan (1976) [122]
developed the theory of eddy viscosity in two and three dimensions while Rose (1977) [123] argued for
the importance of eddy noise in subgrid modeling. Further important studies pertaining mainly to three-
dimensional homogeneous turbulence have been carried out by Leslie and Quarini (1979) [124], Chollet
and Lesieur (1981) [125], Leith (1990) [126], Chasnov (1991) [127], Domaradzki et al. (1993) [128],
McComb et al. (1990, 2001a, b) [129–131], Schilling & Zhou (2002) [132]). Frederiksen & Davies
(1997) [57] developed representations of eddy viscosity and stochastic backscatter based on EDQNM
and DIA closure models for barotropic turbulent flows on the sphere. They found that their parameter-
izations cured the typical resolution dependence of atmospheric energy spectra with LES incorporating
the parameterizations being in close agreement with higher resolution barotropic DNS. Implementation
of their eddy viscosity parameterization into an atmospheric GCM has also significantly improved the
circulation and energy spectra (Frederiksen, Dix & Davies (2003) [121]). Recently, subgrid-scale pa-
rameterizations based on a stochastic modeling approach have also been shown by Frederiksen & Kepert
(2006) [133] to yield results very similar to those based on renormalized closures [57]. In recent years
there has also been increasing interest in exploring how parameterizations of stochastic backscatter may
improve weather and climate predictions and simulations (Frederiksen & Davies (1997) [57], Palmer
(2001) [134], Shutts (2005) [135], Seiffert et al. (2006, 2008) [136, 137], Berner et al. (2008)) [138],
Majda et al. (2008) [139], O’Kane and Frederiksen (2008a) [71]).

Holloway (1992) [140], hereafter H1992, developed a simple heuristic parameterization for the inter-
action of subgrid-scale eddies in oceanic flows with resolved scale topography. The parameterization is
based on the idea that in the presence of weak dissipation quasigeostrophic eddies over topography de-
cay through a sequence of canonical equilibrium states, as discussed above ([12, 15, 16]. The argument
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is that it is the tendency for the nonlinear interactions of turbulent eddies with topography to drive the
system toward statistical mechanical equilibria that determines the subgrid-scale processes. Specifically
H1992 replaces the eddy viscous term in the equation of motion by an ad hoc eddy tendency term that
relaxes the mean flow toward a local canonical equilibrium state. Cummins & Holloway (1993) [141]
examined the H1992 subgrid-scale parameterization (SSP) in an inviscid quasigeostrophic model with
an idealized topography representative of a continental margin. Later works notably those by Alvarez
et al. (1994) [142] and Holloway et al. (1995) [143] demonstrated a significant improvement in the
circulation of both global and regional ocean models.

Methods based on entropy production have also been applied to many aspects of nonequilibrium sys-
tems including the subgrid-scale parameterization problem. Onsager (1991a,b) [144, 145] and Prigogine
(1949, 1955) [146, 147] formulated linear minimum entropy production principles for nonequilibrium
systems close to equilibrium. Maximum entropy production hypotheses have also been presented by
many authors in various fields for nonequilibrium systems far from equilibrium including by Kohler
(1948) [148] , Ziegler (1957, 1983) [149], Paltridge (1975) [150], Jones (1983) [151] and Dewar (2003,
2005) [152, 153]; both Jones and Dewar employed Jaynes’ (1957) [154] information entropy approach
extended to nonequilibrium systems. Applications of entropy production methods to subgrid modeling
have been made by Kazantsev et al. (1998) [155], Polyakov (2001) [156] and Holloway (2004) [157].
Critiques of entropy production principles have been presented by Barbera (1999) [158], Attard (2006)
[159], Bruers (2007) [160] and Grinstein and Linsker (2007) [161]. More detailed reviews of the liter-
ature are presented by Martyushev and Seleznev (2006) [162] and by Dewar et al. (2008) [163] in this
issue. Martyushev and Seleznev (2006) [162] note that attempts to derive the maximum entropy produc-
tion principle ”are so far unconvincing since they often require introduction of additional hypotheses”.
Perhaps this is not surprising since far from equilibrium phenomena are often characterized by multi-
ple stationary states and hysteresis (Prigogine and Stengers (1985) [164], Zidikheri et al. (2007; and
references therein) [165]).

The nonequilibrium statistical dynamics of inhomogeneous turbulence interacting with general barotropic
mean flows and topography is described by the QDIA closure of Frederiksen (1999) [98]. It allows the
self consistent determination of all the required subgrid terms for LES both near canonical equilibrium
and for far from equilibrium turbulent flows. These include the eddy-topographic force, eddy viscosity,
stochastic backscatter and residual Jacobian. Frederiksen also related his general analytical results to
the heuristic parameterization of Holloway (1992) [140]. O’Kane & Frederiksen (2008b) [100] have
recently quantified the relative importance of the various subgrid-scale terms by numerically evaluating
the QDIA closure expressions for typical global atmospheric flows.

The plan of this paper is as follows. In section 2. we summarize the equations for turbulent barotropic
flows over topography on a generalized β-plane, both in physical space and in spectral space. Section
3. presents an analysis of statistical mechanical equilibrium states for flow over topography and com-
pares them with corresponding minimum enstrophy states that are nonlinearly stable. Here the general
expression for the entropy is stated. Section 4. presents a summary of the DIA closure equations for ho-
mogeneous two-dimensional turbulence in planar geometry and examines the relationships between the
major non-Markovian Eulerian closures for homogeneous turbulence; it is noted that the SCFT of Her-
ring and the LET of McComb are related to Kraichnan’s DIA through the fluctuation dissipation theorem
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(FDT) applied out of strict canonical equilibrium. The generalization of the barotropic vorticity equation
and DIA closure to barotropic flow on the sphere is formulated in section 5. In section 6. we discuss
how the EDQNM closure in spherical geometry may be obtained from the DIA closure equations by
employing the FDT and assuming exponential decay of the response functions. In section 7. we discuss
a statistical mechanical equilibrium model of flow zonalization due to the β-effect and the ”tail wagging
the dog” effect where ad hoc scale selective dissipation results in a drop in the tail of the energy spectrum
and, surprisingly, also an increase in the large-scale energy. The theory of subgrid modeling employing
the EDQNM and DIA closures is presented in section 8. In section 9. comparisons of LES employing
these closure based subgrid-scale parameterizations with higher resolution DNS are presented. Section
10. contains a summary of the QDIA closure equations, presents the generalized Langevin equation that
guarantees realizability of the closure and reviews the theory of subgrid modeling for turbulent flows
over topography. In section 11. we discuss the the structure of QDIA based subgrid-scale parameteriza-
tions for a canonical equilibrium state and for a nonequilibrium state corresponding to the atmospheric
flow for January 1979. Here we also compare the QDIA expression for the eddy-topographic force with
heuristic forms based on maximum entropy and on entropy production hypotheses. A brief summary is
presented in section 12.

2. Barotropic vorticity equation

Both the simulations and statistical closure calculations considered in this paper are based on the
barotropic vorticity equation for two-dimensional turbulence. In the case of flow over topography the
results are based on the generalized β-plane model described by Frederiksen & O’Kane (2005) [99]. As
noted there the full streamfunction is written in the form Ψ = ψ−Uy, where U is a large-scale east-west
flow and ψ represents the ’small scales’. The evolution equation for the two-dimensional motion of the
small scales over a mean topography is then described by the barotropic vorticity equation

∂ζ

∂t
= −J(ψ − Uy, ζ + h+ βy + k2

0Uy)−D0ζ + f 0. (8a)

Here f 0 is the forcing and D0 is a dissipation operator, such as D0 = −ν0∇2 where ν0 is the viscosity,
although we shall also consider more general forms. Also

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
(8b)

is the Jacobian. The vorticity is the Laplacian of the streamfunction ζ = 52ψ. The scaled topography h
is given by h = 2µgAH

RT0
where H is the height of the topography, R = 287Jkg−1K−1 is the gas constant

for air, T0 = 273K is the horizontally averaged global surface temperature, g is the acceleration due to
gravity, µ = sinφ, φ is the latitude and A = 0.8 is the value of the vertical profile factor at 1000mb.

The term k2
0Uy generalizes the standard β-plane by the inclusion of an effect corresponding to the

solid-body rotation vorticity in spherical geometry where k0 is a wavenumber associated with the large-
scale vorticity. Frederiksen & O’Kane (2005) [99] noted that this additional small term results in a one-
to-one correspondence between the dynamical equations, Rossby wave dispersion relations, nonlinear
stability criteria and canonical equilibrium theory on the generalized β-plane and on the sphere. This
correspondence relies on the following replacements: ζ is replaced by the total vorticity on the sphere,
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x → λ, the longitude, y → sinφ, the sine of the latitude, βy → 2 sinφ and k2
0Uy → 2U sinφ, the solid

body rotation vorticity. This last term arises from the fact that ∇2
sphere(−U sinφ) = 2U sinφ making a

small but structurally significant contribution to the planetary vorticity 2 sinφ.
The barotropic vorticity equation and the form-drag equation for U have been made nondimensional

by introducing suitable length and time scales, which we choose to be a/2, where a is the earth’s radius,
and Ω−1, the inverse of the earth’s angular velocity. With this scaling we consider flow on the domain
0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π.

