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Abstract: In this work we discuss how and to what extent the thermodynamic concepts
and the thermodynamic formalism can be extended to the description of high temperature
states of the plasma not necessarily associated with a Boltzmann distribution and with
thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy
concept”, an interpretative and predictive tool based on probability and information,
defined in a suitably coarse-grained possibility space of all current density or of all electric
charge density distributions under testable constraints, and whose variation properties are
proven to be related under certain conditions to the equilibrium and the stability of the
system. In the case of magnetic equilibrium the potentiality of the magnetic entropy
concept is illustrated by comparing the predictions of the current density and pressure
profiles with the observations in different tokamak machines and different tokamak
regimes, as well as by showing how the equilibrium and the stability in devices as different
as the reversed field pinch or the magnetic well are described by the variation properties of
the same entropy functional applied to the different situations. In fact it emerges that the
maximum of the entropy can be seen in these different cases as an optimization constraint
for the minimum of the magnetic energy. The application of the entropy concept to the
electrostatic processes shows in particular that the so-called reactive instabilities (non-
dissipative, non-resonant instabilities with a marginal point) admit a neighboring state with
higher entropy and are therefore of special relevance from the point of view of the physical
evolution of the system. In this case the thermodynamic formalism allows the introduction
of the concept of “thermodynamic fluctuations” of the macroscopic charge density and
provides a method for the calculation of the “thermodynamic” fluctuation levels both on
the stable as well as on the linearly unstable side of the marginal point. The paper discusses
the relation between the variations of the entropy functional defined on statistical grounds
and the motion of the underlying system of particles. It is found that the vanishing of the
first variation of the entropy is connected, under certain assumptions, with the Hamilton’s
principle, while the second variation is not directly related to the dynamics but is an
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expression of the fact that the entropy is a predictive tool based on probability and
information.
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1. Introduction

We say that the plasma has a high temperature when the time scale of the processes taking place in
it is much smaller than the collision time arising from the Coulomb interactions of its particle
constituents.

In the high temperature plasma the term that takes into account the effects of the individual
collisions in the time evolution of the plasma configuration in phase space described by the Boltzmann
equation, is neglected. This term, in its various versions and implicit assumptions, determines the
evolution of the plasma toward a uniquely defined stationary distribution in phase space, namely the
Boltzmann distribution.

In the case of high temperature plasma one can set up a description based on a distribution function
satisfying a conservation equation in a reduced 6-dimensional space, the so-called Vlasov equation. In
the Vlasov picture all kinds of individual particle-particle correlations are neglected and only collective
(macroscopic) effects involving organized cumulative motions of charged particles with the associated
electric and magnetic fields are taken into account. A relevant consequence of this collective
description is that the uniqueness of the stationary solution is lost because any arbitrary function of the
constants of motion is a stationary solution of the Vlasov equation. This arbitrariness is not reduced
when one restricts himself to the consideration of particular symmetric geometries, as the axis-
symmetric geometry of the tokamak, and of particular closure approximations as that of the
Magnetohydrodynamics. In this case the equilibrium is described by the Grad-Shafranov equation,
which depends on two arbitrary functions.

In contrast with this theoretical situation, it is an experimental fact that the magnetically confined
plasma adopts well-defined equilibria, which, in some cases, exhibit a remarkable stiffness,
particularly in the current density and in the pressure profiles. The question arises whether some
general criterion can be found that selects a very limited set of high temperature states among the
infinite possibilities allowed by the theory in its present form.

A possibility that occurs naturally to the mind is the existence of a functional of the equilibrium
quantities, which select the collision-less states of the plasma according to their variation properties
and which play the same formal role of the thermodynamic potentials of classical thermodynamics. In
other words the question is whether a thermodynamic theory can be formulated of the static or quasi-
static (i.e. very near to the marginal point of stability) collision-less states also in situations very far
from the Boltzmann equilibrium.

The possibility of such a theory is related to the existence of a functional whose variation properties
could characterize the collision-less states according to a hierarchy of probabilities and whose formal
properties could be the same as that of the entropy of classical thermodynamics. Once this functional is
constructed, the thermodynamic properties will eventually emerge after comparison of the formal
properties of the functional with the concrete physical features of the collision-less states of the plasma.
According to this point of view one defines the probability of a collective macroscopic state by
operating in the possibility space of all current density distributions or electric charge density
distributions (conveniently coarse-grained) and assigns the probability P, of each distribution (labeled



Entropy 2009, 11 128

by i) of a canonical ensemble by requiring that the entropy S =—ZPi In(Pi) be stationary with

respect to the variation of the P, under given constraints.

We shall consider a scheme where the collective system is so constrained that its collective energy
(magnetic or electrostatic) is fixed, as well as its interaction energy with external sources of energy and
electric charges. The latter is simulated by the interaction with an infinite background of independent
particles (electrically neutral in the average) that acts as an infinite reservoir of energy and electric
charges. The collective distributions of current density or electric charge density of the equilibrium
states are introduced through the constraints as given but not “a priori” specified functions of space
and the privileged collective states are determined by the variation properties of the entropy pertaining
to the collective equilibrium integrated over the fluctuations of the background.

Subsequently, when the collision-less states of maximum entropy are determined, one can apply the
classical relation between the variations of the entropy and the fluctuations for calculating the
“thermodynamic” (in the sense that will be specified in the text) fluctuation levels of the collective
system around the collective equilibrium state.

The development of a thermodynamic theory along the lines outlined above is the purpose of the
present work. The result is the emergence of a set of conditions that strongly reduce the arbitrariness of
the magnetic and electrostatic collision-less states of equilibrium, consistently with the experimental
observations.

The thermodynamic point of view reveals unexpected relations concerning the stability of a
dynamical system and the stability defined thermodynamically in accordance with the variation
properties of the collective entropy in regimes as different as those of the plasma in the tokamak, in the
reversed field-pinch or in a magnetic well.

In the case of electrostatic processes, the thermodynamic treatment points to the so called “reactive”
instabilities (characterized by absence of dissipation and existence of bifurcation points) as the most
relevant from the physical point of view, in view of the fact that they involve neighboring states of
maximum entropy for critical values of the parameters.

Even though the entropy is not a dynamical quantity, but a predictive tool based on probability and
information, a connexion can be found between the equilibrium described by the vanishing of the first
variation of the entropy and the motion of the underlying system of particles described by the
Hamilton action principle. Through the comparison with the Lagrangian description of motion at the
single particle level, as well as at the macroscopic level, the quantities involved in the construction of
the entropy find a precise physical interpretation and the determination of the scale length
characterizing the domain of validity based on the entropy functional emerges clearly. However a
direct connexion with the dynamics does not hold for the second variation of the entropy, which fact
reflects the peculiar non-dynamical content of the entropy concept. Nevertheless, the structure of the
entropy functional is such that the maximum of the entropy can be seen, in many significant cases, as
an optimization constraint for the minimum of the energy (magnetic or electrostatic). In other words,
the energy is minimized under the condition that the probability of the magnetic or electrostatic
configuration be at a maximum.

Though independent of the detailed dynamics, the global point of view offered by the
thermodynamics of high temperature plasmas can be hopefully useful, just as in the classical case, for
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unraveling those phenomenological parameters which are at the heart of the physical process and
which are worthy of a more specific dynamical analysis.

CHAPTER 1: The statistical model of magnetic collisionless equilibria

Summary: We start with the definition of the information space, that is, of the possibility space of
all current density distributions compatible with the information expressed by given constraints. The
volume V in ordinary space is partitioned into N volume elements AV in which the macroscopic

current density can be considered as uniform, so that AV measures the coarse-graining. The N volume
elements are the basic objects of the statistics. Each volume element AV, is susceptible of occupying

at random a position in the 6N -dimensional possibility space of all positions X; in V and of all current
density values ji at X;. The current density ji is divided in two parts jj = ](Y(J )+ T,— , Where ](Y() is a

macroscopic current density due to collective motions of the electrons involving a scale length larger
than (AV)“3 and defined in a volume Q that satisfies the inequalities AV << Q <<V .

The electrons carry the current and the ions form a uniform neutralizing background. The part L is

due to the velocity fluctuations around the average value of individual electrons that can be considered
as effectively free inside each AV, provided AV, is so small that one can ignore the collective
interactions between many particles inside it. The concept of separation between electromagnetic or
electrostatic collective and individual effects described by characteristic lengths, goes back to old
papers by Bohm and Pines [1-2] and will play a natural central role in our formulation.

The partition of the current density is introduced through the following two independent constraints in
information space: ]

1) The sum of the collective magnetic energy (1/2c)] j - AdQ, and of the interaction energy of the

collective vector potential A with the background of fluctuating currents (1/ ZC)I T - AdQ, is

prescribed.
2) The dispersion of the current density T(r)JrJT arising from the fluctuating part j is fixed. This is

the same as to fixing the temperature of a “heat bath” modeled by the background of electrons
effectively free in each AV, (1< j<N), covering the whole volume V >> Q). In this scheme the
individual particle-particle correlation is neglected. Indeed, this approximation is the basis of the
derivation of the Vlasov equation from Liouville equation and of the description of collective
collision-less processes. However, while the particle-particle interaction is neglected, the
interaction of the current fluctuations due to the individual particles with the “smeared out”
collective field is taken into account and will be seen to vanish only for the isolated system at
thermodynamic equilibrium. In fact, the interaction energy with the background of independent
particles will prove to be a useful device for simulating the reversible interaction of the collective

system with external sources of energy.
The entropy S:—ZPiIn(Pi) follows from the requirement to be stationary with respect to
i

variations of the P, under the constraints above.



Entropy 2009, 11 130

In the thermodynamic limit, N/Q — oo with AV fixed the entropy S turns out to be divided in a
part S, called “magnetic entropy” that depends only on the collective quantities of the plasma

equilibrium and in a part S, related to the infinite background of individually uncorrelated particles in
interaction with the collective field.

When the plasma is enclosed in a perfectly conductive shell and the quantities of the collective
equilibrium vary slowly in time, the time derivative of S, calculated with the help of the Maxwell
equations and with a suitable modeling of the image currents in the shell, is expressed in terms of the
inductive electric field generated internally to the plasma. When an external electric field has

penetrated into the plasma through narrow cuts in the shell and the global plasma configuration is
stationary, the entropy S, is also stationary. The condition that the plasma is stationary locally leads to

an equation for the current density profile j(X) [3].

2. The separation between collective and individual effects and the statistics of the plasma
volume elements in information space

For tackling the question outlined in the introduction one must define, as a first step, a suitable
space I" where all possible current density distributions can be represented and where the information
on the system can be introduced in the form of constraints on these distributions. We adopt the
Bayesian point of view of information theory [4] where the constraints have a hypothetical meaning.
That is to say, one advances testable constraints that imply a determination (an assignment) of a
probability distribution P by maximizing the entropy S = —j PInPdI’ with respect to variations of P

r

under the constraints to be tested. If the probability P and the entropy, calculated with these
constraints, prove to be consistent with the observations, then one infers the physical consistency of the
constraints and, at the same time, the internal consistency of the theory. In our specific case the
existence of a given macroscopic current density distribution will be introduced ‘a priori’ through
‘testable’ constraints whose probability assignment in the space of all possible current density
distributions is determined by the entropy principle and is to be confirmed by the experiment.

We then proceed to define the space I" where all our information on the system will be expressed. The
volume V of the plasma is partitioned into a large number N of volume elements in which the
macroscopic current density can be considered as uniform, so that AV =V /N measures the coarse-
graining through which the plasma will be seen. The size of AV is subject to lower and upper limits.
The lower limit arises from the requirement that the number of particles contained in AV be very large.
At the same time (AV)“3 should not be larger than the screening length below which the particles can
be regarded as effectively free and can be treated individually while the collective effects dominate at
scale length larger than (AV)1/3. We shall meet the precise value of the screening length, according to
the calculations of Bohm and Pines [1-2] in the course of development of the theory (chapter 7, section
23, chapter 11 section 33). At present we assume that, at scale lengths larger then the coarse-graining
described by AV, only collective effects be visible and that, compatibly with the conditions above,
AV can be chosen so small that the collective quantities can be taken as uniform in it.
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The current density ji can be divided in two parts jj = ]()”(j)+ T, where ](7() IS @ macroscopic
current density due to collective motions of the electrons involving a scale length larger than (AV)“3
and is defined in a volume Q that satisfies the inequalities AV << Q <<V and is vanishing outside Q.

The electrons carry the current and the ions form a uniform neutralizing background. The part TJ. IS

due to the velocity fluctuations around the average value of the effectively free electrons inside each
AV; where AV satisfies the limits given above. In view of the fluctuating part T jj is a random
variable.

We consider an assembly formed by the large number N of volume elements AV ; the elements AV
are the basic objects of our statistics. Let us introduce a six-dimensional space for the values of the

current density J and for the position X in the volume V. We now take one volume element from the
assembly, call it AV; and place it at random in a copy of the above six-dimensional space denoted by

S;. The volume element will be at a certain position, denoted by (X;, jj) (where X; is for instance the
center of AV,). We do the same for another volume element AV,, in another space S;, taking care that
AV, can only occupy in S; a position X; # X; because the volume elements cannot overlap in V. After

repeating this procedure for all N volume elements, one obtains a single point in a 6N —dimensional
space I' which is the Cartesian product of all the S;. This point represents a particular current density

distribution of the plasma, reconstructed in the volume V with a coarse-graining AV .
The space I" is called “information space” and the current density J; is the ‘information variable’

(other examples of information variables are the charge density. in the case of the electrostatic plasma
equilibrium and the mass density in the case of the gravitational equilibrium). Our purpose is to
calculate the probability P(J;...Jy;%;..X,) for the assembly of N volume elements to occupy at

random any given volume element dI” in information space. To see the form of dI" , we note that the
volume accessible in 3—dimensional space to the volume element j=1, is V = NAV. The volumes
accessible to the volume elements j=2 and j=3are V-AV =(N-1)AV,and V -2AV =(N -2)AV,

and so on. Thus the volume accessible to the assembly of N volume elements is

(N(N-1)(N -2)..1)AV)" = N1av", (2.1)
This must be divided by N! because a permutation among the N volume elements has no physical

effect and must not contribute to the total volume element in information space. Hence dI" is given by

dr =AvVVdJ,..dJ,. (2.2)
Further constraints are now imposed on the part of information space that concerns the current

density distributions.
As we said, the total current density in each AV, is formed by the coarse-grained contribution

(uniform in AV;) of a macroscopic (or collective) current density ]()”(J) and by a fluctuating part T,—
arising from the global effect of the particle discreteness in AV;. The part ](7(]) related to the
collective equilibrium, is not specified “a priori”, as it is an unknown to be determined later from the
variation properties of the entropy. The total current density jj = ]()?J )+ Tj , Where — oo < T,- <+o0, IS

a random variable in view of its fluctuating part. The T,- are the integration variables, while ](xj) can

be treated as a constant. Additionally, ](xj) is taken as vanishing outside a volume Q <<V while
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T # 0 everywhere in V. The quantities V and N will that tend eventually to infinity with fixed AV

and Q (thermodynamic limit: see section 3).
We adopt a scheme in which the plasma configuration is characterized by the magnetic energy
interaction of the current density J with the part A()“() of the vector potential created only by the

collective part ](7() of the total current density J. That is to say we neglect the interaction of the

fluctuating part T with itself. Then we put

210 P(3,.. 3%, )Z(jj + (% )) A, AV, dr = @, +®. 2.3)
j=1
In view of the normalization condition
[P@.dyi% %, Jdr =1 (2.4)
r
the equation (1.3) can be separated in the parts
N = —
O, = 210 P33 %%y D, - A%, Jav, dr, (2.5)
j=1

cp:sz(xj)- A, AV, (2.6)
Here @,

collective potential of the macroscopic configuration.