The form-drag equation for the large-scale flow U is the same as on the standard β−plane. With the
inclusion of relaxation toward the state U it takes the form

∂U

∂t
=

1

S

∫
S

h
∂ψ

∂x
dS + α(U − U). (9)

Here, α is a drag coefficient and S is the area of the surface 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. In the absence
of forcing and dissipation, Eqs. (8) & (9) together conserve kinetic energy and potential enstrophy. The
kinetic energy E and potential enstrophy Q are given by

E =
1

2
U2 +

1

2

1

S

∫
S

(∇ψ)2dS, (10)

Q =
1

2
(k0U +

β

k0

)2 +
1

2

1

S

∫
S

(ζ + h)2dS,

=
1

2
(ζU + hU)2 +

1

2

1

S

∫
S

(ζ + h)2dS (11)

where ζU = k0U and hU = β/k0.
We derive the corresponding spectral space equations by representing each of ’small-scale’ terms by

a Fourier series; for example
ζ(x, t) =

∑
k

ζk(t) exp (ik · x) (12a)

where

ζk(t) =
1

(2π)2

∫ 2π

0

d2x ζ(x, t) exp (−ik · x) (12b)

and x = (x, y),k = (kx, ky), k = |k| and ζ−k is conjugate to ζk. As noted in Eq. (4.1) of Frederiksen
& O’Kane (2005) [99] the sums in the consequent spectral equations run over the set R consisting of
all points in discrete wavenumber space except the point (0,0). However, it was also observed that the
form-drag equation for U can be written in the same form as for the small scales by defining suitable
interaction coefficients, representing the large-scale flow as a component with zero wavenumber and
extending the sums over wavenumbers. The spectral form of the barotropic vorticity equation with
differential rotation, describing the evolution of the ’small scales’, and the form-drag equation, may then
be written in the same compact form as for the f−plane:

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑
p∈T

∑
q∈T

δ(k + p + q) [K(k,p,q)ζ−pζ−q

+A(k,p,q)ζ−ph−q] + f 0
k (13)
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where T = R ∪ 0,

δ(k + p + q) =

{
1 if k+p+q=0,

0 otherwise.
(14)

The interaction coefficients are defined by

A(k,p,q) = −γ(pxq̂y − p̂yqx)/p2, (15)

K(k,p,q) =
1

2
[A(k,p,q) + A(k,q,p)] (16)

=
γ

2
[pxq̂y − p̂yqx](p2 − q2)/p2q2. (17)

Our definitions of the interaction coefficients are generalized to include the zero wave vector as any of
the three arguments by specifying γ, q̂y and p̂y as follows:

γ =


−k0
2

if k = 0

k0 if q = 0 or p = 0

1 otherwise

(18)

q̂y =

1 if k = 0 or p = 0 or q = 0

qy otherwise
(19)

p̂y =

1 if k = 0 or p = 0 or q = 0

py otherwise.
(20)

Here the complex ν0(k) is related to the bare viscosity ν0(k) and the intrinsic Rossby wave frequency
ωk by the expression:

ν0(k)k2 = ν0(k)k2 + iωk, (21a)

where

ωk = −βkx
k2

. (21b)

We consider more general dissipation than Laplacian forms by allowing the viscosity to depend on k.
Also, rather than introducing a separate symbol for the complex ν0(k) we shall distinguish it from the
viscosity by its vector argument k. We have defined ζ−0 = ik0U , ζ0 = ζ∗−0 and introduced a term h−0

that we take to be zero but which could more generally be related to a large-scale topography. We note
that U is real and we have defined ζ0 to be imaginary. This is done to ensure that all the interaction
coefficients that we use are defined to be purely real. Also with ζ0 = −ik0U , f 0

0 and ν0(k0) are defined
by

f 0
0 = αζ0, (22)

ν0(k0)k
2
0 = α (23)

where k0 = 0 and ω0 = 0. These spectral equations are then the basis for our subsequent studies and
theoretical developments.
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3. Statistical Mechanical Equilibrium (SME) States

As noted in the Introduction canonical equilibrium states are maximum entropy states. They are also
exact statistical stationary states of closures such as the EDQNM and DIA for a flat bottom and for
the QDIA closure for turbulent flow over topography (Frederiksen (1999) [98], Frederiksen & O’Kane
(2005) [99]). The canonical equilibrium states for flow over topography are unique as shown by Fred-
eriksen & Carnevale (1986) [15], generalizing a method by Katz (1967) [166].

In this section we present a discussion of the equilibrium statistical mechanics of Rossby wave tur-
bulence and general mean flows over topography on a generalized β-plane as developed by Frederiksen
& O’Kane (2005) [99]. As noted in section 2., the generalized β-plane equations have been formulated
so that there is a one to one correspondence with the corresponding equations on the sphere. Indeed,
the form of the canonical equilibrium states and the Arnold (1969) [13] nonlinear stability properties of
the minimum enstrophy states that have been proved for spherical geometry (Frederiksen & Carnevale
(1986) [15]) apply equally to the generalized β-plane.

When k0 → 0 in Eq. (8), the generalized β-plane reduces to the standard β-plane and the canonical
equilibrium states and minimum enstrophy states reduce to those of Carnevale & Frederiksen (1987)
[16]. As on the standard β-plane, the thermodynamic limit of infinite resolution can be taken on the
generalized β-plane, and on the sphere, to show that the canonical equilibrium mean state is statisti-
cally sharp, without transient fluctuations on any scale, and identical to the minimum enstrophy state
(Carnevale & Frederiksen (1987) [16]).

First, we consider stationary solutions to Eq. (8a) (with ν0 = 0 and f 0 = 0) for which the potential
enstrophy is proportional to the streamfunction. Thus

µ(ψs − U sy) = O2ψs + βy + k2
0U

sy + h (24)

where µ is a constant of proportionality. This relationship is isomorphic with Eqs. (2.3) & (2.4) of
the spherical model of Frederiksen & Carnevale (1986) [15] and generalizes Eq. (5.10) of Carnevale &
Frederiksen (1987) [16]. The large-scale contributions may be separated and written as

µ =
β + k2

0U
s

U s
(25)

or

U s = − β

µ+ k2
0

= − k0hU
µ+ k2

0

. (26)

A proof of the nonlinear stability of states satisfying Eq. (24) follows immediately from Appendix
B of Frederiksen & Carnevale (1986) [15] (and the equivalences of our section 2.). Stationary states
determined by criterion Eq. (24) are nonlinearly stable provided µ > −k2

0 , where k0 is the smallest
retained wavenumber or if µ < −k2

max where kmax is the largest retained wavenumber. The first branch
of solutions have minimum potential enstrophy Q for a given energy E, while on the second branch the
potential enstrophy is a maximum. However the maximum potential enstrophy branch is not relevant in
the physically interesting limit kmax →∞.

The kinetic energy and potential enstrophy of the large-scale flow are given by

EU =
1

2
U2 (27)
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and

QU =
1

2
(k0U +

β

k0

)2 =
1

2
(ζU + hU)2. (28)

The stationary kinetic energy and potential energy contributions of the large scale flow are given by

Es
U =

1

2

β2

(µ+ k2
0)2

=
1
2
k2

0|hU |2

(µ+ k2
0)2

, (29)

and

Qs
U =

1

2
(k0U

s + hU)2 =
1
2
µ2|hU |2

(µ+ k2
0)2

. (30)

The definitions of Es and Qs are isomorphic to those in Eq. (2.14) of Frederiksen & Carnevale (1986)
[15] and differ from Eqs. (5.12) and (5.12b) of Carnevale and Frederiksen [16] only by the terms con-
taining k2

0 . Consequently the total stationary kinetic energy and enstrophy take the form

Es =
1
2
k2

0|hU |2

(µ+ k2
0)2

+
1

2

∑
k

k2|hk|2

(µ+ k2)2
(31)

Qs =
1
2
µ2|hU |2

(µ+ k2
0)2

+
1

2

∑
k

µ2|hk|2

(µ+ k2)2
. (32)

As noted by Frederiksen & Carnevale [15] and Carnevale & Frederiksen [16], the solution to Eq. (24)
also gives the stationary contribution to the canonical equilibrium spectrum if µ → µeq = a/b where
a and b are parameters determined by the conserved values of the kinetic energy E and Q. With this
replacement, the stationary contributions to the canonical equilibrium energy and potential enstrophy
are again given by Eqs. (31 & (32). As noted above, as kmax →∞, µeq → µ.

The kinetic energy and potential enstrophy expressions Eqs. (10), (11), (27) & (28) are in the standard
form for the statistical mechanics developed in section 2 of Frederiksen and Sawford (1981) [10]. Thus
the large-scale flow contributions to the transient terms are

ET
U =

1
2

a+ bk2
0

(33)

QT
U =

1
2
k2

0

a+ bk2
0

(34)

thereby giving

ET =
1
2

a+ bk2
0

+
1

2

∑
k

1

a+ bk2
(35)

QT =
1
2
k2

0

a+ bk2
0

+
1

2

∑
k

k2

a+ bk2
(36)

as in Eq. (2.14) of Frederiksen & Carnevale [15]. Again the large scale flow simply adds an extra term
with k2 → k2

0 . Also note that with ζU = k0U it is found that

〈ζU〉 = k0U
s =
−bk2

0hU
a+ bk2

0

(37)

which is in the same form as Eq. (B.1a) of Frederiksen (1999) [98] with k2 → k2
0, hk → hU .
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3.1. Standard beta-plane

The potential enstrophy for the standard β−plane (Eq. (5.12b) Carnevale and Frederiksen [16]) differs
from the generalized case by a constant term 1

2
(β/k0)

2 as well as by the term 1
2
k2

0U
2. In order to see how

the case incorporating the vorticity of the large-scale flow reduces to the standard β−plane as k2
0 → 0 let

Q̃U = QU −
1

2
(β/k0)

2, (38)

Q̃s
U =

1
2
µ2(β/k0)

2

(µ+ k2
0)2
− 1

2
(β/k0)

2

= −
β2µ+ 1

2
β2k2

0

(µ+ k2
0)2

. (39)

Thus

Q̃s
U → −

β2

µ
; QT → 0 (40)

as k2
0 → 0 in agreement with Carnevale and Frederiksen [16].