In the derivation of the Vlasov equation from the Liouville equation the particle-particle correlations
are neglected and the Vlasov equilibrium is collisionless. Consistently with this picture the fluctuating
part Tj arises from the velocity fluctuations of particles that can be treated as individually independent
in each AV, covering the whole volume V .

is the energy of the interaction between the current fluctuations of the background and the

int

Pure Vlasov equilibria are uncorrelated to the fluctuations arising from particle discreteness. This
fact should be expressed in our scheme by equating to zero the particle-collective field interaction
energy @, ,. However the assumption of a non-vanishing energy interaction of the individual particle
belonging to the fluctuating background in each AV, with the “smeared out” collective field will prove

to be a useful device for simulating the complicated external interactions that tend to drive the
collective (macroscopic) equilibrium outside the pure Vlasov equilibrium. Indeed, @ when

int
calculated explicitly in the formalism that we are developing, will play a crucial role for the description
of the energy emitted or absorbed by the collective system, through the Poynting flux of
electromagnetic energy (see section 8). In other words the interaction of the collective system with the
fluctuating background simulates the interaction of this system with the external world. We then

consider the equation (2.3) as a constraint to the maximization procedure of the entropy, where
@, +d isfixed and ® and @, are to be determined later according to the physical situation at hand.

int int

A further constraint on P arises from the fact that J is a random variable, whose values are then
subject to dispersion. It is convenient to characterize the dispersion by fixing the value AJ® of the
following average quadratic form

AJE = 1IP( 3% )ZJ dr. 2.7
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We shall see in section 4 that this form is consistent in the proper limit (the thermodynamic limit)
with the conventional definition J_iz—J_i2 of the local variance in each AV, (see eq. (4.9)). It is not
necessary to specify now the value of AJ?. This value will be found in section 23 while discussing the
relation of the present model to the dynamics of the underlying system of particles.

The probability P can now be determined from the requirement that the entropy
S=—| PInPdr

r
be stationary with respect to arbitrary variations of P under the three constraints (2.3), (2.4) and (2.7).

3. The thermodynamic formalism

Applying the technique of the Lagrange multipliers we are led to find the extreme of the functional
N N L
S=-[PInPdr-a[P} J; —%JPZ% A% AV, dr -y [ Pdr, 3.1)
r r i= r i T

where ¢,y and r are constants to be determined later in order to satisfy the constraints. The vanishing
of the first variation of S with respect to arbitrary variations of P gives

N N
A
P =P, exp{—aZJf —EZJJ. AR AV | (3.2)
j=1 j=1
where P, = exp(—y —1). Let us put
=5 1- -, ‘. =
an+;_Jj-A(xj)Avj=a(Jj—Jj)+cj, (3.3)
where jj and C; are independent of jj and are given by
1, 1 N poay2
@) =_%Ak(xj)avj, C, =_mk§‘AkAVj , (3.4)

where k denotes the components of J ; and A. The T - integration then reduces to integration over

Gaussian distributions. Recalling the normalization condition (2.4), we obtain

ool 30,51 )| enl (337 |

TNl Al &
N
exp{ZCjJ
= = . 3.6
° AVN(oz/ﬂ')sN/2 (3.6)
One can \ierify the relations
G=i®)+1,=]P3, dF:—ﬁA(Xi)AVi, (3.7a)
r
1= - AV & o0
D= 2T, A%, v, =0 Z;Az(xj) (3.7b)
]= 1=
= - 3 =2 3  AV? -
Ji= | P dr=—+1], =—+-——5—A*(X) 3.7
' l'_[ ' 2a+' 2a+4a27202 (X') 3.7¢)
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- 3 sz N
A = PJ?dr=— 3.7d
N i 1;[ Za 4a’t z ( ) (3.74)
Combining (3.7d) with (3.7b), we obtaln
_ i(é_i(@ ‘D, )j, (38)
AJ2\2 Nr
N —
S A (i, v
S\ = . (39)
4ac O+D,,

We can now proceed to the calculation of the entropy:

3/2
s_—jplnpdr NIn[AV( ) J+aIPZ(J -3, jdl“:
3/2 AVE N
:Nln(AV(gj ]+aNAJ2—4aT2 > A%, )=

3/2
=N |n£Av(fj J+ﬂ:
o 2

:—ﬁlna+ N In(AV;ze”2)+ﬂ =
2 2

:—ﬂln( 32(1— 2 (cD+cDim)D+NIn(AV;:3’2)+%:

2 2AJ 3N~

3/2
2
:%+NI [Z”fj —ﬂm(l—sz (cD+<D.m)] (3.10)

2 Nz

Another quantity of interest is the free energy defined by F=zInR,. Combining (3.6) with (3.4)
and (3.7b,d), we obtain

F=7InPR, —rZC —NT|n(AV7Z'3/2)+ Ina—

— 3/2
—®+®,, —Nerln| av| ZFA 3'\'Tln(l— 2 (q>+q>im)} (3.11)
3 2 3N7
The comparison with (3.10) gives the following relation between F and S:
F=-— fS+CD+(D,m+3|;IT (3.12)

4. The thermodynamic limit

We shall now pass to the limit N — o,V — oo with AV fixed, considering also as fixed the volume

Q2 where the macroscopic (collective) system is localized. That is to say, the collective configuration
described by j(X), localized in the volume €, is considered as immersed in a background (a heat bath)
of particles freely fluctuating in each AVj(ls j < N) covering the volume V >> Q (electrically neutral

in the average). In this limit the entropy and the free energy will be separated in two parts
corresponding respectively to the collective system and to the background. The two systems however



Entropy 2009, 11 135

are not independent but they can eventually interact by exchanging energy through the interaction
energy @;,,.

Effects related to the macroscopic configuration and to the fluctuating background are both
contained in F, which can be split as follows:

Fz%lpi(](xi)Jri)zdF:
=%jPi(]z(Y<j)+zi(ij ) ij + sz)jrz
- R ) ERR) T (42

Here the first term is a purely collective part. The second term describes a spatial correlation
between the collective current density and the average of the fluctuating current density of the
background in interaction with the collective system, and the last term is the mean square of the
fluctuations of the background.

Using (3.7a), (3.7¢) and (3.7d) and replacing the sums ZAVJ. with integralsde, the last two

J Q

N

terms can be written in the form:

=, 1983 3 1 (“ AV ujz
==y jr=24 = +—AR)]| do, 4.2
=2 = gy 10 g A) “2)
28 T 2 AV ey xio
AJ, EWJZ; J(Xj)' j; = —Vujz(x)dfhﬁi (%) A(X)de. (4.3)

After inserting (4.2) and (4.3) into (4.1), we obtain

F:?[l%[]j )dQ+—j x)dQ]J (4.4)
VijZle

In the limit V — oo, the last term in (4.4) is much smaller than unity and InAJZ in (3.10) and (3.11)
can be approximated by an expansion up to first order in Q/V. Moreover, the limit V — oo implies

the limit N — oo in order that AV remains finite. Since also 7 is finite (see the explicit expression for
7 given by equation (23.18)), it follows that (CD+<Dim)/ Nz is much less than unity, so that the last

term of (3.10) and (3.11) can also be approximated by expanding the logarithm up to first order in
(@ +®,,)/ Nz. Finally, recalling (4.2) and that Q <<V, one has a=31277%. 1t follows that S (3.10)
can be expressed as the sum of two parts

S§=S,+S,, (4.5)
where S, contains the effects of the background,
——\3/2
T2
s, =N | NIn| av| 2% 4+ Qi (4.6)
2 3 T

and S, depends on the collective quantities of the macroscopic configuration:

IJ X)dQ——=

S,

2AV j
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. 3__jj%XMQ+AézzjﬂxyA&yxz. (4.7)

The free energy is calculated from (3.12), using (4.5) and (4.6):
—\3/2
T2

F=—Nrln| av| 2%

-5, + @. (4.8)

Here, for reasons of completeness of the calculation, we have retained terms proportional to N.
These terms are in fact meaningless as they tend to infinity with N and play the role of infinite
constants, independent of the collective equilibrium, while only variations of S and F with respect to
collective quantities are physically relevant.

The thermodynamic limits of other quantities of interest are as follows (use is made of (3.7c), (3.7d)
and (4.4))

1 (72 72 3 )
Wzl(aj_aj }Z:m -7 (4.9)
j=
— [ A%(x)d

AV j? ) ()

r=-2YJ , (4.10)
6c° D+D,,
—
Ach—é[ﬁz(i)dQ+A\éTJ [7(x)- A(x)e2 | (4.11)
Q

5. The magnetic entropy concept

Comparing the expression (4.11) with (4.7), one can write

3N
S, =—=—=AJ.. (5.1)

43>
This relation tells us that the entropy of the macroscopic system is proportional to the correlation in

space between the macroscopic current density and the fluctuating current density of the background
described by (4.3) and this correlation vanishes for S, =0. Let us put ®;, =0, so that also the

correlation in space between the fluctuating current of the background and the collective potential
vanishes. After substituting z (4.10) into (4.7) we obtain

2

5, = 35 — [j?deAwQ+(j]¢mQJ]. (5.2)
240V’ [AMdQl @ o o

Q

Applying the Schwartz inequality, we find that S, <0, Thus, the absolute maximum S =0 is

associated with complete absence of correlation between the macroscopic system and the background.
This occurs when j =xA where x is a constant.

By fixing ®@,,, =0 and by eliminating z from (4.7) we have implicitly supposed that 7 is varying
when the macroscopic quantities are varied. A different physical situation arises when we keep 7 fixed
and eventually vary @, instead. Indeed 7 is a kind of generalized temperature (as can be formally

seen by inspecting the formulas above) and in the limit of the Maxwellian plasma is related to the
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Maxwellian temperature by a linear relation given in section 23 where its relation with the underlying
dynamics of the particles will be discussed. Variations with z fixed are therefore isothermal variations.
We then consider 7 as a parameter of the macroscopic equilibrium and in view of the comparisons
with practical systems we find it convenient to replace r with a parameter u according to the relation

)
p= APVIT (5.3)
3uc
Using this relation, S can be written in the form
S, = [ | o+ A2 f ] (5.4)
‘T,U ‘C ) )
and the interaction energy is given by the expression
2 2
D, :—q>+”—jAZdQ=—iﬁ-AdQ+“—jA2dQ. (5.5)
87 ¢, 2c, 8y,

A variation of the macroscopic quantities ] and A with u (and 7) fixed, implies eventually a
variation of @, and, at the same time, the presence of correlation between the fluctuating and the
macroscopic quantities and an energy exchange between the collective system and the background.

The variation of @, will be calculated explicitly for typical situations of practical interest in section 9,

in section 12 and in section 16. It will turn out that @, . describes the exchange of energy of the

int

macroscopic system with the external world. Thus, the background allows for simulating the behavior
of this system when it is not isolated

6. Time evolution of the magnetic entropy

We now consider that the collective equilibrium is time dependent, but changing so slowly as to
justify the application in a significant time interval of the concepts of canonical ensemble and
canonical average implicit in our procedure.

In this section we shall investigate how the magnetic entropy changes in time when the plasma
evolves in accordance with Maxwell equations. For this purpose it should be noted that in the
derivation of sections 4-6 the localization of the plasma equilibrium in a finite volume Q played an
essential role. Thus, in order to proceed consistently with our statistical model we have to express this
situation in physical terms. We shall consider a situation where the plasma is carrying a volume current
with density fp and is in contact with a surrounding conductive shell. The presence of a closed shell
has a precise thermodynamic meaning because it allows us to consider the enclosed system as being
isolated from the external world. However if narrow cuts exists in the shell which allow the penetration
of an electromagnetic field, then the plasma interacts with the external world and the shell defines
merely the localization of the plasma equilibrium in the finite volume delimited by the shell. This
model will be useful for the discussion of the physical meaning of the interaction energy @, in
section 8.

We assume that a current L exists on the shell, which creates outside the shell a magnetic field
screening the magnetic field B created by ]'p, so that the total magnetic field vanishes outside the shell:

4r - _ .
Tﬂ-JpZVXBv _Js_ (p ps)enXB' (61)
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The function 5(,0 —ps), where p is the coordinate along the minor radius, describes the localization
of L on the conductive shell with effective radius p,, and, whenever convenient, will be approximated
by a - function; €, is the unit vector orthogonal to the shell and directed outwards.

The entropy functional (5.4) is expressed in terms of the total current density j = j, +j, and A,
whereV x Vx A, =(4r/c)j,. Thus the collective part S, of the magnetic entropy can be subdivided
into a part depending on the plasma quantities fp and ,&p, denoted again with S, and a part S; which
depends only on the current density L on the conductive shell:

S, :W( I(jp+21p | )dQ+ﬂ j(jp+j ) A dQ] (6.2a)
—_2—” i2 —__ = [s2(H_ 5 2
S, = P i j2dO ‘wz‘gﬂga (p— p, )B2dQ. (6.2b)

where dQQ = dpdS and the integration includes the shell.
We now concentrate on the part S, pertaining to the plasma. Approximating (6.1) with the

o —function one obtains

1
erW(( i(we)dgnzjvxe dS x B + 12 jvx B-AdQ - u jdsxe AB (6.3)

Applying Faraday s law

A ~

l éB —-VxE 1—:—E’ (6.4)

ca c a

and after repeated application of Gauss’s theorem, the time derivative of S takes the following form:
dS, 1(( E (.= - 1 = - & C g =

— P2 [=AV?], + 4P, pO-—= |ExV .dS+— [dS-ExB-——[dS-B &
i Z.L,[ﬂz( jo 4T MO [Ex, 0+ [0S ExB - [uS 8, J
(1. ~ ¢ 5 . 1 ]

=—— —V ——B |- (VxE )}dQ dS-Bx—2, 6.5
T((.[(/uz X Jp ar j( X )d J T,uCI a (6.5)

where dS = §,dS, V-], =0.

We distinguish two cases:

Case 1: E= E,, = E,§, is atoroidal inductive electric field that has penetrated through narrow cuts
in the volume enclosed by the copper shell where V x Eext =0, while the magnetic configuration of the

plasma is time independent. This is the case of the tokamak in static equilibrium.
Case 2: The plasma is enclosed in a perfectly conductive shell without cuts so that the component of

the electric field tangent to the shell vanishes and E xdS =0 on the shell. In gene[al V xE #0 and the
magnetic configuration is not static due to dissipation and/or instabilities. With 4,/ =0 on &2 (see

section 10) the first expression (6.5) becomes
—: j szp+,uj )dQ;tO (6.6)
The same expression for dS, /dt, but with dS_ /dt = 0, is obtained in case 1 when one requires that

the volume and surface contributions of the first expression (6.5) for dS,/dt are vanishing separately.