Finally we can write the statistical equilibrium relationships for mean and transient vorticity on the
generalized β-plane in the compact form

〈ζeqk 〉 =
−bk2hk

a+ bk2
, (41)

Ceq
k (t, t) ≡ 〈ζ̂kζ̂∗k〉

eq
=

k2

a+ bk2
(42)

where k ∈ T = R ∪ 0.
We may now define the entropy as

S(t) ≡ −〈lnP (x)〉 ≡ −
∫
dxP (x)lnP (x) = 1/2ln[detC] (43)

where x are the generalized coordinates corresponding to the real and imaginary parts of ζk and the right
hand expression is valid if P (x) is multivariate Gaussian with covariance C. If C is diagonally dominant
in spectral space then

S(t) = 1/2
∑
k

lnCk(t, t), (44)

which is also the expression that results at statistical mechanical equilibrium.
As noted earlier, the canonical equilibrium states on the generalized β-plane have the same form as on

a sphere with the replacements k → (m,n), k2 → n(n + 1) and β → 2. Figure 1 shows a contour plot
of the Northern Hemisphere topography while in Figure 2 is shown a typical canonical equilibrium state
from the study of Frederiksen and Sawford (1981) [10]. We note that the zonally asymmetric component
of the 500 hPa streamfunction depicted is strongly correlated with the topography.

4. Statistical closure equations for homogeneous turbulence

The canonical equilibria discussed in the Introduction and in section 3. are stationary solutions of
fundamentally based statistical dynamical closures such as the EDQNM, DIA, LET, SCFT and, in the
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Figure 1. Northern Hemisphere topography in meters.
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presence of topography and mean fields, the QDIA closure. In this section, we discuss how homogeneous
turbulence may be simulated through DNS, summarize the DIA closure equations and point out the
relationships between the DIA, LET and SCFT for homogeneous turbulence.

Homogeneous turbulence may be simulated with the barotropic vorticity Eq. (8a) but with h = 0

and U = 0; then with no mean forcing and with zero mean vorticity, 〈ζ〉 = 0, we expect to be able
to simulate homogeneous turbulence in viscous decay simulations and in forced dissipative experiments
with homogeneous random forcing and viscosity. The β-effect will result in anisotropic spectra while
with β = 0 isotropic spectra will result if the random forcing is isotropic. The spectral barotropic
equation is again given by Eq. (13) but with p ∈ R, q ∈ R and the topographic term missing.

4.1. The homogeneous DIA closure equations

The DIA closure equations were derived by Kraichnan (1959) [42] for homogeneous turbulence and
have been reviewed by McComb (1990) [65]. A recent simple derivation for two-dimensional turbulence,
following Kraichnan’s approach, is given by Frederiksen (2003) [72]. Here we very briefly summarize
the DIA equations for two-dimensional and Rossby wave turbulence.

We consider an ensemble of flows described by the barotropic vorticity equation that now takes the
form

∂ζ

∂t
= −J(ψ, ζ + βy)−D0ζ + f 0 (45)
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Figure 2. 500 hPa Northern Hemisphere zonally asymmetric component of streamfunction
for a canonical equilibrium state with strong correlation with the topography.
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where D0 is a dissipation operator, such as D0 = −ν0∇2 where ν0 is the bare viscosity, although we
shall also consider more general forms, and f 0 is the bare forcing. Equations (12) again hold for the
doubly periodic domain. The resulting spectral form of the vorticity equation is

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑
p∈R

∑
q∈R

δ(k + p + q)K(k,p,q)ζ−p(t)ζ−q(t) + f 0
k(t) (46)

where δ(k + p + q) is defined in Eq. (14). Also, ν0(k)k2 is defined in Eq. (21a) and the interaction
coefficients are now simply defined by

K(k,p,q) =
1

2
[pxqy − pyqx](p2 − q2)/p2q2. (47)

The DIA is derived using renormalized perturbation theory applied to the barotropic vorticity equation
Eq. (46) and to an equation for the response function. The response function

R̂k(t, t′) =
δζk(t)

δf 0
k(t′)

(48)

measures the change in vorticity due to an infinitesimal change in the force. Infinitesimal perturbations
in the forcing, f 0

k(t)→ f 0
k(t) + δf 0

k(t) in Eq. (46), produce changes in the vorticity determined by

(
∂

∂t
+ ν0(k)k2)δζk(t) = 2

∑
p

∑
q

δ(k + p + q)K(k,p,q)δζ−p(t)ζ−q(t) + δf 0
k(t). (49)
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Consequently, the response function satisfies the equation

(
∂

∂t
+ ν0(k)k2)R̂k(t, t′) = 2

∑
p

∑
q

δ(k + p + q)K(k,p,q)R̂−p(t, t′)ζ−q(t) + δ(t− t′). (50)

The response function is a Green’s function that can be used to write the solution to Eq. (49) in the form

δζk(t) =

∫ t

t0

ds R̂k(t, s)δf 0
k(s). (51)

The DIA is a non-Markovian theory that provides an approximate solution, at second order, to the
moment or cumulant hierarchy, discussed in the Introduction. Kraichnan termed it the direct interaction
approximation since he regarded his methodology as an expansion in terms of the complexity of modal
interactions that occur through the nonlinearity of the dynamical equations. It contains no arbitrary pa-
rameters, conserves the same quadratic invariants as the original dynamical equations, and is realizable.
It represents a major milestone in the development of turbulence theory.

The DIA consists of equations for the renormalized response function,

∂Rk(t, t′)

∂t
+

∫ t

t′
ds [ν0(k)k2δ(t− s) + ηk(t, s)]R−k(s, t′) = δ(t− t′), (52a)

and a renormalized two-time second-order cumulant

∂Ck(t, t′)

∂t
+

∫ t

t0

ds [ν0(k)k2δ(t− s) + ηk(t, s)]C−k(t′, s)

=

∫ t′

t0

ds [F 0
k(t, s) + Sk(t, s)]R−k(t′, s), (52b)

where

Rk(t, t′) = 〈R̂k(t, t′)〉, (52c)

Ck(t, t′) = 〈ζ̂k(t)ζ̂−k(t′)〉, (52d)

F 0
k(t, t′) = 〈f̂ 0

k(t)f̂ 0
−k(t′)〉. (52e)

Here, ζ̂k(t) = ζk(t) since 〈ζk(t)〉 = 0 and f̂ 0
k(t) = f 0

k(t) since 〈f 0
k(t)〉 = 0. As well, the single-time

cumulant satisfies the equation

∂Ck(t, t)

∂t
+ 2<

∫ t

t0

ds [ν0(k)k2δ(t− s) + ηk(t, s)]C−k(t, s)

= 2<
∫ t

t0

ds [F 0
k(t, s) + Sk(t, s)]R−k(t, s) (52f)

since

∂Ck(t, t)

∂t
= lim

t′→t
{∂Ck(t, t′)

∂t
+
∂Ck(t, t′)

∂t′
}. (52g)

In the above equations we may identify physical processes with each of the integral terms. Specifically

ηk(t, s) = −4
∑
p

∑
q

δ(k + p + q)K(k,p,q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (52h)

Sk(t, s) = 2
∑
p

∑
q

δ(k + p + q)K(k,p,q)K(−k,−p,−q)C−p(t, s)C−q(t, s) (52i)
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can be identified as nonlinear damping and noise terms respectively. The Eulerian DIA has been found
to compare very closely to ensemble averages of direct numerical simulations in the energy containing
ranges of large scales for both two- and three-dimensional turbulent flows. However, at high Reynolds
number the Eulerian DIA leads to power laws that differ slightly from the k−5/3 energy and k−3 en-
strophy cascading power laws. This is due to the inability of the DIA to distinguish between intrinsic
distortion and convection (advection) effects. A simple way to overcome this problem is to localize the
eddy transfers in wavenumber space since this can be shown to yield inertial range power law behavior
consistent with the phenomenology of Kolmogorov (Kraichnan (1964) [90]). In the case of isotropic
two-dimensional turbulence Frederiksen & Davies (2004) [67] find good agreement between DNS and
their regularized DIA (RDIA) for which the replacements

K(k,p,q)→ Θ(p− k

α
)Θ(q − k

α
)K(k,p,q); A(k,p,q)→ Θ(p− k

α
)Θ(q − k

α
)A(k,p,q), (53)

are made in the response function and two-time cumulant equations but not in the single-time cumulant
equation. Here Θ is the Heavyside step function and α is an empirically determined parameter. Fur-
thermore, the regularization parameter is almost universal for both homogeneous (Frederiksen & Davies
(2004) [67]) and inhomogeneous turbulence (O’Kane & Frederiksen (2004, 2008a) [71, 88]) with good
agreement, even at the small scales, between the closures and DNS for 4 . α . 6. This regularization
procedure corresponds to an empirical renormalization of the bare vertex or interaction coefficient.

4.2. Homogeneous SCFT and LET closure theories

The SCFT closure of Herring (1965, 1966) [43, 44] and the LET closure of McComb (1974, 1992)
[45, 46] are non-Markovian Eulerian closure theories of homogeneous turbulence that are closely related
to Kraichnan’s (1959) DIA [42]. They were formulated independently but in retrospect the SCFT and
LET closure equations may be formally obtained from the DIA by invoking the fluctuation-dissipation
theorem (FDT, Kraichnan (1959b) [48], Carnevale & Frederiksen (1983) [51]) out of strict statistical
mechanical equilibrium as noted by Frederiksen, Davies & Bell (1994) [52]. The FDT states that

Ck(t, t′)Θ(t− t′) = Rk(t, t′)Ck(t′, t′) (54)

where Θ(t− t′) is the Heavyside step function that vanishes for t < t′ and is otherwise unity.
The FDT provides an additional relationship between the two-time cumulant and the response func-

tion and the single-time cumulant. For the SCFT, the equations are identical to the homogeneous DIA
equations but the FDT equation replaces the prognostic equation for the two-time cumulant. For the LET
the FDT relation instead replaces the response function equation.

5. Vorticity equation and DIA closure on the sphere

Next, we consider the problem of determining self-consistent subgrid-scale parameterizations based
on closures. Since the aim is to apply these to atmospheric circulation models the formulation is devel-
oped in spherical geometry.

In spherical geometry the barotropic vorticity equation takes the same form as in Eq. (8a) and the
relation between the vorticity and streamfunction is as for planar geometry, ζ = ∇2ψ, but the Laplacian
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is now for spherical geometry. If we non-dimensionalize the equations by taking a (the earth’s radius)
and Ω−1 (the inverse of the earth’s angular velocity) as length and time scales then the Jacobian is again
given by Eq. (8b) but with x replaced by λ, the longitude, and y replaced by µ, the sine of the latitude.
We shall use a slightly more general formulation of the dissipation than that in previous sections.

The corresponding spectral equation can be obtained by expanding each of the functions in spherical
harmonics; for example

ζ(λ, µ, t) =
T∑

m=−T

T∑
n=|m|

ζmn(t)Pm
n (µ)exp(imλ) , (55)

where m is zonal wavenumber, n is total wavenumber, T is the triangular truncation wavenumber, and
Pm
n are orthonormalized Legrendre functions. Now let

Pk ≡ Pm
n , (56a)

k = (m,n) = (mk, nk) , (56b)

−k = (−m,n) , (56c)

k = n . (56d)

Then the spectral equation for homogeneous turbulence is(
∂

∂t
+ ν0(k)k(k + 1) + iωk

)
ζk(t)

= i
∑
p

∑
q

δ(mk +mp +mq) K(k,p,q) ζ−p(t) ζ−q(t) + f 0
k(t) , (57)

where

ωk = − βm

n(n+ 1)
, (58)

and

K(k,p,q) =
1

2

(
p(p+ 1)− q(q + 1)

p(p+ 1)q (q + 1)

)
·
∫ 1

−1

dµ Pk

(
mpPp

dPq

dµ
− mqPq

dPp

dµ

)
, (59a)

δ(mk +mp +mq) =

1 if mk +mp +mq = 0 ,

0 otherwise .
(59b)

Again, ζ̂k(t) = ζk(t) since 〈ζk(t)〉 = 0 and f̂ 0
k(t) = f 0

k(t) since 〈f 0
k(t)〉 = 0. Also, β represents the beta

effect on the sphere, which with the current scalings, would take value 2 for the atmosphere but we shall
primarily be interested in the case β = 0 applicable to isotropic turbulence.

In spherical geometry, the DIA closure for homogeneous turbulence is again given by the equations
described in Eqs. (52) but with the interaction coefficient given by Eq. (59a) and the Kronecker delta
function Eq. (59b) replacing that of Eq. (21b) in Eq. (13) and k2 → k(k+1) in the viscous damping term.
The selection rules on the total wavenumbers for non-zero interaction coefficients are given in Eq. (2.3)
of Frederiksen and Sawford (1980) [8]. In the following sections we shall also specialize to isotropic
turbulence for which the statistics of the cumulants and response functions only depend on k = n rather
than on k = (m,n).
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6. EDQNM closure on the sphere

The time-history integrals associated with the non-Markovian DIA closure reflect memory effects
associated with turbulent eddies. Other non-Markovian closure theories such as the SCFT and LET
closures have very similar performance to the DIA closure. The SCFT and LET closures replace either
the second-order two-time cumulant or the response function with the fluctuation dissipation theorem
(FDT). Unlike quantum field theories which deal with Hermitian operators, classical systems tend not
to be self-adjoint and the FDT in general only applies at canonical equilibrium (Kraichnan, (1959b)
[48], Deker and Haake (1975) [50], Carnevale and Frederiksen, (1983) [51] and references therein).
Nevertheless, as noted above it appears to be a reasonable approximation more generally.

For isotropic turbulence with β = 0, the non-Markovian DIA closure can be simplified to a Markovian
closure called the eddy-damped quasi-normal Markovian (EDQNM) closure by replacing the equation
for the two-time cumulant (Eq. (52b)) by a modified form of the FDT in Eq. (54),

Ck(t, t′)Θ(t− t′) = Rk(t, t′)Ck(t, t), (60)

and assuming an exponential decay form for the response functions

Rk(t, t
′) = exp[−µk(t− t′)] . (61)

Here, the eddy damping is given by the empirical form

µk = γ [k(k + 1)Ck(t, t)]
1
2 + ν0(k)k(k + 1) (62)

(Frederiksen and Davies (1997) [57]) that generalizes to spherical geometry the expressions of Orszag
(1970) [54] and Leith (1971) [55]. This form of the eddy damping is consistent with the k−3 enstrophy
cascading inertial range power law of two-dimensional turbulence. It is found that taking γ = 0.6 gives
good comparison with DNS.

The single-time cumulant equation (Eq. (52f)) then reduces to the ordinary differential equation

∂Ck(t, t)

∂t
+ 2 ν0(k)k(k + 1)Ck(t, t)− F0(k; t)

= 2Sk(t)− 2ηk(t)Ck(t, t) . (63)

We have also specialized to white noise forcing for which

〈f̂ 0
k(t) f̂ 0

−k(t′)〉 = F0(k; t)δ(t− t′) , (64a)

so that, from Eqs. (52e) and (52f),

2

∫ t

t0

ds F 0
k (t, s) Rk(t, s) −→ F0(k; t) . (64b)

The nonlinear damping and nonlinear noise then reduce to

ηk(t) = −4
∑
p

∑
q

δ(k + p + q)K(k,p,q)K(−p,−q,−k)

×θkpqCq(t, t) , (65)
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Sk(t) = 2
∑
p

∑
q

δ(k + p + q)[K(k,p,q)]2

×θkpqCp(t, t)Cq(t, t) (> 0)

= −4
∑
p

∑
q

δ(k + p + q)K(k,p,q)K(−p,−q,−k)

×θkpqCp(t, t)Cq(t, t). (66)

We note that the nonlinear noise is positive. The time-history integrals can be calculated analytically to
determine the triad relaxation time as

θkpq(t) =

∫ t

t0

ds Rk(t, s) Rp(t, s) Rq(t, s)

=
1 − exp[− (µk + µp + µq) (t− t0)]

µk + µp + µq
, (67a)

with

θkpq(∞) = (µk + µp + µq)
−1 . (67b)

Here the summations over p and q are determined by

T (T ) = {p,q
∣∣ −T ≤ mp ≤ T , |mp| ≤ p ≤ T ,

−T ≤ mp ≤ T , |mp| ≤ p ≤ T } . (68)

7. Adiabatic invariants, zonalization and vortex condensation.

Atmospheric general circulation models (GCM’s) when integrated from observed initial conditions
tend to develop significant errors due to a tendency to gain zonal kinetic energy at the expense of eddy
kinetic energy (Hollingsworth et al. (1987) [167]). In addition, the distribution of the simulated kinetic
energy as a function of zonal wavenumber also displays a marked dependence on horizontal resolu-
tion. Manabe et al. (1979) [117]) described this dependence noting that the large-scale kinetic energy
increases with increasing resolution, while the energy at the smaller scales drops. Similar qualitative
changes in energy spectra with horizontal resolution were found in early studies with the barotropic vor-
ticity equation and were analysed in terms of statistical mechanical equilibrium spectra by Frederiksen
and Sawford (1980) [8]. This sensitivity of model atmospheric circulations and energy spectra to resolu-
tion and dissipation parameterizations has been an ongoing issue with GCMs (Laursen & Eliasen (1989)
[118], Koshyk and Boer (1995) [119], Kaas et al. (1999) [120], Frederiksen et al. (2003) [121]).

Frederiksen, Dix & Kepert (1996) [28] (hereafter FDK96) examined the dependence of kinetic energy
spectra of global atmospheric flows on varying horizontal resolution, dissipation operators, topography
and differential rotation (the β-effect) both in a barotropic model and in a multi-level GCM. They found
that to a large extent the behavior of the spectra with varying resolution, and surprisingly with varying
dissipation, could be related to the spectra of canonical equilibrium spectra. FDK96 demonstrated that
in order for the larger scale energy spectra to be resolution independent significantly more sophisticated
representations of the unresolved turbulent eddies than the typical∇2 and ∇4 operators were required.

Frederiksen, Dix & Kepert (1996) [28] also re-examined the role of the β-effect and Rossby waves
in producing anisotropic spectra and the formation of zonal jets. They considered the statistics of
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Rossby wave turbulence on the sphere using the EDQNM equations of section 6 (but with cumulants
for anisotropic turbulence having arguments k = (m,n) rather than k = n). In the presence of Rossby
waves the asymptotic form of the triad relaxation time takes the form

θkpq =
µk + µp + µq

(µk + µp + µq)2 + (ωk + ωp + ωq)2
(69)

by analogy with the planar geometry case (Holloway & Hendershott (1977) [109]). Here, ωk = ωmn are
the Rossby wave frequencies of Eq. (58) and the eddy damping µk satisfies Eq. (62). Consider now the
case where energy and enstrophy are injected, or have large amplitudes, at intermediate wavenumbers.
The EDQNM equation (63) will then tend to send some of the energy to larger scales and the enstrophy
to smaller scales with the transfers affected by the triad relaxation time in Eq. (69). This transfer will be
reduced for Rossby waves having large intrinsic frequencies and these are the large scale waves that are
meridionally elongated as seen from Eq. (58). On the other hand for the zonal components the Rossby
wave frequencies are zero, the transfer is not impeded by the intrinsic frequencies, and this means that
some of the energy that should have gone to the large scale Rossby waves instead goes to the zonal flow
to form strong jets.