This requirement follows from the condition that in the confinement region, under conditions of static
equilibrium, the time derivative of S, should vanish locally, that is to say, in every small volume
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element AQ of Q. Indeed, a prerequisite for applying this condition is that the volume and the surface
integrals vanish separately. More generally, introducing an arbitrary function F (to be determined
later) the volume and the surface contributions can be separated by putting

[ S @75, + 407, )=~ [ Fdo,
o H )

[Faa=-L[E, xvxj, ds+ [d5-E, xB-— [dS Bx
Q H o 4r
where one equality is a consequence of the other.

The requirement that dS, /dt vanishes locally in the tokamak leads to the equation

, (6.7)

Eve oo o
SEV e a), = F

where ]p = J,€5 E..= E.«€, and F will be determined in the next section.

CHAPTER 2: Plasma states and state transformations

Summary: Time independent magnetic configurations of the plasma associated with a time-
independent magnetic entropy are called “plasma states’. The electric field present in a plasma state
can only be the stationary electric field induced externally.

The requirement that the magnetic entropy is stationary in the tokamak implies the balance between
the net power deposited on electrons and the power lost by electron thermal conductivity. The
additional requirement that the balance holds locally leads to an equation for the profile of the current
density induced by the external electric field (the SME equation).

One can consider reversible transformations of the states described by the SME equation associated
with emission or absorption of electromagnetic energy described by the variation of @, related to the
Poynting flux of energy. The corresponding change in time of the collective magnetic quantities gives
rise to an internal inductive electric field and to an increase or decrease of magnetic entropy whose
correspondence with the magnetic states is then defined by the reversible process. In the absence of
external drive the same states of entropy can be accessed only through an irreversible entropy increase.
In section 9 the transformations among states satisfying the SME equations are discussed in detail.

In the absence of external interactions, i.e. when the plasma is completely isolated from the external
world by a perfectly conductive shell, the state of maximum entropy is a force-free state. The stability
properties of the reversed field pinch are contained in the variation properties of the magnetic entropy
and of its time derivative.

7. Stationary magnetic entropy (SME) and power balance of the tokamak

As is customary in statistical thermodynamics the physical meaning of the terms contributing to the
entropy change emerges after comparison with the power balance equation. For the purpose of this
comparison let us write the first equation (6.7) in the form

dS, 1.E . - 1
- :;jf;t-(vsz +,usz)dQ+;£FdQ:0. (7.1)

Q
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Here the second term describes the work of the external electric field on the plasma current density
J,=14€,, which can be interpreted naturally as the induced current carried by the electrons.
Correspondingly, the magnetic entropy calculated with this current density should pertain to the
system of electrons.

In conditions of stationary equilibrium the thermal energy of the electrons is constant in time and
the power balance is expressed by the relation
— [d,-dS+[E,. - J,dQ+ [ pe d=0. (7.2)

1%9) Q Q

Here g, is the heat flux related to the thermal conductivity of the electrons and the third term

contains the contribution of the net power density deposited on electrons (auxiliary power, electron-ion
energy transfer, non diffusive losses) in addition to the Ohmic contribution described by the second
term. Thus, according to (7.2), the open system of electrons is in thermal equilibrium with the external
ambience. There is neither energy gain per unit time of the electrons, nor global entropy production,
the entropy production due to the thermal dissipation in the volume Q of the plasma being
compensated by the entropy per unit time injected externally into this volume. This is consistent with
the relation dS,/dt = 0 implied in the derivation of (7.1). The comparison between (7.1) and (7.2)

leads to the identifications F = pg, and
1
- J.qh jEext VZJ dv = J.( E‘X'[VJ¢ J ext) dS (73)
758 S
It is of speC|aI interest to study the current density profiles associated with the magnetic entropy that
is stationary locally, that is to say, in any arbitrary small toroidal shell AQQ. As follows from (7.1)

these profiles are described in the cylindrical limit, by the following equation:
2

v21¢+u21¢=—é‘ Pe. (7.4)
ext

In the cylindrical limit the heat flux (7.3) can be expressed in terms of the ratio s,(r)/ q(r) between
the magnetic shear s, = (r/q)dq/dr and the safety factor. Indeed combining the relation

. c d cB d r?

itr) 4ar dr( 0) 47Rr dr(q(r)} (7.5)

with the expression (6. 3) one obtains

q,S :g S—“+ Ld + const |, (7.6)
uRLQ 2 dr q

where U = 2zRE,, is the loop voltage, S =47°rR and the constant is fixed by the boundary condition

at the inner border of the confinement region. The heat flux is then expressed in terms of the magnetic
configuration, which in turn depends on the power deposited on electrons through the equation (7.4).
In order to determine the temperature one needs a constitutive relation, for instance

T
~ & _q. 7.7
ar dy (7.7)

The electron temperature T,, calculated from eq.(7.7), is therefore the result of the combined effect

= Ne Xett

of the magnetic configuration which follows from the condition (7.4) and of the specific mechanism of
thermal transport determining y,, , which is not contained in this condition. Further conditions are then

needed for fixing at the same time y,, and T, (see the discussion in section 20).
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The validity and the limits of validity of the profiles predicted by the equation (7.4), called the SME
(Stationary Magnetic Entropy) equation, will be the object of close scrutiny through comparison with
the experimental data (chapter 6). In view of this comparison, it is worthwhile to stress already now

the theoretical conditions under which equation (7.4) holds.
It is implicit in the derivation that the electric field E,, is the external electric field of the ohmic

transformer and not the electric field generated eventually inside the plasma. The term Eext-f
describes the work of the transformer on the induced current sustained by the electrons. The equation
is derived assuming that the entropy functional (5.4) is stationary in time and that the plasma is
uniformly quiescent everywhere. So the equation holds under completely stationary conditions and
dynamical effects (i. e. sawteeth and others) should be excluded. Consistently with eq. (7.2), the
integral of the SME equation implies equilibrium of the power balance of the electrons so that the
temperature and the density do not depend on time. We shall discuss in section 17 the special role
played by the parameter psa in tokamaks.

It is worthwhile to recall that in the presence of non-inductive currents the loop voltage and the
electric field in eq. (7.4) tend to zero. One sees by inspection that the equation breaks down in this case.
So the profile of the non-inductive currents cannot be described by eq. (7.4). This is consistent with the
fact that the profiles of the non-inductive currents have a different origin described by their specific
generation mechanisms. For instance, the bootstrap current depends, among other things, on the
pressure profile, which presupposes a pre-existing well-established equilibrium. The non-inductive
currents driven externally are the result of a local interaction, which determines their profiles. These
external local dynamical manipulations are not taken into account in the statistical derivation of the
entropy functional (5.4) which does not make a distinction “a priori” from one plasma region and
another, and consequently cannot be contained in eq. (7.4).

The macroscopic current density will be taken as the sum of an inductive part j, described by
equation (7.4), and a non inductive part (assuming that the non inductive part is small and neglecting a
possible interaction between the two parts):

Jr(r) = J()+ Joa (1), (7.8)

The form of fmnd (r) is taken from experiment, that is to say, it is calculated from the generation
mechanism consistently with the experimental data.

Clearly the validity of the current density profiles described by the equation (7.4) depends on how
large are the effects whose description is not included in this equation. For instance, the larger is the
non-inductive current or the larger is the sawtooth zone, the larger is the deviation of the profile of the
total current density from that described by eq. (7.4). We shall return on these points in the discussion
of the experimental data in chapter 6.

8. The physical meaning of the interaction energy @,

An insight into the physical aspects of the statistical model is obtained by inspecting the time
derivative @, of the interaction energy @ . Putting j = J, +J; into eq. (5.5) one has

int int*

int

1 - 1w =« dp
O, =[5 -Ado+ [dSxB-A +2 [AZdo, 8.1
2ciJp : 87z£2 S 87z£ : (6.1)
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do,, LA, -vxBaa+2[], -Eda+ = [A, -dSxBla+
dt 87} a 2, 87 4 (8.2)
2 .
v [dS-ExB-2C[A -Edo
872'(79 47Z'Q

Note that the screening field created by js exists only outside 2 and the same holds for the
corresponding vector potential AS.

After application of Gauss’s theorem one is led to the following expression:
dCDint _ /,l C =
s jds ExB+j£Jp o J-EdQ. (8.3)

The first term in the right hand side is the Poynting flux of electromagnetic energy across the
boundary &). To see the meaning of the last term we specialize to the tokamak. We note a relation
between j, and the related component A, of the vector potential, which follows straightforwardly

combining (7.4) with D* Alembert equation V?A, =—(4z/c)j,. One obtains

2

. C
Iy = :; A, +¢, where Vip=—’ EpE (8.4)
ext

The term ¢ describes the part of the current density which is generated by the interaction of the
plasma with the external world, namely with the power input and output described by p. .
Applying (8.4) the last term of (8.3) becomes J'goE dQ, which describes the work of the electric
Q

ext

field on that part of the current density, which is generated by the net power deposition on the
collective system of electrons. It will be shown in section 17 that this term becomes negligible under
the conditions that insure the profile consistency in the tokamak when the magnetic entropy is
stationary. Thus, under these conditions (to be presented in chapter 4), only the electromagnetic effects
described by the Poynting term are present in the expression of d®, /dt and d®, /dt=0 when the

int int

collective system is isolated.
In the case of a force free equilibrium, which satisfies the equations

j=tCB=fLVxA = VxE. (8.5)
dr A dr

The integrand of the last term of (8.3) can also be seen to vanish after a proper choice of the gauge.
Indeed, if the equations above are satisfied by A they are also satisfied by A + V. Let us determine

@ from the equation

M % = ]
—A +Vp=—"-2B==. 8.6
Ar ° o= 47[ 7 (8.6)

This equation can be integrated and ¢ is known, the integration constant apart. If then Ap in (8.3) is
replaced by the new gauge Ap +(@rluc)Ve= (4ﬂ/y2C)T, the integrand vanishes identically.

9. Adiabatic transformations

Let us consider the infinitesimal transformation j, — j, +0j where Jj = (yzc/47z)5A with A
satisfying the equation V°5A + x°0A = 0. It is immediately seen that j, +¢j satisfies the same equation
(7.4) for j,. It will be shown that the magnetic entropy of the total system formed by the collective
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equilibrium and by the background is an invariant of the transformation above, while the entropy of the
two subsystems is varying separately at first order. It follows that no heat can be emitted or absorbed
by the total system as a consequence of a reversible transformation, which is therefore adiabatic.

We assume that the total current is conserved during the variation so that the poloidal component of
B vanishes on A0, which gives a condition on the radial derivative of oA,,. The first variation of S

(6.3) is then (dropping the subscripts)

S, =—2—”( 2j J5dQ+—j(Aaj + jOANIQ +— jo" -dS x Bj
uc A
(9.1)
( de - [&-dSxB.
27’ Con
The flrst variation of d),m (8.1) is given by the expression
=——JA( de+ [&-dSxB=
2u° C 5
(9.2)

2r . uc ’c
=— dO+ & -dS x B.
P J.ﬁ(l in J 2,u ¢! J X

Recalling that S, =®,,/7 is the entropy pertaining to the background we have that the first

int

variation of the entropy of the total system vanishes

S =65, + 35, =0. (9.3)
Let us now consider the second variation of S. One has for generic primary variations 6A and
= —(c/ 47)V°OA:

2r 2 u’c
35S, = J) dQ -] goAdQ |, 9.4a
= e (I( i) -7 I j j (9.49)

5%, = Zm( [ SoadQ + £~ o ° () dQJ. (9.4b)

Q
One then obtains the following inequality
20) oA

J dQ <0, (9.5)
Muc  2r

55 =&, + 6%, = - j(
where the equality holds only for the adiabatic variations that we are considering. It follows from (9.5)
that the total system formed the collective equilibrium plus background, considered as isolated, is
thermodynamically stable because the entropy S is maximum, the adiabatic variations
o = (C,L12/47Z)§A apart. Stability is a theoretically necessary prerequisite in order that the total system

could be identified as a not fading but present object on which conceptual experiments can be
performed.

We have seen that the entropy of the total system formed by the collective equilibrium plus
background is invariant under the adiabatic variations so that no heat can be emitted or absorbed by the
total system in a reversible transformation. The total system is then isolated during the transformation
while, in contrast, entropy can be reversibly exchanged at first order between the collective subsystem
and the background. The variation of the collective equilibrium is produced by varying the parameters
that enter the solution to the equation (7.4) as for instance the location of the inner boundary of the
relaxed region (the surface q=1) and the boundary values of the current density and of the related
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magnetic quantities. At the same time the total current can be kept fixed while electromagnetic energy
is emitted or absorbed by external sources described by the variation of @, .

It is instructive to see the rate of change at first order of the entropy and of ®. . due to the adiabatic

int

time dependence of the parameters. We neglect at this moment the inhomogeneous term of (7.4). This
will be justified in section 17. In this case eq. (8.4) becomes j = (,uzC/47z)A and

2 2.2
A_pHCeA _ _pc o (9.6)
A An A& 4
For calculating the first derivative of S we apply the first expression (6.5). Since the SME equation
is preserved in the transformation, the first term in the right hand side of (6.5) vanishes. The second
term, using the relations above for j, can easily be seen to combine with the third and the last terms to

give
ds o~ -
o __ % [48.ExB. 9.7)
dt Art 4
Thus, recalling (8.3) we have
ds - o= = _
7o € 45 ExBoPn 9.8)
dt A %, dt

This relation shows that the electromagnetic energy lost by the background is gained by the
collective system (and vice versa) and confirms the interpretation of the interaction energy @, as a

int
formal device for simulating the interaction of the collective system with external sources of energy.
The rate of change in time of the entropy can be expressed in terms of the changing magnetic
configuration by the equality
dS
r—p=ij59@d9-ijj@dg. (9.9)
dt 4rz; " 4 cl a4

In the SME states there is a balance between the loss of energy related to the heat flux and the
ohmic input in the stationary plasma. The relations (9.8) and (9.9) describe a supplementary input or
output of electromagnetic energy associated with the adiabatic change in time of the parameters of the
SME states and of the entropy. This exchange of electromagnetic energy with external sources is a
reversible process. But the same change of entropy occurs when the transition between the same states
is irreversible. The entropy change is then defined also in the realistic case where the infinite
background does not exist and the collective system is isolated and undergoes an irreversible
transformation. So, albeit fictitious, the introduction of the background allows the definition on ideal
theoretical grounds of the entropy changes of the magnetic macroscopic equilibrium through reversible
processes involving energy exchanges with external sources.

While in the isolated system the entropy is constant in a reversible transformation, the irreversible
change of state described by (9.9) can only occur with dS_ /dt > 0. This establishes a direction in the

Q

transitions among the SME states when they can be treated as isolated: only those transitions are
allowed such that (9.9) is negative (remember that 7 is negative, see eg. (5.3))).

We will illustrate these points by constructing explicitly the SME states that can be accessed from
one another by conserving the total current during the quasi-static change of magnetic entropy related
to emission or absorption of electromagnetic energy according to (9.8). Recalling (9.9) the entropy
change in the relaxed region, at first order of the varied quantities, is given by the following expression
(in mKks units):
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1 1
|7|AS ~ 47%a’R .106{_L11_OJ B,AB, xdx + [ jAAXdx J (9.10)
T A A

where 7 is given by (5.3) and is fixed, x =r/a and x =1,x = A are the outer and inner borders of the
relaxed region.