FDK96 also presented a canonical equilibrium model that captures the essential mechanism of the
zonalization process. They supposed that the larger-scale Rossby waves could be regarded as adiabatic
invariants that were unchanged while the zonal flow and other intermediate and small-scale eddies are
allowed to equilibrate. The zonalization that results with adiabatic invariants compared with the stan-
dard canonical equilibrium spectrum where all eddies interact is demonstrated in Figure 3 (Figure 3 of
FDK96). Here the canonical equilibrium energy spectra E(m) are shown for four choices of the large-
scale invariants and compared with the standard equilibrium spectrum. The results use the observed 500
hPa streamfunction for 22 January 1979 as initial conditions and the spectra are calculated at rhomboidal
15 truncation. Starting from the same initial conditions FDK96 performed a series of simulations with
the barotropic vorticity equation with and without the β-effect and with a∇2 dissipation operator acting
only on the outer rhomboid in spectral space. Figure 4 (taken from Fig 8c of FDK96) shows the Northern
Hemisphere 500 hPa streamfunction after 30 days of evolution for the case with β = 2, h = 0. It is ev-
ident that the initial wavy flow (not shown) has condensed into a single circumpolar vortex; the process
is somewhat analogous to Boson condensation in an ideal Bose gas. In contrast, for a corresponding
simulation with β = 0 the flow maintains more large-scale wave structures out to day 30 (Figure 8e of
FDK96).

The results of FDK96 highlight the desirability of developing subgrid-scale parameterizations of tur-
bulent eddies, in particular dissipation operators, that can maintain the same large-scale energy spectra
with varying horizontal resolution. In the following sections we discuss subgrid modeling methods based
on statistical closures with such capabilities.

8. Subgrid-scale parameterizations

Next, we examine how to establish self-consistent subgrid-scale parameterizations when the resolu-
tion is reduced from triangular truncation T to TR < T where TR is the triangular truncation wavenumber
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Figure 3. Comparison of standard canonical equilibrium kinetic energy spectrum as a func-
tion of m for R15 truncation with cases where different large-scale components are treated
as adiabatic invariants, namely, 1) components with |ωmn| > 1/10; 2) components with
|ωmn| > 1/5; 3) components with 1 ≤ m ≤ 4; 4) components with |ωmn| > 1/10 and (0,2).
Note m = 0 is plotted at 10−1.
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of the resolved scales. We define the set of resolved scales by

R = T (TR) , (70a)

and the set of subgrid-scales by

S = T (T )−R . (70b)

Then, the nonlinear damping and nonlinear noise due to the resolved scales (respectively subgrid-scales)
are given by Eqs. (65) and (66), with subscriptR (respectively S) for p,q ∈ R (respectively S).
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Figure 4. Northern Hemisphere 500 hPa streamfunction (in km2s−1) on day 30 for a
barotropic model simulation at rhomboidal wavenumber 15 truncation with dissipation and a
beta-effect corresponding to β = 2. In this simulation an initial complex wavy flow evolves
into a single circumpolar vortex.
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8.1. The EDQNM Closure

For the EDQNM closure, the equation for (twice) the enstrophy components of the resolved scales
can then be written in the form

∂Ck(t, t)

∂t
+ 2 [ν0(k)k(k + 1) + ηSk (t)] Ck(t, t)

− [F0(k; t) + 2SSk (t)]

= 2SRk (t) − 2ηRk (t)Ck(t, t) . (71)

It is then clear that ηSk modifies the bare viscous damping and SSk modifies the random forcing variance.
As noted in Eq. (66), SSk is positive and corresponds to an injection of enstrophy from the subgrid scale
eddies to the resolved scales; that is, it represents stochastic backscatter. We therefore define the eddy
drain viscosity

νd(k) = [k(k + 1)]−1 ηSk , (72a)

the renormalized viscosity

νr(k) = ν0(k) + νd(k) , (72b)
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the stochastic backscatter

Fb(k) = 2SSk , (72c)

and the renormalized noise variance

Fr(k) = F0(k) + Fb(k) . (72d)

The injection of enstrophy due to the stochastic backscatter term may contribute to the growth of
instabilities, which may be suppressed in lower resolution LES unless the flow is randomly forced or
suitably chaotic (Leith (1990) [126], Piomelli et al. (1991) [168]). Most atmospheric circulation models
have however not accounted for the stochastic backscatter term, but have tried to account for the differ-
ences between the drain and injection terms by an effective or net viscosity. This may be achieved as in
Frederiksen and Davies (1997) [57] by defining a (negative) eddy backscatter viscosity νb through

νb(k) = −[k(k + 1)Ck(t, t)]
−1SSk , (73a)

so that,

Fb(k) = −2νb(k)k(k + 1)Ck . (73b)

The net eddy viscosity is defined by

νn(k) = νd(k) + νb(k) , (73c)

and the renormalized net viscosity by

νrn(k) = νn(k) + ν0(k) . (73d)

8.2. The DIA closure

For the DIA closure the viscosities again have the relationships defined for the EDQNM closure but
with the eddy drain viscosity defined by

νd(k) = [k(k + 1)Ck(t, t)]
−1

∫ t

t0

ds ηSk (t, s) Ck(t, s) ds , (74a)

the stochastic backscatter by

Fb(k) = 2

∫ t

t0

ds SSk (t, s) Rk(t, s) ds , (74b)

and the eddy backscatter viscosity by

νb(k) = − [k(k + 1)Ck(t, t)]
−1

∫ t

t0

ds SSk (t, s) Rk(t, s) ds (74c)

(Frederiksen and Davies (1997) [57]). Here the integral terms of course come from the integrals in the
DIA closure equation.
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Figure 5. Kinetic energy spectra E(m) inm2s−2 for (A) isotropized January 1979, (B) DNS
at T63, (C) LES at T31, and (D) E(m)±Σ(m) for DNS or LES. LES results with EDQNM-
based renormalized stochastic backscatter and renormalized viscosity (×10−1) and LES with
EDQNM-based renormalized net viscosity (×10−2). Note that results for m = 0 are plotted
at 10−1. Integrations use β = 2.

9. Comparisons of DNS and LES with subgrid-scale parameterizations

Frederiksen and Davies (1997) [57] compared DNS with LES at various resolutions and including
dynamic subgrid-scale parameterizations. They focused on DNS simulations which reproduced the ob-
served January 1979 isotropized kinetic energy spectrum as a statistically stationary spectrum in the
presence of random forcing and dissipation. The DNS runs have been performed at triangular T63 reso-
lution with the dissipation taken as a linear combination of surface drag and a Laplacian dissipation for
which the nondimensional bare viscosity takes the form

ν0(k) =

1.014×10−2

k(k+1)
for 2 ≤ k ≤ 15 ,

1.014×10−2

k(k+1)
+ 4.223× 10−5 for 16 ≤ k ≤ 63 .

(75)

The drag corresponds to 7.4 × 10−7s−1, or an e-folding decay time of 15.6 days, and the Laplacian
contribution corresponds to 1.25× 105m2s−1 in dimensional units.

To determine the random forcing variance spectrum needed to balance the dissipation, the steady state
EDQNM equation is used as follows. With the enstrophy components specified by the T63 January 1979
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Figure 6. As in Figure 5 for e(n) shown as (A), (B), (C) and e(n)± σ(n) shown as (D).

isotropic spectrum, and the triad relaxation time given by the stationary form in Eq. (67b), F0(k) must
be specified by

F0(k) = (2ν0(k)k(k + 1) + 2ηk) Ck − 2Sk (76)

for a steady state solution to Eq. (63). The bare viscosity in Eq. (75) and bare forcing specified by Eq.
(76) (with γ = 0.6) when used in DNS of the barotropic vorticity equation also produce a statistically
steady state which is very close to the January 1979 spectrum. This is shown in Figs. 5 and 6 (redrawn
from Frederiksen and Davies, (1997) [57]) which, at T63, compare the results of a DNS run (including
rotation β = 2) averaged over the last 100 days of a 150-day simulation with the January 1979 spectrum.
Figure 5 shows the dimensional zonal wavenumber kinetic energy spectrum E(m) while Figure 6 shows
the dimensional total wavenumber kinetic energy spectrum e(n). Also shown are these spectra ± the
standard deviations Σ(m) and σ(n). The zonal wavenumber spectra are in close agreement at most
scales while for the total wavenumber spectra the agreement at the largest scales, where there are few m

components to average over and where the eddy turn-over time is long, is not as good as at small scales.
The DNS spectra in Figs. 5 & 6, or, almost equivalently, the T63 January 1979 spectra, are regarded as
the benchmark or truth against which LES at lower resolution are to be compared.

The various EDQNM subgrid-scale terms defined in section 9., are shown in Figs. 7 & 8 (redrawn
from Figure 3b & d of Frederiksen and Davies (1997) [57]) for the case when the initial T63 January
1979 spectrum is truncated back to T31. Figure 7 depicts the eddy viscosities νd(n), νb(n) and νn(n)

while Figure 8 shows the net dissipation function νn(n)n(n + 1). We note that these subgrid-scale
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Figure 7. EDQNM nondimensional subgrid-scale parameterizations for T31. Shown are
viscosities corresponding to (A) νd(n), (B) νb(n), and (C) νn(n).

parameterizations all have a cusp behavior at the smallest scales as is also characteristic of eddy viscos-
ity parameterizations for three-dimensional turbulence in Cartesian geometry (Kraichnan (1976) [122],
Chasnov (1991) [127]). Very similar subgrid-scale parameterizations are obtained when the January
1979 spectrum is truncated back to other lower resolutions as shown at T15 in Figure 4 of Frederiksen
and Davies (1997) [57].