In the sawtooth region, where the theory is not expected to hold, the magnetic configuration is
modeled by taking for the safety factor the expression q(x) = q, + (1— qo)(r//i)z. A JET-like geometry
is assumed (R/a = 3,a=1m), but, for simplicity, a circular cross-section for the magnetic surfaces will
be assumed here, although a geometrical correction for taking into account the non-circularity will be
applied when the theoretical data will be compared with the observations (chapter 6).

We take 1.5MA for the total current and 3.3T for the toroidal field. The location of the q(1)=1

surface is taken at 4 =0.18 and the total current is kept fixed. Once the continuity conditions for the
current density and for the poloidal field across the q(1) = 1 surface are satisfied, while the poloidal
magnetic flux is left unchanged on this surface, (it turns out that the flux remains practically fixed also
on the minor axis) one is left with one parameter free. This is the poloidal flux across the border or,
related to it, the value of the current density at the border. In Table I Ay <0 is the outgoing poloidal
flux (divided by 27), q, is the value of the safety factor on the minor axis, j(4), j(1) are the values of
the current density at the inner and outer border respectively, and Iz1ASp = AD,, is the electromagnetic

energy released by the collective system when the entropy increases.
Fig.1 shows the evolution of the current density profiles when the parameters of Table I are varying.
One observes that the increase of entropy and the concomitant release of electromagnetic energy are

accompanied by outgoing poloidal flux, by the increase of the current density on axis and by a
pronounced increase of the current density at the border together with a decrease near the g =1 surface.

Table 1. Meaning of symbols: Ay, outgoing poloidal flux (divided by 2r); q,, safety
factor on magnetic axis; j(4), current density on the q=1 surface; j(1), current density at

the outer border of the relaxed region; A®, , electromagnetic energy released associated
with the magnetic entropy increase AS, .

int?

Ay % i) T ldas, = A®,,
T - m? MA/m’ MA/m’ MJ

0.00 0.98 1.72 0.022 0.00

-0.026 0.92 1.62 0.057 0.307

-0.053 0.87 1.52 0.088 0.614

-0.079 0.81 1.41 0.12 0.922

-0.10 0.77 1.34 0.15 1.150

When the system can be considered as isolated from the external circuits, the change of entropy is
no longer related to the energy output Ad, ,, but the same states of higher entropy described by (8.9)

can be accessed by means of an irreversible process where the electromagnetic energy released in the
transformation is dissipated internally to the system.
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We note that the transformations in the opposite direction, i.e. in the direction of the decreasing
entropy, can only occur when the collective system is not isolated because they imply an input of
electromagnetic energy from external sources.

If one admits that the current is ohmically relaxed, the statements on the current density can be
transferred to the temperature profile T ~ j°’°. In particular, the increase of temperature at the border is
accompanied by a decrease of temperature near the g =1 surface (and vice versa).

Figure 1. Current density of a succession of SME states with constant total current and
fixed position of the q =1 surface. The direction 0 — 4 (from flat to peaked profile at the

centre and increase of the current density at the border) is associated with increase of the
entropy AS_, release of electromagnetic energy A®;, and outgoing poloidal flux Ay (see

int

Table I).
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10. The force-free state

We now consider the case 2 of section 6, which applies to the plasma isolated from the external
world by a perfectly conductive shell so that, in contrast to the tokamak, one has do,, /dt =0. We

shall investigate the behavior of the entropy with respect to infinitesimal primary variations 3, static

or quasi-static (i.e. near the marginal point of stability, when it exists) around a static equilibrium, in
order to determine the state of maximum entropy. The variations 6B,5A and ¢j, follow from Jj

according to the equations

Vx§§=t—”5, V x 5A = 8B, %5}5:—5(p—ps)énxé§. (10.1)
Putting S o =S, +35,+5°S, one has for &5

&K, =— B - (V?B+ 1/°B O+ dS x ¢ - B. 10.2
P 47zr,u '[ ( H )d T,UC'[ * (102)

We put 5j 0 at the toroidal wall X2. To see the phy5|cal meaning of this condition we note that it
implies V x 5B = 0 at the wall, so that one can write B = Vy where y is some function that we take
as a periodic function of the toroidal and poloidal coordinates on the wall. Thus, denoting with C, any
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toroidal path around the wall of the torus, one has that §é§-dr =0 which implies that the current
Cr

through the hole of the torus is kept constant during the variation [5].
It follows from (10.2) that S is stationary if the magnetic configuration satisfies the equation

V2B+ 1’B=Vo, (10.3)

where ¢ is arbitrary. The force-free state V x B= /,zé satisfies this equation with Vo =0.

The second variation 528 has the form

5’S, = 27 I&a(vzaBJr ﬂZéB)dQ (10.4)
In order to discuss the sign of 523p let us consider the eigenvalues «,, of the equation

VxVxa, =k,Vxa, (10.5)

with boundary condition a_ =0 [6]. Noting that éf%m =d,+Vy is also a solution of (9.5) and

determining y in order that V- B, =0 with (éﬁm)n =dS- V=0 at the boundary, one has

m

V2B, + k2B, =0. (10.6)
Identifying the variation B in (10.4) with a mode éﬁm we obtain

5°S, = oB? + 47 )dQ. 10.7

MSW | B2(x2 +12) (10.7)

It follows that for x* <« one has 528p<0 so that S is at a maximum. If « is the lowest
eigenvalue of eq. (10.5) the magnetic entropy is maximum with respect to all eigenmodes éém :

One can make predictions on the time evolution of the perturbed system by inspecting the time
dependence of the second variation. The first and the second variation of dS /dt (6.5) are as follows:

ds, B
at 4;z|f|,, J o (Bu ZB)dQ——MMﬂ [ (778 + 1By VxEdn (10.8)
ds 5B

i 4;z|z1ﬂ J 5 (VBB (10.9)

where we have put o”d [&=0 on &X2.
In order to see how the system evolves in time let us consider the case where 528p <0 and &2 > ¢,
so that S is at a maximum. Since the varied system, supposed to be isolated, but time dependent, must

evolve to states of increased entropy, one must have d(528p)/dt >0 and
ds 5|
Pl N . jé’(éBm) (- &2 + 42 02> 0. (10.10)
dt 87r|2'|,u 5 oa
Therefore a sub-domain AQ of Q exists where
— \2
AB.J @01

It follows that ‘éﬁm
integral (9.10) arises only from the domain outside AQ. If one admits that d(§28p)/dt >0 inany AQ,
then
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The formulation above of the time evolution of the perturbed force-free state, is based on the same
eigenvalue equation (10.5) that determines the stability of the reversed field pinch in the Taylor’s
model [7]. In this model the magnetic energy is minimized under the constraint of fixed helicity. This
is defined as K :IR BdQ where Q is the whole volume of a dissipative plasma. The energy is

Q

minimum and the equilibrium is stable when x <« where x, is the lowest eigenvalue of eq.(10.5).

Taylor has pointed out the relevance of this mathematical formulation for the description of relaxation

and of the magnetic reconnection in plasmas [8]. A derivation of the more general equation (10.3)
from a variation functional similar to S (5.4) has been given in 1958 by Chandrasekhar and Woltjer

[9].

In the present formulation the time dependent magnetic energy is compensated by the term of work
involving perturbed inductive electric fields and currents generated internally to the collective system.
The helicity conservation is not assumed explicitly but it is necessary for restricting the solutions of
(10.3) (see Woltjer [10]).

Although the mathematical formulation of the stability of the pinch based on equation (10.5) is the
same as that of the Taylor’s model, the derivation from the entropy concept is more comprehensive.
The entropy concept provides a unifying point of view in the description of the global ideal properties
of the tokamak and of the reversed field pinch as well as of effects related to the local structure of the
magnetic field, to be discussed in the next paragraphs. The Taylor’s model of the pinch was the first
look on a new land, ready to be explored.

CHAPTER 3: Local entropy and local plasma properties

Summary: The plasma states considered until now were global states involving the whole plasma
volume and the entropy and its variations were defined with an integral over this volume. However it
is often observed that the plasma stability depends on the excitation of localized perturbations or
internal modes which give rise to localized structures. It is then worthwhile to investigate the
properties of the magnetic entropy with respect to localized variations. In this chapter the entropy
functional is expressed in a form sensible to localized perturbations. It turns out that, on one hand, the
sign of the second variation of the magnetic entropy depends on the positive or negative definite
character of a certain quadratic form, and, on the other hand, that the sign of the quadratic form is
related to the stability with respect to interchange modes. In the case of the anisotropic plasma this
leads naturally to the magnetic well as a state whose entropy is locally at a maximum.

The quadratic form expresses the energy change arising from interchange of adjacent filaments of
current and depends on the physical effects which give rise to the density of current. When the current
density introduced in the quadratic form arises from the inhomogeneous magnetic field, the sign of the
quadratic form is related to the low- £ interchange instability.

In situations where the magnetic energy decays as a consequence of localized dissipative effects, as
in the case of a dissipative resonant layer, the energy transfer from the magnetic system to the
background (or to the external world) is taken into account by the variation of the interaction energy
@, .. This is the case of the tearing modes to which the present thermodynamic concepts can be
instructively applied (section 15).
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11. Local entropy variations and local structure of the magnetic equilibrium

In the preceding sections the properties of the magnetic entropy functional where studied with
respect to changes of the magnetic configuration involving the whole plasma volume. In order to
include in our thermodynamic description also those physical aspects that are localized in a limited
region of the plasma and depend on the local structure of the magnetic field one should introduce a
definition of the entropy appropriate for this purpose.

A convenient procedure consists in dividing the plasma into relatively small but macroscopic
volume elements Aw, and in calculating the entropy S, in each Aw, by taking into account the local

structure in Aw, and assuming that the entropy of the global system is the sum of all the S,. Of course,
Aw, should be large enough to satisfy Aw, >>AV =V /N as is required by the statistical description.
On the other hand, when one looks at the magnetic structure locally inside each Aw,, what really
matters is not the average value of the current density or of the vector potential in Aw,, but how these
quantities are changing inside Aw,, for instance, with respect to the average value. In other words the
information variable consistent with our present point of view to be introduced in the calculation of §1
of the entropy functional is not ]()?) but its deviation ](i)—f(in) from its value at some point X,
inside Aw, . Correspondingly one should use the deviation A()?)—A()?n) instead of A(X) . The
calculation that leads to the entropy functional (5.4) and to the interaction energy (5.5) remains
unchanged when the information variable ](7() and the vector potential ,&(i) are replaced everywhere
by j(X)-j(x,) and A(X)- A(X,). Thus, in accordance with our considerations, the entropy of the

whole system takes on the form
3 - - \2 ﬂzc - - e -
S, = Sn: =, - | Rl da)n—i_L 1= 1) A_An @y |y (111)
O o S [ A PRy (ALY
where , in accordance with (3.10) , is given by the equality

. 4mV]’ :4_m£n(j “i A=A o, 200,
" 3c’z, c j(A_An)Zdwn
Ao,

We start from a zero order equilibrium with @,

(11.2)

=0 and consider variations of S, and @. . with

,int int

respect to primary variations of the current density and of the vector potential by keeping 7, oc x*
fixed at the equilibrium value (isothermal perturbations). In this situation the sign and the form of the
numerator of 4 (see eq. (11.2) with @, ,,=0) are crucial for determining the variation properties of
S, and, at the same time, the structure of the magnetic equilibrium, as we shall see.

We suppose that the volume elements Aw, are sufficiently small so that the magnetic field of the
equilibrium can be considered as uniform in Aw, and one can write in first order in X—X, € Aw,,
AR)-A(X,)=1/2)B(X,)x (X-%,), and j(X)-j(X,)=(X—X%,) Vi(X,).

Putting £ = X — X, the equality (10.2) becomes

[(E-V7)-(B(x,)x W,

u2 = hen
Coo B, Vélde,
Aw,

(11.3)
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We shall show the following relation:

(Bv?B),., =-B%u. (11.4)
Let us introduce curvilinear coordinates «'(i =1,2.3) where o,a” are such to be constant along the

magnetic lines of force, with B =Va! x Va?, while Va? is parallel to B

g% =Va'-Va*, B'=B-Va', j =j-Va' (11.5)
Noting that V2B = —(4rlc)V x j , one has in this co-ordinate system that

§v2§:4_ﬂ- jsemB'Va®-vat, (11.6)
c
and
'[j,isgikrBrdasdakda)n j’isgikrBr J‘dasdakda)n
= _[8_7Z-j A, _ 8z Ao, ’ (11.7)
¢ B® JAgf"da)” ¢ B J‘é:fnda)n
Aw, Aw,

where &,, is the Ricci tensor (&, =0 for ik r and equal to +4/Detg,| according as an even or odd
number of transpositions changes the order of i,k,r to 1,2,3 where g,, >0).

Let us take for Aw, a volume element with cylindrical cross section and dw, = pdpdzd@ where p
and 4 are polar coordinates in the plang perpendicular to B spanned by the vectors Vo' and Va?, and
dz is parallel to the local direction of B. The quantity j' &, B" can be taken out of the integral when
only terms of second order in & are taken into account inside Aw,. Denoting with 4,9, 9, the polar
angles of the vectors EL,Vak,VaS respectively in the perpendicular plane (s,k=212) one has,
recalling the last equation (11.5)

Idasdakdwn :‘Vas
A,

where ‘Vas

P 2z
Vak‘jdzj.éfpdpj.dﬂcos(g—&’s)COS(9—19k ), (11.8)
Az 0 0

and ‘Va"‘ have been taken out of the integral in view of the assumed uniformity of the
equilibrium magnetic field inside Aw,
Applying known formulas of trigonometry (11.8) becomes

J‘dofdozkda)n =‘V0{5

Aw,

P
Vak‘ﬂjdszffdpcos(gk —195)=%Va5 Vo jcffda)n. (11.9)
Az 0

Aw,

For the integrals involving the third component we have

Ida3dak do, = ‘VoﬁHVak‘ J. §”‘pdp2fcos(l9 ~ 8 )dg=0, (11.10)
Ao, Ao, 0

where, in view of the properties of the Ricci tensor, one must have k = 3.

The relation (11.4) is then obtained combining (11.9), (11.7) and (11.6). We note that the parallel
component of E is irrelevant in view of (11.10).

Through the relation (11.4) one can connect 2 with the pressure tensor P of the equilibrium, a fact

that will be useful in the following. Indeed,by applying the equation of the equilibrium,

jxB=cv-P (11.11)
to the relation
BV B=-7B.vxj=—2(j.vxB+V.]xB) (11.12)

c c
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one obtains

2
4ﬂvv:ﬁ=—§v2é—(4ﬂj i2 = u?B? - (‘L”j i, (11.13)

c
where V- jxB =cVV:P.