Figs. 5 & 6 also compares the spectra of LES using the renormalized viscosity νr(n) = νd(n)+ν0(n)

and renormalized random forcing Fr(n) = Fb(n) +F0(n) at resolutions T31 and T15. Again the kinetic
energy spectra shown are averaged over the last 100 days of 150-day simulations. The diagrams also
show the spectra ± the standard deviation Σ(m) and σ(n) and the energy spectra of the T63 DNS, and
January 1979 observations, truncated back to T31 or T15. For the zonal wavenumber spectra, there is
good agreement between the LES kinetic energies at T31 and T15 and both the DNS and January 1979
results truncated to the resolution of the LES. For the total wavenumber spectra, the agreement between
LES and DNS or January 1979 kinetic energies is good at the smaller scales; at the larger scales there
are some deviations, presumably because of the few m components to average over and the long eddy
turn-over times.

Frederiksen and Davies (1997) [57] show that the generally good agreement between DNS and LES
using the EDQNM based renormalized viscosity and renormalized noise forcing is also found if the
EDQNM based renormalized net viscosity is used instead or if the corresponding very similar DIA
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Figure 8. As in Figure 7 for νn(n)n(n+ 1).

based parameterizations are employed. This is also the situation in the presence of a differential rotation
speed characteristic of the earth. They also find that the comparison between DNS and LES is much
better than when a number of ad hoc viscosity parameterizations are used in the LES.

10. Closures and subgrid-scale terms for inhomogeneous geophysical flows

In this section, we review the QDIA closure theory ([88, 98, 99] and present analytical expressions
for the various subgrid-scale terms entering the equations for the mean and fluctuating components of
the vorticity within the barotropic vorticity equation for inhomogeneous turbulent flow over topography.

10.1. QDIA closure equations

The QDIA closure was formulated by Frederiksen (1999) [98] (hereafter F1999) for directly calcu-
lating the statistics of nonequilibrium barotropic flows interacting with inhomogeneous turbulence and
topography. It was used to provide a general theoretical framework for subgrid-scale parameterizations
of the eddy-topographic force, eddy viscosity and stochastic backscatter. Numerical implementation and
extensive testing of the QDIA closure was performed by O’Kane & Frederiksen (2004) [88] using an ef-
ficient restart method and the theory and numerics were extended by Frederiksen & O’Kane (2005) [99]
to incorporate differential rotation and Rossby waves. Recently the QDIA closure has also been applied
to predictability studies of atmospheric flows (O’Kane & Frederiksen (2008a) [71]) and to atmospheric
data assimilation (O’Kane & Frederiksen (2008c) [101] in this issue).
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In this section we briefly state the closure equations required for a discussion of the subgrid calcu-
lations and refer the reader to the articles quoted above for more details. Let us suppose we have an
ensemble of flows satisfying Eq. (13) where ζk = 〈ζk〉+ ζ̂k and 〈〉 denotes mean andˆdenotes fluctuation
about the mean. Also, f 0

k = f
0

k + f̂ 0
k where f

0

k = 〈f 0
k〉. The equations for the ensemble mean and the

fluctuation can then be written in the form:

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)K(k,p,q) [〈ζ−p〉〈ζ−q〉

+C−p,−q(t, t)] +
∑
p

∑
q

δ(k + p + q)A(k,p,q)〈ζ−p〉h−q + f
0

k, (77)

(
∂

∂t
+ ν0(k)k2)ζ̂k =

∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p〉ζ̂−q + ζ̂−p〈ζ−q〉

+ζ̂−pζ̂−q − C−p,−q(t, t)]
]

+
∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂−ph−q + f̂ 0
k. (78)

Here the two-point cumulant is defined by

C−p,−q(t, s) = 〈ζ̂−p(t)ζ̂−q(s)〉 (79)

where p and q both range over the whole plane including the zero vector that represents the large scale
flow. Throughout we will use the abbreviations

Ck(t, t′) = Ck,−k(t, t′); Rk(t, t′) = Rk,k(t, t′). (80)

The mean-field closure equation takes the form

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)[K(k,p,q)〈ζ−p(t)〉〈ζ−q(t)〉

+A(k,p,q)〈ζ−p(t)〉h−q]−
∫ t

t0

ds ηk(t, s)〈ζk(s)〉

+hk

∫ t

t0

ds χk(t, s) + f
0

k(t). (81)

The nonlinear damping is as defined in Eq. (52h) but here measures the interaction of transient eddies
with the mean field while

χk(t, s) =

2
∑
p

∑
q

δ(k + p + q)K(k,p,q)A(−p,−q,−k)R−p(t, s)C−q(t, s) (82)

measures the strength of the interaction of transient eddies with the topography in Eq. (81).
The equation for the diagonal two-time two-point cumulant is obtained by multiplying Eq. (78) by

ζ̂−k(t′) and using the closure expressions Eqs. (52h), (52i), (84) & (85):

(
∂

∂t
+ ν0(k)k2)Ck(t, t′) =

∫ t′

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t′, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t′, s). (83)
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Here F 0
k(t, s) = 〈f̂ 0

k(t), f̂ 0
−k(s)〉 and the nonlinear noise Sk(t, s) is as defined in Eq. (52i). Also,

Pk(t, s) =∑
p

∑
q

δ(k + p + q)C−p(t, s) [K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [K(−k,−p,−q)〈ζq(s)〉+ A(−k,−p,−q)hq] , (84)

πk(t, s) =

−
∑
p

∑
q

δ(k + p + q)R−p(t, s) [K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [K(−p,−k,−q)〈ζq(s)〉+ A(−p,−k,−q)hq] (85)

are noise and dissipation terms associated with eddy-mean field and eddy-topographic interactions.
The diagonal response function, Rk(t, t′) = Rk,k(t, t′), satisfies

(
∂

∂t
+ ν0(k)k2)Rk(t, t′) = −

∫ t

t′
ds [ηk(t, s) + πk(t, s)]R−k(s, t′) + δ(t− t′) (86)

where

Rk,l(t, t
′) = 〈 δζ̂k(t)

δf̂ 0
l (t′)
〉. (87)

Finally, the single-time cumulant is given by

(
∂

∂t
+ 2ν0(k)k2)Ck(t, t) = 2<

∫ t

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t, s)

−2<
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t, s). (88)

10.2. Generalized Langevin Equation

The realizability of the diagonal elements of the covariance matrix in the QDIA closure equations
is underpinned by the fact the closure has an exact stochastic model representation. The generalized
Langevin equation that reproduces the QDIA is

(
∂

∂t
+ ν0(k)k2)ζ̃k(t) = −

∫ t

t0

ds [ηk(t, s) + πk(t, s)] ζ̃k(s)

+f̂ 0
k(t) + fSk (t) + fPk (t), (89)

where

fSk (t) =
√

2
∑
p

∑
q

δ(k + p + q)K(k,p,q)ρ
(1)
−p(t)ρ

(2)
−q(t)

fPk (t) =
∑
p

∑
q

δ(k + p + q)[2K(k,p,q)〈ζ−q(t)〉

+A(k,p,q)h−q]ρ
(3)
−p(t). (90)

Here ρ(i)
k (t), where i = 1, 2, 3, are statistically independent random variables such that

〈ρ(i)
k (t)ρ

(j)
−l (t

′)〉 = δijδklCk(t, t′) (91)
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and

〈ζ̃k(t)ζ̃−k(t′)〉 = Ck(t, t′), (92)

where δ is the Kronecker delta function in Eq. (91).

10.3. Subgrid terms

Frederiksen (F1999) derived expressions for the subgrid-scales based on the QDIA equations and the
associated Langevin equations. Here we consider the case where the resolution is reduced from CT to
CR < CT with CR the resolution of the resolved scales in circularly truncated wavenumber space. We
define T = {p,q|p ≤ CT ,q ≤ CT}, R = {p,q|p ≤ CR,q ≤ CR} and S = T − R is the set of the
subgrid scales. Thus for (p,q) ∈ S, one or both of these inequalities CR < p ≤ CT , CR < q ≤ CT

holds. We now simply state the dynamical equations for the resolved scale vorticity including subgrid
terms

(
∂

∂t
+ ν0(k)k2)〈ζk(t)〉

=
∑

(p,q)∈R

δ(k + p + q){K(k,p,q)[〈ζ−p(t)〉〈ζ−q(t)〉+ C−p,−q(t, t)]

+A(k,p,q)〈ζ−p(t)〉h−q}+ f
0

k(t) + ∆k(t) (93)

where the mean subgrid tendency is given by

∆k(t) = −
∫ t

t0

dsηSk (t, s)〈ζk(s)〉+ f
h

k(t) + jk(t). (94)

Here the subgrid scale eddy-topographic force and subgrid residual Jacobian are defined by

f
h

k(t) ≡ fχS

k (t) = hk

∫ t

t0

dsχSk(t, s), (95)

jk(t) =
∑

(p,q)∈S

δ(k + p + q){K(k,p,q) [〈ζ−p〉〈ζ−q〉]

+A(k,p,q)〈ζ−p〉h−q}. (96)

Similarly

(
∂

∂t
+ ν0(k)k2)ζ̂k(t)

=
∑

(p,q)∈R

δ(k + p + q){K(k,p,q)
[
〈ζ−p〉ζ̂−q + ζ̂−p〈ζ−q〉

+ζ̂−pζ̂−q − C−p,−q(t, t)
]

+ A(k,p,q)ζ̂−ph−q}

+f̂ 0
k(t) + ∆̂k(t) (97)

where the fluctuating subgrid tendency is given by

∆̂k(t) = −
∫ t

t0

ds[ηSk (t, s) + πSk (t, s)]ζ̂k(s) + f̂SS
k (t) + f̂PS

k (t). (98)
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Eqs. (94) and (98) are the general forms of the subgrid-scale terms including memory effects of
turbulent eddies. They take a simpler form if we make the Markov assumption that ηSk (t, s) and πSk (t, s)

(and possibly, but not necessarily, χSk(t, s), since hk does not depend on time) behave like the Dirac delta
function δ(t− s). We define

ηSk (t) =

∫ t

t0

dsηSk (t, s); πSk (t) =

∫ t

t0

dsπSk (t, s); χSk(t) =

∫ t

t0

dsχSk(t, s). (99)

Then the subgrid tendencies take the forms

∆k(t) = −ηSk (t)〈ζk(t)〉+ f
h

k(t) + jk(t) = −νd(k)k2〈ζk(t)〉+ f
h

k(t) + jk(t) (100)

and

∆̂k(t) = −[ηSk (t) + πSk (t)]ζ̂k(t) + f̂SS
k (t) + f̂PS

k (t) = −ν̂d(k)k2ζ̂k(t) + f̂SS
k (t) + f̂PS

k (t). (101)

Here, the eddy drain viscosities are defined by

νd(k)k2 = −ηSk (t); ν̂d(k)k2 = −[ηSk (t) + πSk (t)], (102)

and the eddy-topographic force is

f
h

k(t) = hkχ
S
k(t) = hk

∫ t

t0

dsχSk(t, s). (103)

We may also define the renormalized viscosities

νr(k) = νd(k) + ν0(k); ν̂r(k) = ν̂d(k) + ν0(k), (104)

and the renormalized mean and random forcings

f
r

k = f
0

k + f
h

k + jk; f̂ rk = f̂ 0
k + f̂SS

k + f̂PS
k . (105)

For flow on a β-plane with differential rotation νr(k)k2 and ν̂r(k)k2 are complex in general. Now,
Eq. (93) can be written in the same form as the higher resolution Eq. (77) with the replacements
ν0(k) → νr(k), f

0

k → f
r

k (and ∆k → 0). Similarly Eq. (97) can be written as in Eq. (78) with
the replacements ν0(k) → ν̂r(k), f̂ 0

k → f̂ rk (and ∆̂k → 0). This then completes the renormalization
procedure.

11. QDIA closure based SSP’s for global atmospheric flow

As reviewed in the Introduction, since the work of Holloway (1992) [140] there have been a series
of papers employing heuristic subgrid-scale parameterizations of the eddy-topographic force for oceanic
circulations including in general circulation ocean models. There has as yet been no implementation of
subgrid parameterizations of the eddy-topographic force in atmospheric GCMs.

In this section, we compare the QDIA closure based subgrid-scale formalism (Frederiksen (1999)
[98]) with approaches based on relaxation towards canonical equilibria (Holloway (1992) [140]) and
on entropy production arguments (Kazantsev et al. (1998) [155], Polyakov (2001) [156] and Holloway
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Table 1. Parameters used in both the forced dissipative canonical equilibrium and decaying
nonequilibrium cases.

Canonical equilibrium Nonequilibrium January
F eq

k = 〈f̂ 0
kf̂

0∗

k 〉 = 2ν0(k)k2Ceq
k Fk = 〈f̂ 0

kf̂
0∗

k 〉 = 0

Ceq
k = k2

a+bk2 CJanuary1979
k

〈ζeqk 〉 = −bhkC
eq
k 〈ζJanuary1979

k 〉
f

0

k = 2ν0(k)k2〈ζeqk 〉 f
0

k = 0

a = 4.824× 104, b = 2.511× 103

(2004) [157]). In our comparisons we draw on the recent numerical results of O’Kane & Frederiksen
(2008b) [100]. They calculated the QDIA based subgrid terms both for a canonical equilibrium case
(including forcing and dissipation balanced at each wavenumber) and for a nonequilibrium dissipative
case corresponding to observed January 1979 flow over topography. Very similar subgrid results are
found with the QDIA and for the regularized QDIA with α = 4 in Eq. (53). A crucial question is the
relative strengths of the residual Jacobian, subgrid-scale eddy-mean field and eddy-topographic interac-
tions for flows far from equilibrium. In the the following discussion the subgrid-scale parameterizations
are calculated for circularly truncated wavenumber CR = 24 large eddy simulations based on the results
of higher resolution CT = 48 direct numerical simulations. In all cases a bare non-dimensional viscosity

ν0(k)k2 = 1.014× 10−2 if 2 ≤ k ≤ 15,

ν0(k)k2 = 1.014× 10−2 + 4.223× 10−5k2 if 16 ≤ k ≤ 48 (106)

is used, β = 1/2, k2
0 = 1/2 with length-scale = a/2, time-scale = Ω−1 and all other parameters detailed

in table 1.

11.1. Canonical equilibrium

Figure 9 shows the full integral forms of the subgrid terms in k-space for the canonical equilibrium
case. The physical space eddy-topographic force is shown in Figure 10 as are the zonally asymmetric
component of the mean streamfunction, the mean vorticity and the global topography used in these
calculations. As noted in table 1

〈ζeqk 〉 =
−bk2hk

a+ bk2
. (107)

For ease viewing, Figure 11 shows some of the spectral space subgrid terms in Figure 9 but summed over
all k that lie within a given radius band of unit width. These subgrid-scale terms have been calculated
with an integration time of 10 hours.

We see from Figure 9 that the integral terms appearing in the single-time cumulant equation in Eq.
(88) are real and homogeneous whereas the mean field subgrid terms in Eq. (81) are complex and
highly anisotropic. Note that all terms balance with their counter-parts so that canonical equilibrium
is exactly maintained. Figs. 9 & 10 a) clearly show that, consistent with the F1999 statistical theory,
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Figure 9. Nondimensional subgrid scale terms in (kx, ky)−space entering the single-
time cumulant equation (88) and the mean field equation (81) for the forced dissipa-
tive canonical equilibrium: a) −<

∫ t
t0
ds ηSk (t, s)C−k(t, s), b) <

∫ t
t0
ds SSk (t, s)R−k(t, s), c)

−<
∫ t
t0
ds πSk (t, s)C−k(t, s), d) <

∫ t
t0
ds P S

k (t, s)R−k(t, s), e) −<
∫ t
t0
ds ηSk (t, s)〈ζk(s)〉, f)

−=
∫ t
t0
ds ηSk (t, s)〈ζk(s)〉, g) <hk

∫ t
t0
ds χSk(t, s), & =hk

∫ t
t0
ds χSk(t, s). The time integra-

tion is 10 hours, < denotes real part and = is imaginary part.

the eddy-topographic force is balanced exactly by the damping due to eddy-mean field interactions and
in physical space resembles a high pass filtered form of the topography. Crucially, for the canonical
equilibrium state the residual Jacobian is identically zero, as also shown in Figure 11 b). Figure 9 also
clearly demonstrates that energy injection from the subgrid scales to the retained scales occurs not only
in the form of stochastic backscatter due to eddy-eddy interactions but also arises due to nonlinear noise
terms associated with eddy-mean and eddy-topographic interactions. These forcings balance the drain
of energy from the retained to subgrid scales due to eddy-eddy, eddy-mean field and eddy-topographic
dampings. Figure 11 shows that the spectra of the QDIA based subgrid terms, including the renormalized
and net eddy viscosities and eddy-topographic force, are all cusp shaped at the cut-off scale. These results
are consistent with corresponding subgrid terms for isotropic turbulence based on DIA and EDQNM
closures and on stochastic modeling, as discussed in the Introduction. For the current inhomogeneous
case this again results in the subgrid terms being of small scale and more specifically that the subgrid
scale eddy-topographic force will be a high pass filtered version of the topography. Figs. 10 b) & 10 c)
depict the strong correlation of both the zonally asymmetric component of the streamfunction and the
mean vorticity with the topography (Figure 10 d) respectively. We have found that qualitatively similar
results hold for the corresponding inviscid unforced canonical equilibrium case (not shown).

The numerical results for subgrid-scale parameterizations described in this subsection confirm the
analytical findings and general principles of the F1999 statistical theory.
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Figure 10. Figure 10. Subgrid terms in physical space for the canonical equilibrium case
showing a) ∇−2 of the eddy-topographic force, b) the zonally asymmetric component of the
mean streamfunction, c) the mean vorticity and d) the global topography. All figures are in
non-dimensional units.

11.2. Nonequilibrium results

For general nonequilibrium flows there are unfortunately no analytic solutions and numerics must be
our guide. Again we refer to the study of O’Kane & Frederiksen (2008b) [100] who considered the case
of a typical 500mb January atmospheric flow over topography. They found that the subgrid contributions
in the single-time cumulant equation in Eq. (88) are in general complex, prior to taking the real parts,
and an imbalance between the energy injection and drain terms occurs at each wavenumber. In addi-
tion, a similar imbalance occurs between eddy-topographic, eddy-mean field and eddy-eddy interactions
contributing to the mean flow. Importantly, unlike the canonical equilibrium case, the residual Jacobian
not only does not vanish but makes a contribution comparable in magnitude to both the damping due
to eddy-mean field interaction and to the eddy-topographic force. Figs. 10 b) & 12 a) demonstrate the
differences between zonally asymmetric components of the mean streamfunctions for equilibrium and
nonequilibrium flows respectively. In Figure 10 b) we see that at equilibrium the zonally asymmetric
streamfunction is strongly correlated with the contours of the topography whereas the nonequilibrium
case has a more complex structure with Rossby wavetrains in the mid-latitudes of the Northern Hemi-
sphere in the band of the strong zonal jets. Figure 12 b) shows the total field for the mean streamfunction
for January 1979 with strong jets in both hemispheres in the zonal winds (not shown).