12. Local variation properties of the entropy

We shall now see how the relations (11.4) and (11.13) are related to the local variation properties of
the magnetic entropy (11.1). We consider variations of (11.1) localized in a certain region AQ
covering a number of small suitably chosen volume elements Aw, . The variations are rapidly varying
inside AQ and vanish on the surface of AQ. Under these conditions, we expect that the entropy (11.1)
is stationary with respect to a family of localized variations of while 47 is kept fixed, that is to say in
our terminology, with respect to “isothermal” variations ( z, is constant) and that the maximum or
minimum is related to the sign of 4.

Indeed, let us take for j and A the averages of j and A in Aw,, e.g. ], :(1/Aa)n)J.J7da)n .

Aw,

When the Aw, are so small and the variations dj and oA (], and A, are kept fixed) are so slow that

they can be considered as practically uniform inside each Aw, separately, the first variation of each
S,» (11.1) can be seen to vanish. The same holds in the opposite case when the variations are varying

so rapidly in each Aw, with respect to the equilibrium, so that they average to zero in Aw,. Indeed,
under this condition the first variation of S, can be written in the forms

aspoczn:[ [ 27 ddo, +47Z (G- A 5)@}

:-jzj cﬁdQ+—Iy (%)(j - SR+ A- & o= (12.1)
—j21 5dQ+2(4 j jB - BdQ ( ﬁjzyxaé-ds”—(%fiaﬂxé-dsi (12.2)

Where Y7, (x)~/¢n is supposed to change so slowly in AQ that its derivative can be neglected (

involves the second derivatives of the equilibrium magnetic field (see (11.4)) whose variation in space
is assumed to be sufficiently slow). It follows that the volume integrals vanish in view of the rapid
oscillations of the perturbations, while in comparison, the equilibrium quantities can be assumed as
practically uniform in AQ, and that the surface integrals also vanish in view of the localization of the
perturbations internally localized in AQ.

We take it for granted that, with the appropriate choice of the size of Aw,, the perturbations to be
considered in the following are consistent with S, =0.

As for the second variation of S, we have with the approximation above for z*(X)
2
528, o~ js dQ+—jéj - SAdQ= — M dQ+(4 J jaa dQ.

(12.3)
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When 4* >0 perturbations may exist which increase the entropy and the isolated system is not
thermodynamically stable. For instance, putting in (12.3) 5]=(c/47z)v x 8B with 8 =0 on AAQ one
finds that 528p >0 if perturbations éém exist which satisfy the equation

V2B, +k2B_ =0, (12.4)
with k2 < 4 and with V- 3B, =0. In contrast, when 4* <0, one has &°S, <0.

We conclude that the magnetic entropy of a local isothermal equilibrium, with a given positive
temperature, i.e. with fixed 7, oc —u;? ~—72(X)> 0, is always at a maximum.

13. The Magnetic Well

We shall show that B? has a minimum whenever z° <0. Indeed, in Cartesian coordinates one can

write B> =) B? and after deriving twice one obtains
j

B\ .
Vsz:ZZ(@(_JJ +2BV’B. (13.1)
j.k k

From this and from (11.4) it follows that V?B? >0, that is to say, B? is subarmonic, which implies
that it takes its maximum on the boundary. If B? is constant on the boundary, it has a minimum in the
interior and one has a magnetic well.

While the condition z* <0 implies a magnetic well, it implies also a condition on the pressure
tensor through (11.13), namely VV: P<0. We investigate the consequences of this condition
presently.

We start from the form of the pressure tensor originally introduced by Chew, Goldberger and Low
[11]

B =bbR +(i ~bbP, ) (13.2)
where b =B/B. It can be easily shown (see e.g. [12]) that the divergence of P can be written in the
form

V-P=VP + év“[ﬂ;—ﬂ% K(P,—P.) (13.3)
where V, =b -V and & denotes the curvature of the magnetic field
E:BVB:-BxVx6=4—”JXB+VlB=4”v-ﬁ+VEB. (13.4)

c B? B B2
Here the equilibrium equation (11.11) has been used.
A useful relation is obtained by projecting (13.3) along B:

V,B
ViR _(Pn - PL)_L%_=O- (13.5)
Putting o=1-47(P,—P,)/B? and taking into account (13.4) and (13.5), (13.3) becomes
. 1 — V. B
V-P= E[VPL ~bv,P, +—§ (P|| - PL)). (13.6)

In order to proceed with the calculation of VV : P in the case of the magnetic well, we introduce
the assumption that B, and P, depend on space only through B, that is to say, P,=P,(B),P, =P, (B)
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(this assumption implies that the distribution function of the equilibrium depends only on the kinetic
energy, s= (m/2)(vi +v”2) and on the magnetic moment z= (mvi /28) [13]). Then eq.(13.5) becomes

dp,/dB=(P,—P,)/B, (13.7)
and (13.6) takes the simple form
V. ﬁ_ld—Pv B, (13.8)
o dB
where P =P, +P,. It follows
VV:iP=- 123FB)VBV( Z. - )j [dz(v BY + dpvvsj
1(8x 2 dP 4z dP, dP - P 2
—| == (V,B)Y(P V,B 4—H—lj—VBJ
Z(BS( 1 )(J- )dB BZ dB dB( ) BZ dB( L ) +
d°P dP
{d —(V, B) V \% BJ (13.9)

We observe that
V-V,B=V-(VB-b(VB))=V*B-V-(B(V,B))=V’B-b-V(V,B)-V,BV b=

v BY
=VZB—V2||B+%. (13.10))

Using this relation and (13.7) one obtains
1[4z, gedPdr (V.BY| 1 [d? dP J

VV:P____(L)dBdB = 5 (V. B)’ + 5V V.8

_4{lvisd—PD+ (‘”Z(v B + dp]{vz (V"B)j (13.11)
o dB dB

dB B
In order that the entropy is not at a minimum this form must be positive definite. Since B has a
minimum, as we know from above, one must have V2B > 0 in a region around the minimum. Then the

form (13.11) is positive definite if the following conditions are satisfied in this region: 1)o>0; 2)
dP/dB<0; 3) d’°P/dB? <0. The first condition implies the absence of the fire-hose instability, which

exists only in the opposite exceptional case [14]

BZ
P=P > (13.13)
T

The conditions 2) and 3) imply that, if B is constant at the boundary, P(B) decreases everywhere in

the region around the minimum B apart from a point where it is at a maximum.
The conditions above were first derived, in the case of vanishing parallel current, by Santini [15]
directly from the condition that the quadratic form yzocdj-dﬁ\:(l/z)(g-vi)- (Exf) be negative

definite (see [16]).
14. The Interchange Instability

The sign of the quadratic form (E : V]) (é x 5) plays a fundamental role in our considerations and it

is then worthwhile to note that it can be seen from another point of view, susceptible of generalizations.
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We start from the macroscopic magnetic energy @ = (1/2c) J i AdQ and consider the energy A,
contained in two small adjacent volume elements Aw, and A, (not necessarily flux tube elements)
centered at two points 1 and 2 displaced along a vector &, in a direction perpendicular to B. Choosing
the volume elements small enough and each equal to Aw, one has

A®D, ——(j O)-AD+ 1) AQ)) (14.2)
Now we consider the new configuration in which the values of the current density in 1 and 2 have

been interchanged while the vector potential A was kept constant at each point. After this interchange
the expression (14.1) has to be replaced by

A e -~ s -
=2—§’(J (2)-AD+10)AQ) (14.2)
Clearly, in a low g approximation one can indeed change the current distribution ](x) without

changing the magnetic field and its vector potential A. However the same result (14.2) could also be

obtained with a more flexible proceduIe in which the values of the vector potential in 1 arld 2 are
interchanged, whereas the quantity Awj(x)remains fixed at each point. In this way Aw and j(X) can

change separately in order that j is consistent with the variation of the magnetic field configuration.
The energy variation due to the interchange considered above is then

SO=AD, —AD, = ——( 2)-10) (AQ)-AQ)- ——dj dA. (14.3)
Restricting ourselves to first order in 5 | Wwe can write
AQ-AQ-2BOxE,  T@)-TW=E - Via) (14.4)
and &6°® becomes
2 Aw = = -
Fo==" (¢, Vi (1)) (B(l)x g) (14.5)

It follows that when the interchange energy is minimum (&5°®>0) ¢ (defined by (11.2) with
@, =0) is negative, the expression (12.3) for 628p is also negative and the entropy is at a maximum.

In addition to its relation with the variation properties of the entropy, the interchange variation (13.5)
has an interest in itself. Indeed one can discuss the stability of the magnetic equilibrium in a variety of
physical situations depending on the special form of the current density to be introduced in (14.5).

For instance, in the case of the low- £ interchange instabilities, the process is driven by the current,
which arises from the opposite drift of ions and electrons. As a simple example let us consider the case
of the inhomogeneous plasma in a constant magnetic field B = (0,0,B), with ions and electrons subject
to a gravitational force m.ge, (the subscript s refers to ions or electrons). In this configuration the
particles drift in the direction €, with the velocity

m.cg

VDy = —q:—B, (146)
which gives rise to a current density
. m.n.c
Js,y = _qsnsVDy = _sng_ (147)
Noting that dA, = Bdx one has
m cg dn,

FPoc—dj, dA, =—== (d Y, (14.8)
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and this quantity is positive when n(x) increases in the direction of gravity, which implies, on one
hand, that @ is at minimum and the system is stable, and, on the other, that the entropy is maximum
with respect to all perturbations (see (12.3)).

We can extend this reasoning to the drift current density arising from the non-homogeneity of the

magnetic field (see [11], p145):

7, = BxVB( PL)' (14.9)

In the calculation of &- V], we neglect all terms involving P /B? with respect to the term involving
&- VP where P =P, +P,. In particular we assume |[VP /P|<<|VB/B|. Then one has the equality

L §VPB><VB Bx&) (&£,-VP)&,-VB
dj,-dA=cé. v PBX3VB B¢ G~ve) (@ ) CVPYE ) (14.10)
B 2 2B° 2B
For f=47P/B? <<1, fcfl can be approximated by VB-EL/B. In the case of a scalar pressure
sz’”—Pl,so
52(D——Z—dj :——@ vp)E, - K‘) (14.11)
This term is the same as that describing the low- S interchange instability in the
magnetohydrodynamic energy principle (see e.g. [17]).

15. Thermodynamic interpretation of the tearing modes

In a situation in which the magnetic system is subject to dissipation and part of the magnetic energy
decays, the energy transfer can be taken into account in a phenomenological way by the variation of
the interaction energy @,,. That is to say, the macroscopic system is not isolated and energy is
transferred from the system to the background (or to the external world). This is the case of the tearing
modes, which we are going to discuss presently.

As is known from the conventional treatment of the tearing modes, one distinguishes two physical
regions in the plasma: a resistive layer localized on a rational magnetic surface inside which
dissipation is taking place and a non-dissipative outer region.

We consider the plasma in cylindrical geometry carrying in the unperturbed equilibrium an axial
current density j,(r) that creates a vector potential A,(r). The plasma is situated in a uniform axial

magnetic field B, so large to be practically insensitive to small perturbations, while the other

components can be slightly helically perturbed. As is well known, in view of the helical symmetry, the
current density of the perturbed system is a function of space only through the helical flux
Z=—mA¢(r,9,¢)—nrA9/R where A, =rB,/2 and m, n are the poloidal and toroidal wave numbers

associated with the rational magnetic surface under consideration. Let us divide the plasma volume
into small sectors of cylindrical shells Aw, and let X, =(r,,6,,4,) be the co-ordinates of some point
inside Aw,. The co-ordinates of a point varying inS|de the sector of the shell with very small radial
thickness Ar and small radial and angular ranges A and Ag are X =(r,,6,¢) where X € Aw,. Thus

we can Write inside the small shell (henceforth dropping the subscript ¢)

di
i ) (A-A)= d;;n m(A-A,) (15.1)

where the subscript n denotes the value of the quantities at the point X,.

j_jn_
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It follows from (11.2) (with @, =0 at the zero order initial value) that

oo 4m i (15.2)
c dy,

Let us calculate the first variations of S, and of S, = Z(D / =, with respect to generic primary
n

n,int

variations ¢&j and oA (where 8j = —(c/ 47)V?SA), keeping , fixed at the zero order initial value:

_ 8l 2(j - —ﬂ”AAjcﬂ”c?A—jd:
5, - W%{H(J i)~ (A=A~ oA -]y |do
. - 5—ﬁ5Ad
2AV ]2 anij J”{J jw
(15.3)
N D dj

Z I(J—Jn)(é' 4”“ 6Ajdco (15.4)

ZAV i n Aw,
It follows that 65 = &, + 35, =0. For the second variations one obtains

5?8 = 85— Chtn §AJda)
P 2AV] ZAI [
(15.5)

1 0D, . cu’ ]
&S, = —“"“t=—— oA g -2 8A [ dw, =

ZCZ T, z M‘([ ( 4 @n
I [ 5A[5—ﬂ5Ade (15.6)

87Z'JZAV n Aw, 4
so that
2
578 = 575, +67S, = > j( _ oy 5Aj da, <0. (15.7)
2AV] N Aw,

As already noted (section 9) the total system formed by the collective equilibrium plus background,
is thermodynamically stable because the entropy S is extreme and maximum, the adiabatic variations
= (Cyn2/4z)5A apart. But instability can arise for the collective magnetic subsystem when the

variation of the interaction energy with the background is positive because this means that magnetic
energy is transferred from the collective (macroscopic) magnetic system to the background (or to the
external world). In this case the collective system is not isolated but is allowed to interact and decay by
exchanging energy externally to the system. This is indeed the case of the tearing modes where the
dissipative layer acts as a sink of magnetic energy.

Let Aw, be the site of dissipation, namely a cylindrical shell centered on the rational surface
q(s) =m/n with infinitesimal radial thickness 2¢. Outside Aw, the variations are assumed to be
adiabatic and reversible so that &S5, =5, =6°S=0 and, according to (15.3) and (15.4), 6A must

satisfy the equation

viep- A A o g (15.8)
¢ dy,
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for any n in the outer region. This is just the equation of the tearing modes in the outer region.

Inside the dissipation layer the second variation (15.5) of the entropy S, is singular as a
consequence of the singularity of u -z " at r=s. For getting a finite result one should take into
account the non-linear effects in the evolution of the tearing mode that resolve the singularity and lead
to the formation of the magnetic island. However, the variations of the magnetic energy @ and of the
interaction energy @,,, are not affected by the singularity of 4, at g=m/n, and rn528p remains finite.
So we can discuss the thermodynamic interpretation of these quantities while remaining in the linear
approximation.

We then proceed to calculate the variation of the magnetic energy @, = (1/2c) J (J-J A-A)do,

Awg
localized in Aw,. The first variation is easily seen to vanish because j— j,A— A, for e > 0. The
second variation is given as follows:
R

S+¢& R S+¢& d d5A
520, = TS”degos_[géjéArdr = —Eﬂdedgpsjf/x(a(r?jdr} (15.9)

The derivative doA/dr is discontinuous in r=s. In view of the integration in (15.9) we represent
formally the second derivative of 6A in the neighborhood of r=s with the help of the Dirac o-
function

2 2
don _d’oA (d&Aj ) (dﬁj 5(r—s). (15.10)
dr>  dr? ar )., dr ).,

In the limit & — 0 only the o-function contributes to the integral (15.9) and one obtains

Rs 2

5D, =——— || A'(0A(s)) dOd e, 15.10

= Ay dody (15.10)
where
A= |9R 1 OA(S). (15.11)

When &°®, <0 the system is unstable and A’ > 0.

The variation 6°®, is related to 5ZCI>SYim. Indeed recalling (15.6) one has in the limit £ -0
5D, =—0"D,, (15.12)
noting that the part of the integral involving 6A” vanishes in this limit.

According to our model, ®,, describes the energy interaction of the collective magnetic system
with the external world. The relation (8.3) shows that a positive change of ®,, describes the Poynting
flux of electromagnetic energy lost by the collective system. So, consistently with (8.3), we put
5D, =-R, (15.13)
where 5Q >0 denotes generically the energy supplied to the magnetic system.

Then one sees that in the unstable case A" > 0,52613s < 0, energy is transferred from the magnetic

system to the background, as described by (15.12) with 8°®_.. >0, and lost, as described by (15.13).

By considering the system as isolated the decay energy is absorbed internally to the system in a

irreversible process.
In the outer region where Q= 0, the energy conservation is expressed by &°®

5D

fields and plasma currents when the system can be considered as isolated, or otherwise, is due to the

s,int

ot TO0L=0 where
is the outer variation of the magnetic energy and oL is the work of internal inductive electric

out
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mutual interaction with the external circuits that react when the magnetic plasma configuration is
varying.

CHAPTER 4: Minimum Principles

Summary: The pressure profiles in tokamaks are restricted by the requirement that the thermal
energy of the plasma be minimum for fixed magnetic entropy and fixed total current.

The poloidal magnetic energy is minimized, within the family of states that satisfy the SME
equation in the presence of auxiliary heating, when the parameter za tends to zero (a is the minor
radius), even though, for reason of mathematical consistency, it cannot be put identically equal to zero.
The validity of these principles rests on the experimental verification of their predictions on the SME
profiles (chapter 6).

The assumption of stationary magnetic entropy is a crucial ingredient in the formulation of both
principles.

16. Minimum plasma thermal energy and pressure profile in tokamaks

The pressure profile is expressed in terms of the poloidal flux y, which is determined in the

cylindrical limit by the D’ Alembert equation

47R .
vz‘//: — Juot (16.1)

where J,, is given by (7.8), w=-RA, (A, is the axial component of the vector potential and
dA,/dr = B e )- The boundary conditions are w(sa)=0 and (dy/dr)_, =(2RI(r)/cr),,, where
I(r) is the total current flowing inside r, sa and saA are the outer and inner borders of the relaxed

region respectively.
One has a simple relation between y and the solution j of eq.(7.4). Taking into account (7.8) and
(16.1), eq.(7.4) becomes (with E=E_,,)

. cu’ 1’ :
vz + - _ _ E . , 162
(J 47Z'R ‘//j E (pE Jnlnd) ( )
After a double integration one obtains
. culy 2 pOX
== (usa) £7£zE (x)xdx + D, lgx + D, (16.3)

Here x =r/sa, D, and D, are integration constants to be fixed by the two boundary conditions on

the current density and
—Ei.
pE (X) EJnmd (X) (164)
The pressure profile is determined assuming that the plasma thermal energy in the confinement
zone

W :gj p(1)dQ (16.5)

me(X) =
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Is stationary (it turns out to be minimum in the practical cases) with respect to variations oy in the
confinement region such that the total induced current I, = j27zjrdr and the magnetic entropy

(defined by (5.4) with the induced current density (16.3)) are fixed

SW + 7S, + 17,1104 )=0, (16.6)
where
oW =(3/2) [ p (y oy 4z’ Rrdr, (16.7)
sat
&5, =-87°R j jojrdr —cu’x ja(jy/)rdr, (16.8)
sat sat
8 =2z [ grdr, (16.9)

sai

and Jj :—(Cy2/47zR)5w. Note that, as observed in section 9, the perturbed and unperturbed current

densities j+Jj and j satisfy the same SME equation (7.4). The factors 7, and 7, are Lagrange
multipliers and the inessential positive factor of S, has been absorbed in 7.

In view of the arbitrariness of oy the variation condition (16.6) leads to the expression
4 2 2
& _ Ul[m I o I me (X)x dx — Cﬂ D° Ig(x) J i (16.10)

dy 67R | X § 127z2R2

The integration of this equation gives p(x) once z//(x) is known (y(x) is calculated from (16.1)
after solving (7.4) for j and taking into account (7.8). There are three constants to be determined,
namely 7,7, and the integration constant of (16.10) (the constants D, and D, are fixed by the
boundary conditions on the current density). The values of p at the two boundaries of the integration
zone (to be taken from the experiment) leave us with one constant free. This constant can be expressed
in terms of the plasma thermal energy in the integration zone. Indeed integration of (16.10) gives

¥ ( 2 x(¥) X
~ psa)’c ™ dx cD ,
p(¥)= nlz[d‘PB(W Jl. 7{@ (x)xdx— 37; In(x(‘P))j+ P+ p,, (16.11)
where ¥ = (/2B )y, p, is the value of p at x=1,¥ =0 and
' dp 17,C 1,CD,
)=\, | =B - : 16.12
ps(ﬂl 772) [d\PjXﬂ [GEZRZ 37ZR ] ( )
Let us put
x(
X(\P):—T d¥ B[(A‘Sa) c JY %I e (X)X dx——ln(x(‘P))J (16.13)
0 1 0

Then the pressure takes on the form
p(¥)- p, = -mX(¥)+ p¥. (16.14)
Denoting with the caps the values at x = A one has from (16.14) that p; = (771)2 + P - p, )/‘i’ . Then

(16.14) can be rewritten as
Y, .
pC¥) =P =mY(¥)+ = (P~ p.) (16.15)

with Y (W)= X¥ /¥ - X(¥).
In order to determine 7, we integrate (16.15) over the volume of the relaxed region, obtaining



Entropy 2009, 11 160

1(— v
== p-p.——(p-p)| 16.16
= [p S AC )] (16.16)
Let us introduce the parameter K defined by the equality
X[(— ¥
K =1+: — = | 16.17
7 (pN TJ (16.17)
with p, = p/ p. The parameter 7, becomes
p Y v K -1
== (K=1)=+py| =-1||= p——, 16.18
m Y [( )X Pen [\P J] p M ( )
where p,, =p,/ p<<1and
% = %BD: | j A In xdx. (16.19)

To see the sign of the second variation (16.7)

5°W =3 [ p"(y oy *x°Rrdr, (16.20)
sad

we calculate from (16.14) the second derivative of p(‘¥)

2
Belusa) ﬁi] - ()xdx + 200 1 0¥ (16.21)

II\P=_ er\{;:_ _
P(V) ==X (V)= ——5 =5 37 xdv )

We anticipate that the comparison with the observations shows invariably that the value of the
parameter (,usa)2 has an upper limit much lower than one. The justification of this will be given in the

next section. Thus the leading term of (16.21) becomes

cBD, 1 dx B’c’D
"W)=-nX"(¥)=- 0 - =— — 16.22
pr(¥) = - X "(¥) = - ==~ - S RIC) (16.22)
where 1(\¥) is the current flowing inside W . Applying (16.18) and (16.19) one has from (16.22) that
, .1-K c?B’D . cB 1
p"(¥)= p=—= ———=pl-K)— . (16.23)
X 37zu’RI(P) u Rl(\P)qujlnX

This expression can be rewritten in terms of the conventional dimensional poloidal flux

= (ZB/uZ)‘{’

4
v po, . (1-K) 1
=2 _p"(¥)= 16.24
p'ly)= 57 P'(¥) P oRiy) (16.24)
J.d;//Inx
The integral at the denominator is positive. Indeed, (recalling that dy / dx > Q)
Tdyxlnx=—ji—wlnx dx > 0. (16.25)
X

0 A
It follows that W >0 for K <1, so that W is at a minimum.
The parameter K is related to the width p,, and to the concavity of the pressure profile. As we shall
see (chapter 6) the observed pressure profiles are almost invariably concave in the region where the
SME theory holds, in agreement with (16.24).
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We are then restricted by the variation procedure above to a family of normalized pressure profiles,
which depends on the parameter p, and (to a lesser extent) on the normalized value p, at the outer
border. Note that by combining (16.11) with (16.3) one obtains a relation between the pressure and the
current density and consequently a relation between p,, and the average of the current in the relaxation

zZone.
17. Minimum poloidal magnetic energy and profile consistency of the SME states

Let us investigate whether one can select among the solutions of the SME equation (7.4), those
associated with a minimum of the poloidal magnetic energy w:(1/20)J JA, dQ (recall that j = j, is

the axial current density)
We start by observing that the solution of the SME equation can be written in the form j = j,. + Jiuo

where ], satisfies eq.(7.4) without the inhomogeneous term, and j,,, is a particular solution of the
inhomogeneous equation. The part j,, contains two arbitrary constants to be determined by the
boundary conditions, while, as can be easily verified, the part j,,, is formed by terms of order (ysa)2
and (ysa)zlnysa lower than the part j,, in the limit usa—0. It follows that the effect of the
inhomogeneous term disappears in the integral (16.3) of the SME equation when 2/ is sufficiently low.
In fact the comparison of the SME profiles with the observations shows invariably that they agree, in
the expected region of validity, only by choosing (ysa)2 — 0 (chapter 6).

For seeing the physical meaning of this fact let us express the poloidal magnetic energy w in terms
of the vector potential A, redefined according to the equality

A, :—%+[4—ZTCJ(DO Inx +D,), (17.1)
with V?A, =—(47z/c)j. By replacing y with A, in the expression (16.3) for j, one obtains
2 X X
.U C 2 dx
V= ~(us2) _!:7.([7[E(X)de'

Then w takes on the form

X

W:iJ' jA,dQ :%U jZdQ+Ide(psa)2_|‘%I7rE (x)xdxj. (17.2)
2CQ :u c Q Q X 0

A
In the presence of auxiliary heating, the term involving = is positive, but this term disappears in
the limiting process usa — 0. Also the dependence of j on usa disappears for wsa sufficiently small
(see chapter 6). It follows that the limiting process minimizes the poloidal magnetic energy. In contrast,
in the purely ohmic case, =, describes non-diffusive losses and it is negative and the poloidal
magnetic energy is maximized by the limiting process. These facts are at the root of the profile
consistency of the SME states (the term “profile consistency” has been used for the first time by Coppi
[18]). Indeed, one can ignore the integral term involving =z in the equation (16.3) and write
approximately (recalling (17.1))
. u’c
= yy A¢.

(17.3)
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As a consequence, one can put ¢ =0 in eq. (8.4) when A, is defined as above, and the interaction

energy (8.3) becomes identical to the Poynting term.

The relation (17.3) is associated with the extreme of the part of the magnetic entropy (5.4) that
depends on j, and A,. So the limiting process wsa — 0 implies that both the poloidal magnetic energy
and the magnetic entropy pertaining to the axial current density are extreme.

The role played by the parameter (ysa)2 in tokamaks is subtle. One cannot put  identically equal
to zero because this would be inconsistent with the relation (5.3) of x* to the Lagrange multiplier 7
and would also be inconsistent with the fact that x* appears at the denominator of the power balance
equation (see eq. (7.1) which is identical to the power balance (7.2) when (7.3) and F = p. are taken
into account). While the effect of the inhomogeneous term in the solution of j to the SME equation
can be neglected, it must be maintained in the integral of the power balance equation (7.1), which is

divided by z*. Indeed, even though . enters explicitly in the expression (7.3) for the heat flux, its
effect is balanced by the implicit dependence contained in the derivative of j, and in the boundary

condition for the continuity of the heat flux. These facts insure that the heat flux compensates in the
relaxed region the energy input described by pg, which is independent of x. We shall return to this

point in section 20 with an explicit example.
CHAPTER 5: SME states in toroidal geometry

Summary: The SME equation is re-derived by assuming that the ohmic transformer and the source
of energy of the primary (for instance, a battery of capacitors) are integral parts of the macroscopic
system described by the magnetic entropy. In this point of view the variation of the interaction energy
@, . vanishes because the transfer of energy from the ohmic transformer to the plasma is internal to the
macroscopic system and there is no energy exchange with the external world.

When the Grad-Shafranov form of the current density is introduced in the integral expressing the
vanishing of the time derivative of the magnetic entropy one finds strict conditions on the functions
F(z//):RB¢ and p(y) for the toroidal magnetic field and for the pressure. These functions are
determined by two separate integro-differential equations (involving the first derivative) that depend
on four constants. These equations supplement the Grad-Shafranov equation in the determination of
the SME states in toroidal geometry.

18. Another derivation of the SME equation

In the derivation of the SME equation for the current density in section 7, the induced electric field,
which is a basic ingredient of this equation, has been assumed as generated externally with respect to
the macroscopic system described by the magnetic entropy S . It is instructive for a better
understanding of the physical aspects of our model, to present a formulation in which the ohmic
transformer including the energy source of the primary current, is treated as an integral part of the
macroscopic system described by the magnetic entropy. This means that the current of the primary
should be included in the functional in addition to the macroscopic current in the plasma. The
transformer-plasma interaction is modeled by considering the cylindrical plasma as surrounded by a
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thin conductive shell, with effective radius r,, that carries a sheet current density ]e. This current

simulates the current in the primary. The current density in the functional (5.4) is the sum of the
current density ip in the plasma volume and of the time dependent current density j, localized in the

sheII The time dependent magnetic field ée created by L outside the plasma induces the electric field
E... inside the plasma. The field E, .. vanishes inside the perfectly conductive shell, while E, = 0 with

ext
V x E,, = 0 in the plasma. The shell is then a surface of discontinuity for E,, and /B, /. The time

ext

ext

derivative of the sheet current satisfies the relation

4r 0’] _ s

c a
where €, is the surface unlt vector directed outwards. Thus the external time dependence contributes to
the time derivative of S, (5.4) according to the relation

ds . -\A
] o e 2y o £ AV
B

2 C - .o OB ,uc
C5 dSxBe WO 15 E oo
T(,,,c)z[znlj" “a an i"’ ot (Mj

where S is the discontinuity surface, Ap and Ae are the vector potentials related to ip and J:

(18.1)

Ojte (A, + AE)J (18.2)

S

respectivelyl and
- 1A z
E.,.=———=, dS=¢€.dS, dQ=dsdr, (18.3)

ext !

c
It will be shown presently that the first integral in the right handﬁside of (18.2) can be expressed in
terms of the jump across the discontinuity surface in the direction dS of the quantity E XV x jp

Let us apply the coordinate-free definition of the curl to the equations (1/c)d§e |&=-V x Eext and
(47z/c)]p =V x B. We consider an infinitesimal volume element Az with bases of area dS situated at

opposite sides of the discontinuity surface S and parallel to it, and with infinitesimal thickness.
According to the definition one has

VxE,. =Air§d§x E vxi, :Air§d§x j.. (18.4)

ext?

where the integral is extended to the surface of the volume element. Noting that E. and Tp vanish

ext
within the conductive shell, that is on the outer side (with respect to Q) of the discontinuity surface,
and are different from zero on the inner side, one obtains
18, _ 1 dS x E,, :id§x E...
c a AT At

In the infinitesimal vicinity of S, on the inner side where E

1 ~ - 1 ~ =
E§dsx1p =-—dSxj,. (18.5)

# 0, one can write

ext
Eoo xVx J, = Epy X%{jﬁo@x Tp- (18.6)

This quantity jumps to zero while crossing the surface S from the inner side towards the conductive
shell, where E_, =0:

out

— 1 ~ e
EeXt XA—T§dS X Jp

B U R
:_Eexth§dSXJp:EextxA_z_dSXJp:

inn
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=] —dS :#
Jo AT Jo Cd

where use has been made of (18. 5) Summing up the value (18.6) on the inner side to the jump (18.7),
one obtains the value of E . x V x j, on the outer side, within the conductive shell, which vanishes. So

—~ - - 10B
Eextxvxjp_ J C d

Applying the dlverggnce theorem to the integral over the volume Q enclosed by S one gets
(remembering that V x E_,, = 0 inside Q)

[EexVx],-dS =[E, V] dO (18.9)
S Q

e (18.7)

(18.8)

ext

Finally, by combining (18.8) and (18.9) we obtain the desired relation
= e 1 O’B

JEext vszdQ ZJJp

Q S

(18.10)

The last surface integral of (18.2) can be treated in the same way as above by replacing ]p in (18.10)
with Ap + Ae, where Ap and 5\9 similarly to ]p, drop to zero across S and are different from zero on
the inner side of S. Noting that VA, =0 in Q, one obtains

%ieext.jpdgz_i(/xpw) LB,

. (18.11)

Introducing (18.10) and (18.11) into (18.2) we obtain the change of the entropy of the plasma due to
the interaction with the ohmic transformer

ds 1.E - -
— P === (VY 4 u? dQ. 18.12
[dt] T£ﬂ2( N (18.12)

The total rate of variation of the entropy is the sum of the contributions of the ohmic transformer
(18.12) and of the contribution of auxiliary power and non-diffusive losses

ds ds 1 1¢E L. L
ptot d ext 2
= +—| pedQ == Vo), +Ege - I, + Pe [dA 18.13

dt ( dt je TlpE rf[( ﬂZ Jp ext Jp pEJ ( )

If we assume that this relation vanishes locally, i.e. for any small volume element AQ in which Q

can be subdivided, we obtain again the SME equation (7.4):
ds = .