Figs. 10 a) & 12 d) demonstrate the remarkable similarity in the structure of the eddy-topographic
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Figure 11. Non-dimensional summed band averaged spectra for canonical
equilibrium case showing a)

∫ t
t0
ds[SS

k (t, s) + P S
k (t, s)]R−k(t, s) (thin dashed),

−
∫ t
t0
ds[ηS

k (t, s) + πS
k (t, s)]C−k(t, s) (circles), 2

∫ t
t0
ds[SS

k (t, s) + P S
k (t, s)]R−k(t, s)

(thick dot), 2
∫ t
t0
ds[SS

k (t, s) + P S
k (t, s)]R−k(t, s) + F eq

k (thick solid), (the thick dashed line

shows the sum (=0) of terms in circles + thin dashed); b) |jk|2 (thick dot (=0)), |fhk|2 (thin
dashed), −|[

∫ t
t0
dsηS

k 〈ζk〉]|2 (circles), |f rk|2 + 1.0× 10−6 (thick solid), (the thick dashed line
shows the sum (=0) of terms in circles + thin dashed); c)

∫ t
t0
ds[ηS

k (t, s) + πS
k (t, s)] (thick

dashed), ν̂r(k)k2 (thick dot); d)|[
∫ t
t0
dsηS

k (t, s)]|2 (thin dashed).

 +1x10e-06
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Figure 12. Figure 12 a) Zonally asymmetric component of mean streamfunction for the
nonequilibrium decaying January case, b) mean streamfunction, c) ∇−2 of residual Jaco-
bian, d) ∇−2 of eddy-topographic force. All figures (non-dimensional) are after 24 hours of
development.

force for both cases with strong interactions occurring over the large-scale topographic structures such as
the Himalayas, the Andes, Greenland and to a lesser extent the Rocky Mountains. In the nonequilibrium
case (Figure 12 c) the residual Jacobian has significant contributions from both the mean-field mean-field
interaction as well as the mean-field topographic interaction (not shown). Upon further investigation we
have found that the quadratic mean-field terms in the residual Jacobian consist of small-scale Rossby
wavetrains stretching from the Himalayas over the North Pacific. The mean-field topographic terms on
the other hand have features broadly similar, but of larger scale, to those seen in the eddy-topographic
force.

11.3. Comparison with subgrid terms obtained from entropy methods

Holloway (1992) [140] proposed that in the presence of topography the effects of subgrid-scale eddies
are to relax the barotropic component of the flow towards a local canonical equilibrium rather than
towards rest. Thus, he proposed that the mean subgrid tendency (Eqs. (94) and (100)) takes the form

∆
(H1992)

k (t) = −ν(H1992)
d (k)k2[〈ζk(t)〉 − 〈ζeqk 〉] (108)

where the eddy-topographic force

f
h(H1992)

k = ν
(H1992)
d (k)k2〈ζeqk 〉. (109)
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Since H1992 effectively takes ν0 = 0, his total viscosity ν(H1992)
r = ν

(H1992)
d and Eq. (109) agrees with

the F1999 equilibrium form:

f
h(F1999)eq

k = ν
(F1999)
d (k)k2〈ζeqk 〉. (110)

Holloway (H1992) does not explicitly propose subgrid-scale parameterizations for the subgrid ten-
dency ∆̂k entering the equation for the fluctuations. However, he presented and applied (e.g. Al-
varez et al.(1994) [142]) his eddy-topographic stress parameterization in a framework without stochastic
backscatter subgrid-scale parameterizations. As noted by Frederiksen (F1999) stochastic backscatter is
essential to balance the eddy damping of the fluctuations even at canonical equilibrium. Additionally, in
applications of the H1992 framework the same viscous terms are used for both the subgrid contributions
to the fluctuating and mean vorticity tendencies, viz., ν̂d = νd. In contrast, F1999 shows that different
damping terms balance the eddy-topographic force (Eq. (100)) and stochastic backscatter terms (Eq.
(101)). Applications of the H1992 parameterization typically employ dissipation operators of the form
∇2 or ∇4 while the cusp shapes in Figure 11 correspond to higher order operators with peaks at smaller
scales. These differences mean that f

h(F1999)

k will be of smaller scale than f
h(H1992)

k . Of course in far
from equilibrium situations, such as for the January 1979 flow considered in the previous subsection,
the differences between H1992 and F1999 are even more significant. Table 2 presents a comparison of
the H1992 and F1999 subgrid-scale parameterizations. In particular, the F1999 expression for f

h

k is in
general different from the equilibrium expression in Eq. (110) and the residual Jacobian jk 6= 0.

Kazantsev et al. (1998) [155] and Polyakov (2001) [156] have also formulated subgrid scale parame-
terizations for flows over topography described by barotropic and shallow water equations respectively.
They use a maximum entropy production hypothesis constrained by the conserved quantities of the in-
viscid equations. They again obtain a contribution to the mean subgrid tendency of the form in Eq. (108)
together with an ordinary Laplacian diffusion term. In their case the relaxation towards canonical equi-
librium is determined to be through a simple drag term. This is in sharp contrast to the cusp shaped eddy
viscosities shown in Figure 11 and in earlier closure and stochastic modeling studies. Holloway (2004)
[157] has argued that his form for the mean subgrid tendency (Eq. (108)) can be obtained from a Taylor
expansion of the gradient of the entropy about a canonical equilibrium solution.

The nonequilibrium statistical dynamical QDIA closure theory (Frederiksen (1999) [98]) has been ex-
tensively tested and in regularized form is in excellent agreement with results of direct numerical simula-
tions of general mean flows interacting with inhomogeneous turbulence, Rossby waves and topography
(O’Kane & Frederiksen (2004) [88] and Frederiksen & O’Kane (2005) [99]) and in predictability stud-
ies (O’Kane & Frederiksen (2008a) [71]). It allows the self consistent determination of all the subgrid
terms entering the equations for the mean and fluctuating components of the dynamical fields (O’Kane &
Frederiksen (2008b) [100]) both near canonical equilibrium and for nonequilibrium barotropic turbulent
flows. When the streamfunction is strongly correlated with the topography (Figs. 2 and 10 b)), as occurs
in parts of the ocean, relaxation towards a tuned canonical equilibrium flow may improve circulations as
reviewed in the Introduction. However, for far from equilibrium systems, such as the atmosphere where
the stationary Rossby waves are strongly phase shifted in relation to the topography (Figure 12 a)), the
results of the general QDIA theory are needed. In future we plan to develop and apply the QDIA closure
theory for more complex baroclinic flows.
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Table 2. Comparison of the F1999 (Markovianized) and H1992 subgrid-scale parameteriza-
tion schemes. Here νr(k) is the renormalized viscosity of F1999 and νr(k) = νd(k) is the
total viscosity of H1992.

Holloway 1992 Frederiksen 1999
νr(k) = νd(k) ad hoc; ν0(k) = 0 νr(k) = ν0(k) + νd(k) = ν0(k) + ηSkk

−2

ν̂r(k) = νr(k) ν̂r(k) = νr(k) + πSkk
−2

f
h

k = νd(k)k2〈ζeqk 〉 f
h

k = hk χ
S
k in general

f
r

k = f
0

k + f
h

k f
r

k = f
0

k + f
h

k + jk

jk = 0 always jk 6= 0 except at equilibrium
f̂ rk = f̂ 0

k; fSS
k = fPS

k = 0 f̂ rk = f̂ 0
k + fSS

k + fPS
k

12. Summary

We have reviewed the development of the theory of statistical mechanical equilibrium states, corre-
sponding to maximum entropy, and their applications for understanding the dynamics of geophysical
flows. Maximum entropy states have been shown to be closely related to minimum enstrophy states that
are nonlinearly stable in the sense of Arnold. Both of these end states of inviscid dynamics have yielded
significant insights into the behavior of geophysical flows, of atmospheric circulation models and been
used to explain qualitative features of ocean circulations even in the presence of forcing and dissipation.

More generally theoretical models of nonequilibrium statistical states are needed for quantitative un-
derstanding of forced dissipative flows. Turbulent closure models based on renormalized perturbation
theory provide the requisite tools for such analyses. We have reviewed their development from the pio-
neering works of Kraichnan, Herring and McComb, who formulated non-Markovian closures for homo-
geneous turbulence, to recent formulations and computations with closures for inhomogeneous Rossby
wave turbulence interacting with general mean flows and topography.

Closure theories form a natural basis for a systematic approach to dynamical subgrid-scale parameter-
izations needed for large eddy simulations of geophysical flows. We have reviewed recent advances in the
formulation and application of subgrid-scale parameterizations of eddy viscosity, stochastic backscatter
and eddy-topographic force. We have contrasted results based on ad hoc formulations, on ideas from
canonical equilibrium, minimum enstrophy states and entropy production hypotheses, with those result-
ing from self-consistent calculations using statistical closures. We expect that subgrid modeling will see
important advances in future with the development of closures that can handle inhomogeneous baroclinic
turbulence and general mean flows and from associated stochastic modeling.

This work was partially supported by CSIRO Complex Systems Science and contributes to the Wealth
from Oceans Flagship and ACCESS/Climate and Atmosphere Program
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