®p 17 E_ezxt.vzj-p+Eext.jp+ o, |[do=o0. (18.14)
dt 7.5,

Let us see what form takes the time derivative of the interaction energy according to this

formulatlon The time derivative is calculated starting from the expression (5.5) of ®,, where
i =Jp+Je(t) and A=A + A (t). One has

B 1y T __;(A+Ae)dedg+ﬂ_;(/xp+z\e>%dg=

:_jjp E.d0- - [(R,+ A s djt ’ZCI(A +R)-E, d0 (18.15)

Applying the relation (18.11) this equallty becomes
2
Wi _ | (J -£2 J E, dQ - ”C IEM A dQ (18.16)
Q

dt Ar



Entropy 2009, 11 165

But the mjnimum principle for the poloidal magnetic energy tells us (section 17, eq.(17.5)) that
i =0 and j, — (u’c/4x)A,, from which follows that d,, /dt— 0.

int
This result can be understood considering that @, describes the interaction of the macroscopic

int
system with the external world. But in the present formulation the ohmic transformer should be
thought as part of the macroscopic system together with the energy source of the primary current (for
instance, a battery of capacitors). At the contrary, in the formulation of section 7 and section 9 the
induced electric field was applied to the macroscopic system externally and this is reflected in the fact
that dd__ /dt, given by (8.3) or (9.8), describes the Poynting flux of electromagnetic energy related to

int
E... across the surface enclosing the macroscopic (collective) system.

ext

19. Conditions on the toroidal equilibrium of the tokamak

The toroidal axis-symmetric equilibrium is described by the Grad-Shafranov equation

Iy = i RV-(R*Vy) (19.1)
where

. oR((F*(»)

;= 4”( Sn? +4ﬂp(w)j- (19.2)

Here p(y) is the pressure, F(y)= RB, and the poloidal flux v is related in symmetry coordinates
to the magnetic field by B = (F(y)/R)E, + (é¢ IR)xVy .

In this section it will be shown with the help of the SME condition (18.14) and of the minimum
plasma energy principle discussed in section 16, that the functions F(y)and p(y) are determined by
two separate integro-differential equations (involving the first derivative) that depend on four constants.
We shall use the relation

c Vi -dS
W)= S(jw) =
where I(y) is the current flowing inside the magnetic surface S(y). Indeed, denoting with dA the
element of area of the cross section of a surface w = const and with dQ=2zRdA the volume element,

: (19.3)

one has
: . dQ ¢ % ¢ ¢ Vy-dS
1y )= Ij¢dA=Ij¢2ﬂR=8 [V R‘z”dgzg | ";2 . (19.4)
Aly) o 7 7 sl
We now proceed by applying the Green theorem to the SME condition (18.14) where AQ is a

toroidal shell comprised between two magnetic surfaces:

CEOROIV‘/;ZdS +é[pEdQ:

iz J(Eextngb - j¢VEext ) d§ + Arx

S, S,
CE,R, (Vi -dS
j R?
Q;
Here dS =dSVy/Vy|, and S,,S; are the outboard and inboard magnetic surfaces delimiting the
toroidal shell AQ, Q,,€3; are the volumes enclosed by S, and S; respectively and E,, =E,R,/R
where E,,R, are values on the minor axis. In order to satisfy the equality (19.5) the two members must

izj‘(EextVLﬁ - j¢VEext)' d§ + Ax

Si Si

+ [ pedo (19.5)
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be independent of v, that is to say, for any surface enclosing the volume Q(y), the following relation

must hold:
cE.R 1?> ¢ V-dS
[ (EeuViy = J,VE, ) dS + =22 [ Z¥22 4 42 [pdo=D, (19.6)
s) 4z, R oly)
y v y

where D is independent of y. After expressing j, with (19.2) (we neglect the contribution of non-
inductive currents) the equality (19.6) becomes a relation between F () and p(y):

20p () [ €9 cp"(y) V- dS + (F2 ()=
(w) s('[,) R M(W) s(J://) v +( (W))

—#__ [ p.do __ b
TERN () o) 7EoR, | ()

Introducing two functions k, () and k,(y) (arbitrary a priori) one can split the relation (19.7) into
separate equations for F () and p(y):

2

247 + (19.7)

2cp (v) | s §+Cp"(w)ij-d§=M jpEdQ—M, (19.8a)
S(y) EO 0 Qyw) EoRo
(Fz(t,//))':2 2+w jpEdQ_mD (19.8b)

AWER, oy AWER,
In a situation where the cross-section of the magnetic surface is up-down symmetric the first

integral of (19.8a) vanishes In this case the first integrals of egs. (19.8) take on the form

_ ﬂz t//)dw )dt//
S(y) 5(1//)
2 (22 _9,,2 ue W( )dW D W(kz(‘//)_l)dw
(F2(w))-(F?), =2uy + =] I(w) Q(j !OE ﬂEOR()! T (19.9b)

Here p; and (FZ)S'are values at r=sa (where we have taken =0).
Since the functions k () and k,(w) depend only on the poloidal flux and not explicitly on the

aspect ratio, they will maintain their form independently of the aspect ratio and then we can determine
them in the large aspect ratio limit. It is easy to write down the equations (19.7) in this limit:

, dp dx (usa)® tk,dx ¢ D fk,dx
VT dx— : 19.1
¢ () 87R(usa)’ F1-k, ¢ 2D }(k, —1)dx
(F2) =(F2), + wip + = ! " 1d><£ pEde+ﬂcE! 2 o (19.10b)

By introducing these expressions into (19.2) we obtain the current density in the large aspect ratio
limit

2 2\
. u’c (wa) c(F ), ,
J"’__47zRW = '1[ J'pExdx+4 ZERInX_W_CRpS' (19.11)

Comparing this expression with (16.3) one gets
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D c(F?),
D. = , - _ s _ " 19.12
We express (19.10a) in terms of Dy:
, (usa)” }k,dx | D, fk,dx
= | = dx—— | ——— : 19.13
Py ()=~ 2 ! v !pExx RC! P (19.13)

Comparing this expression with the expression (16.10) obtained from the minimum plasma energy
principle we observe that k; and k, must be constant. Moreover, by equating the coefficients of the

first two terms in the right hand of (16.10) and (19.13) one obtains

2.2
k=DHC g (19.14)
67
and by equating the last terms
127°R?® D,k,
=————| p.+ : 19.15
772 CZIL[Z (ps CR ( )

We conclude that the functions F(y) and p(y) are determined by the two separate equations (19.9a)
and (19.9b) that depend on the four constants D, p;,(FZ)S' and k, =k, = const.

The toroidal equilibrium of the SME state is described by the Grad-Shafranov equation (19.1)
supplemented by the two conditions (19.9).

CHAPTER 6: Comparisons between theory and experiment

Summary: In this chapter the theoretical profiles of the SME states in tokamaks are compared with
the observations.

The first comparisons were performed with the data of ohmic discharges in TCV [19]. The location
of the g =1 surface (identified with the inversion radius) and the ratio of the average temperature to the
temperature on the magnetic axis is controlled in this machine by the parameter < j>/j,q, (< j > is
the cross-sectionally averaged current density, j,, q, are values on the magnetic axis). In the entire
range of quasi-stationary ohmic conditions the observed dependencies on this parameter in the
confinement region were found in excellent agreement with the theoretical predictions provided that
usa<<1. The observed electron pressure profiles are consistent with those derived from the minimum
plasma energy principle and characterized by the convexity parameter K <1.

Comparisons of the temperature and pressure profiles, as well as of the thermal conductivity given
by egs.(7.6) and (7.7), were performed in ECR discharges in FTU. Successively the validity of the
theory has been scrutinized in a number of shots in JET and TS under different conditions of plasma
regime and heating methods, taking into account the possible existence of non-inductive currents.

The whole of these comparisons confirms the robustness of the SME profiles in the absence of
strong non-inductive currents or of the effects of rapid ramps-up of the current.
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20. Comparisons with the experiment; case of ohmically relaxed currents
20.1-Current density, temperature and pressure profiles

The next two sections are devoted to the comparison of the predictions of the SME theory with the
observations. The presentation is a summary of the results contained in previous papers on
comparisons in TCV [19], in FTU [20], in JET and in TS [21]. We refer the reader to these papers for
the details.

The first evidence on the reliability of the theory has been collected by Weisen [19] on ohmic quasi-
stationary discharges in TCV (B; =1.5T,R, =0.88m,a < 0.25m). The discharges concerned limited and
diverted shots with elongations in the range —0.5—0.72 and plasma currents in the range 0.1-1.0MA.
In the entire range of quasi-stationary ohmic conditions it was observed that the sawtooth inversion

radius and the electron temperature in the confinement region depend solely on the parameter
<j>ljQ, Wwhere <j> is the cross-sectionally averaged current density and

Qoo Z(CBO/47Z'R0)(keZ+1)/ke. Here k, is the elongation and the subscript denotes quantities on the
magnetic axis. In cylindrical geometry the solution to equation (7.4) (with pz =0 and the boundary
conditions j(4a)= j,j(a)=0) are expressed in term of the Bessel functions

i) =L (30, ar) Yo (4)3, (), (20.)

where D = Jo(ﬂa)Yo (,Ur)_Yo (ﬂa)‘Jo(ﬂr)- (20.2)
Here and henceforth caps denote quantities on the q =1 surface (the inversion radius is identified
with the g =1 surface). In the sawtooth region r < a the safety factor g(r) is modeled as in section 9.

The solution (20.1) entails the following relation for the experimentally relevant parameter
<Jj>1]Gp

<0z g 2% (i ; Mj, (203)
JoY% p-D\ Apa
where A = Jo(ﬂa)Yl (iﬂa)_Yo (ﬂa)‘]l(/iﬂa)- (20.4)

The diamagnetic and paramagnetic corrections to the toroidal field are small [18] and are neglected.

In fig. 2 the relation (20.3) is compared with the experimental data for ¢, in the range 0.8 -1.0
Agreement is found for pa <1 as expected from the theoretical considerations of section 17, and the
results become practically indistinguishable for ga— 0. One concludes that the poloidal magnetic
configuration is essentially determined by A4 or, alternatively. by < j>/j.q,.

In a stationary ohmically relaxed discharge the current density profile is related to the temperature,
pressure and density profiles by the Ohm law. When only Spitzer conductivity is considered one has
the relations
Do _ Pe/Pe PP (20.5)
A, (j/ j)m T /T,

The effect of neoclassical corrections has been discussed [19] and found to be small. In fig. 3 the
theoretical temperature, pressure and temperature experimental profiles are presented together with the
theoretical profiles (neoclassical corrections are taken into account). Note that in the figures the
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quantities on the g =1 surface are referred to by the subscript 1, whereas in the text the diacritical mark
~ has been used.

Figure 2. Sawtooth inversion radii from X ray tomography in TCV (symbols) and
theoretical predictions for the q=1 surface (bold curves) for three assumed values of g,

(from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-130) (with permission).
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Figure 3. Example of experimental electron pressure (plus sign), temperature (crosses) and
density (circles) profiles from Thomson scattering in TCV, together with theoretical
profiles. The solid curves are obtained using neoclassical Ohm’s low and the dashed curves
using Spitzer resistivity alone (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-
130) (with permission).
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Figure 4. Widths of clipped electron temperature profiles: diamonds, experiment; dots,
theory with neoclassical Ohm’s law (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41,
113-130) (with permission).
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Figure 5. Experimental pressure profile convexity parameter K for different elongations
K, (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-130) (with permission).
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During the sawtooth cycle, core plasma temperatures rise and flatten periodically, while
temperatures at and beyond the inversion radius experience only small variations. This effect
introduces a significant amount of scatter in the data [22-23]. Only the confinement region may be
considered as ohmically relaxed and close to steady state. In order to take into account this effect in the
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comparison with the theoretical model “clipped” profile widths were introduced in the data of fig. 4
suchas <T,/T,>where T, =T for r<daand T, =T for r> Ja.

Another significant subject of experimental investigation is the value of the convexity parameter K
introduced in section 16, which should be lower than one in order that the plasma thermal energy is at
a minimum. The experimentally measured widths <P,/ p, >, which are strongly correlated to
<] >1},9,, are associated with the values of K as shown in fig. 5. With few exceptions, attributable to
experimental uncertainties, the experimental values of K do indeed lie in the interval 0 <K <1, as
predicted at the end of section 16.

Once the parameter K is known, the pressure profile is determined by (16.14) and (16.17) and the
density profile follows from the ohmic relaxation (20.5).

Alternatively, canonical density profiles are also provided by turbulent equipartition (TEP) theories
according to the relation n = g™ where 0 < 7 <1 [24]. For a comparison between the two approaches
in the ohmic case see a paper by Weisen and Minardi [25]. It turns out that the relation above for the
density is also often verified in discharges with auxiliary heating and in the absence of ohmic
relaxation.

20.2-Thermal conductivity

In cylindrical geometry the expression (7.3) for the heat flux in the relaxed region Asa<r <sa
takes on the form

0,5 =— ext(dj 9), (20.6)

dr r
where S=47°rR and C is a constant. Thus, recalling (7.2), the power balance of the electrons
becomes

J(di C L
05 =-E2 (D -C ) arrf(e i+ porar, (207)
0

where C is determined by continuity of the heat flux across the surface § =1 (we note @hat this implies
at the same time the continuity of the poloidal magnetic field which is proportional to _| jrdr).

Modelling the magnetic configuration in the region r< Asa according to the expression
q(x)=q, +(@—q,Xr/A)Y for the safety factor, one obtains I = zj,q,(4sa)’, j, = cB/27Rq,, ] = j,0’

respectively for the total current along the cylinder with radius r = Asa, for the current density on axis
and on the surface q=1. Then C = j,q,8 where

p= (uszﬂ)[ (%J Z%I Pe J (20.8)

EextJ
Here v = —(47R/c)’(dj/dy),, .
Putting
Jo9B
h(r)=1- , 20.9
) rcdj /dr (20.9)

the effective thermal conductivity (7.7) becomes
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W g dj/dr h(r)
dT/dr  ®dT/dr &
In the case of the ohmically relaxed current, i.e. j:Eexth’zA(Zeﬁ) with Spitzer resistivity

(A(Zeff ):1.9745-10’31 in CGS units, corresponding to INA =17) and Z,, uniform, one has

N Yo = E Eezxt T3/2 h(r) — E Eextj h(r)’ (2011)
2AZy)  wr 2 T 4P
where h(r)/* is independent of 4.

The form (20.11) of the diffusivity has been tested in ECR discharges in FTU (see Table Il for the
main parameters of the discharges). In shot 18290 the whole EC power is absorbed at r/a=0.45,
whereas in shot 18281 the absorbed power is shared in two separate layers (r/a=0.3 and r/a=0.63)
using poloidal steering of beams (see fig.6). The very localized power deposition induces a step-like
behavior of y, if and only if the T(r) profile is locally stiff. Now T(r)~ j(r)2’3 where j is a solution
of the SME equation, which is insensitive to the power deposition for wsa sufficiently small
(usa<0.20, see Table I11). The step-like behavior of y., in comparison with the experimental one is

(20.10)

ne)(eff =

shown in fig.7. This behavior follows from a critical balance between the two terms of the function
h(r). Expressing h(r) as function of the temperature gradient R/L,, where L' =—(1/T)dT/dr, one
finds a step-like behavior (fig.8) at a critical gradient associated with a location of the ECR power
deposition. When the heat flux is expressed in terms of the parameter s, /q, as in (7.6), one finds that
s, /q = —/ at this location, where £ <0 depends only on the magnetic configuration according to (20.8)
and determines the term of h(r) associated with the inward part of the heat flux.

Figure 6. Net power density on electrons, without ohmic component, calculated with
EVITA power balance code. FTU18290 in ECH phase (red dashes) and in ohmic one
(black dashes); FTU18281 in ECH phase (black solid) (from Minardi E.;Lazzaro E.; Sozzi
C.; Cirant S. Nucl. Fusion 2003, 43, 369-384) (with permission).
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The current density and pressure profiles of shot 18290 predicted by the SME equations (7.4) and
(16.14) (with the conditions at the boundaries taken from experiment) are compared in figs.9a and 9b
with the profile reconstruction based on the experimental data.
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Figure 7. Symbols “+” and “x”: from EVITA interpretative power balance code; lines:

from theory. B=57T for FTU18281 and B=58T for FTU18290;
Ne(iney = 0.8 x1010*m~*, I, = 0.4 MA for both shots (from Minardi E.,;Lazzaro E.; Sozzi C.;

Cirant S. Nucl. Fusion 2003, 43, 369-384) (with permission).
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Figure 8. The h(r) function (see egs.(20.8) and (20.9)) against normalized electron

temperature gradient length for shot FTU18290 (symbols: experiment; line: theory (from
Minardi E.; Lazzaro E.; Sozzi C.; Cirant S. Nucl. Fusion 2003, 43, 369-384) (with
permission).
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Figure 9. Experimental (symbols) and theoretical (line) current density (a) and normalized
pressure profiles (b) in FTU 1890 discharge measured at 1.1s (from Minardi E.,; Sozzi C.;
Mantica P. Nucl. Fusion 2008, 48, 045001) (with permission).
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21. L- and H- discharges and the effect of non-inductive currents

The reliability of the SME predictions has been analyzed in a variety of tokamak discharges whose
characteristic parameters are listed in Table Il. The experimental current density profiles of JET are
obtained solving the MHD equilibrium with EFIT, either using only magnetic measurements or when
available the MSE measurements. This method implies that the (discrete) experimental measurements
are given as constraints to the equilibrium solver, which then yields smooth current density profiles as
the solution of the equilibrium equations that best fits the given experimental constraints. The form of
pe ineq.(7.4) and of its components (auxiliary power, radiation losses, electron-ion energy transfer) as
well as the profiles of the non inductive components of the current density are obtained by
interpretative transport simulations with standard transport codes . In FTU and TS the profiles of the
safety factor (which determines the current density, see eg. (7.5)) and of the pressure are obtained
consistently with the transport simulations (JETTO, ASTRA, CRONOS, EVITA). This process
produces the radial profile of the current density and of the pressure to be compared with those
predicted by the SME equations (7.4) and (16.14).

The SME equations are solved in a relaxed zone sai<r<sa using for E the experimental value
obtained from the loop voltage and taking from experiment the values of j and p at the boundaries.
The input p. to (7.4), which gives the net non-ohmic power on electrons, is supplied by the
interpretative transport codes.

A geometrical correction for noncircular geometry, even though approximate, is applied to the

calculation of all integral quantities (total current, total power, magnetic poloidal flux, safety factor and
so on) by expressing the cross-sectional area with the cylindrical coordinates x = rcosé,y = rk,(r)siné,

Here k, is the elongation given by the expression k,(r)=(k, -k, )r/a+k,, (see Table Il for the
values of k,, and k., and the quoted paper [20] for further details).
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Table I1. Main parameters of the discharges analyzed in the paper: 1(MA), total current;
N, central electron density in m™; By(T), external toroidal field; k., and k,,, elongation
parameters (see text); P,(MW ), auxiliary power (from Minardi E.; Sozzi C.; Mantica P.

Nucl. Fusion 2008, 48, 045001) (with permission).

Mac Shot Regime Main I(MA)  Nnel0®®  Bo(T)  keo Ke1 Pa(MW)

R/a Heating

FTU 18290 L ECRH 0.40 1.13 5.70 1.03 1.02 0.85

0.97/0.30

FTU 18281 L ECRH 0.40 1.28 5.80 1.03 1.02 0.85

FTU 23053 L OHMIC 1.10 1.35 7.20 1.03 102 0.0

FTU 23179 L OHMIC  1.40 2.60 7.20 1.03 1.02 0.0

TS 311650h L OHMIC 1.0 0.30 3865 10 105 0.0

2.42/0.75

TS 31165ec L ECRH 1.0 0.30 3.85 1.0 1.05 0.80

JET 44013 H NBI 2.60 0.68 2.70 140 175 15

3/1

JET 55805 L NBI + 1.60 0.23 3.36 125 160 6.1
ICRH

JET 55809 L NBI + 1.60 0.26 3.25 130 160 12
ICRH

JET 53298 H NBI 2.60 0.78 2.60 135 173 15

JET 50630 H NBI+ 2.80 0.71 2.76 140 170 125
ICRH

JET 58148 H NBI+ 1.80 0.29 3.40 140 175 18
ICRH

JET 59397 ITB NBI+ 2.80 0.33 3.45 163 175 17
ICRH

JET 56083 H NBI+ 2.50 1.15 2.70 134 185 15
ICRH

JET 62789 Hyb NBI+ 2.60 0.32 3.20 130 163 20
ICRH

JET 59211 H NBI 1.80 0.53 2.80 125 150 12

JET 53506 e-ITB ICRH+ 2.40 0.16 3.40 135 1.63 6.0
LH

JET 53822 L ICRH 1.90 0.35 3.40 130 1.60 6.0

JET 55802 L NBI+ 1.60 0.29 3.25 127 160 6.0
ICRH

JET 53299 H NBI 2.50 0.12 2.70 135 173 155

JET 50628 H NBI+ 2.80 0.60 2.77 1.37 170 126

ICRH
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Table I11. Meaning of symbols: a, minor radius; sa and saA, outer and inner border of
the relaxed region respectively; wsa, indicative value below which the profiles are
independent of wsa; U(V), loop voltage in Volt; Aqg, range of safety factor in the relaxed
region; erj and erp. mean square deviations of the current density and pressure with respect
to the experimental profiles (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48,
045001) (with permission).

Mac Shot usa U\Vv) s A Aq errj  errp

FTU 18290 0.20 1.0 0.73 0.17 1-3.94 0.042 0.022
FTU 18281 0.03 1.0 0.75 0.15 1-3.93 0.071 0.035
FTU 23053 0.15 1.73 0.80 0.55 1-2.15 0.086 0.023
FTU 23179 0.03 260 080 0.62 1-1.72 0.033 0.034
TS 311650h 0.01 0.80 0.93 0.20 1-4.13 0.068 0.011
TS 31165ec 0.10 055 093 0.22 1-4.09 0.070 0.043
JET 44013 0.30 0.20 0.75 0.44 1-2.15 0.031 0.027
JET 55805 0.05 0.33 0.90 0.12 1-5.88 0.039 0.086
JET 55809 0.01 040 0.75 0.13 1-3.92 0.076 0.063
JET 53298 0.01 0.15 0.80 0.40 1-2.20 0.058 0.020
JET 50630 1.70 035 0.90 0.16 1.03-2.78 0.079 0.040
JET 58148 0.10 0.20 090 0.40 2.17-5.36 0.035 0.040
JET 59397 0.65 0.60 0.95 0.44 1.71-4.33 0.039 0.026
JET 56083 0.25 025 0.80 051 1-2.11 0.021 0.036
JET 62789 0.25 0.70 0.70 0.35 1.02-2.60 0.075 0.036
JET 59211 0.10 0.20 0.80 0.19 1.25-3.93 0.026 0.024
JET 53506 0.10 0.20 090 0.44 1.76-4.20 0.043 0.043
JET 53822 0.05 040 0.70 0.23 1-3.48 0.077 0.039
JET 55802 0.40 0.30 0.75 0.15 1-3.55 0.030 0.060
JET 53299 0.05 0.20 0.80 0.45 1-2.21 0.042 0.044
JET 50628 0.10 0.35 0.95 0.20 1.03-3.24 0.115 0.025

Table 111 shows the parameters involved in the solution of (7.4) and (16.14) and the quantities

2 (Jowe (1) o (1))

erj=_|-

;om@ﬁ

erp=

2 (Pave (1) Pesy (1))

Zi‘,(pexp )

which are a measure of the adherence of the theoretical current density and pressure profiles to the
experimental ones in the region sai<r<sa. The loop voltage U(V) is not critical for the

determination of the profiles because a change of U can be compensated to some extent by a change of
A as is clear by inspecting equation (7.4). The values gsa <1 indicated in the table are those below
which the profiles become insensitive to the value of 5a.

176

(21.1)
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Figure 10. The mean square deviation of the theoretical current density profile with
respect to the experimental profile when jg,e and j,, are normalized on inner boundary

surfaces displaced by Aq=q-1 (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008,
48, 045001) (with permission).
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Figure 11. Dependence of the normalized current density on W = w/22s°a* (where v is
the experimental poloidal flux with y(a)=0, measured in T-m?) in the range from q=1to

r=0.85m, according to equilibrium reconstruction (a) L-states; (b) H-states (from
Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001) (with permission).
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The value of s should correspond to the upper limit of the confinement region. A good fit is
generally obtained for 0.75<s<0.95 with a mean square deviation (21.1) lower (often much lower,
see Table 111) than 10%. It is worthwhile to note that the values of s listed in the Table are not critical.
For instance, taking s = 0.80 for all shots one obtains erj = 0.061 and erp =0.035 after averaging over
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the shots, to be compared with the averages erj = 0.055 and erp = 0.037 of the optimal values listed in
Table 1. For s = 0.90, one obtains erj =0.085 and erp = 0.037, which indicates the worsening of the
theory when approaching the edge. It is also noted that, in the average, the agreement with the
observations is better for the pressure than for the current density.

In the presence of sawteeth the inner boundary Asa should be fixed in the neighborhood of the
surface g=1. The criticality of Asa is illustrated in fig.10. The mean square deviation is calculated
from (21.1) where the theoretical current density is normalized at the experimental value on the inner
boundary surface g=1 and the experimental current density is normalized to its value at a displaced
surface g=1+Aq. The mean square deviation is plotted as function of the position of this surface,
labeled by Aq, and one sees that it remains significantly below 10%, and practically insensitive to q
for g >1. At the contrary, in many cases, the deviation increases rapidly when q decreases below one,
denoting a worsening of the adherence between the theoretical and the experimental current density
profiles in the region dominated by the sawteeth.

It is worthwhile to point out a difference in the dependence of the current density on the poloidal
flux in the L and H discharges, which fact could be useful for the understanding of the L-H transition.
As shown by some examples in fig.11, the j(«//(r)) curve (where the entire radial dependence of j,
reconstructed from the experimental data, is expressed through y/(r) with y(a)=0) is concave in the
case of the L shots (fig.11a) and is approximately linear in the case of the H shots (fig.11b) up to
r ~0.85a. This can be associated with the fact, known from section 5 (see also eq.(8.4) where ¢ can
be neglected), that in an isolated system, the current density tends to be a linear function of y (or of
the vector potential), provided that the transition is sufficiently rapid for considering the system as
isolated from the external world during the transition time. However the observation above needs
further confirmations.

Typical situations extracted from the list of Table Il were illustrated in detail (see [21]) by plotting
the experimental and theoretical current density and normalized pressure profiles, as well as the
experimental non-ohmic net power deposition p. on electrons, which is a mark of the discharge.

One should distinguish between shots with g, <1 or g, >1. One finds invariably that the SME
profiles agree with the experimental ones outside the sawtooth region or in a region where the induced
current is not strongly modified by external interventions as non-inductive currents and ramps-up in
order to obtain g, >1 and generate an internal transport barrier (for further evidence on the profile
consistency of the pressure and on the effects of transport barriers see refs.[26-27]).

In the cases with g, >1 (shots JET 53298, 58148, 59397, 59211, 53506; see tables Il and II) the
SME equation is solved in the whole interval 0<r<sa taking dj/dr=0 at r=0 and the
experimental value at r = sa. In these cases one finds that the SME profiles disagree in the centre but
rejoin the experimental one out of the region where the current density has a hole and non-inductive
effects are important. Indeed it is not possible to find discharges that have g, >1 (no sawteeth) in

stationary conditions without having significant non-inductive current components. In figs.12 and 13
we present two typical cases with g, <1 and g, >1 extracted from the set of figures discussed in the
quoted paper (see [21]). Fig.12 shows the good adherence to the experimental profiles of shot JET
55809 (NBI+ICR heated L state with ~ 0.27MA of non-inductive current) taken at 49s in the region
outside the sawteeth. Fig.13 shows the case of an intense non-inductive current in the central region
(JET 58148NBI+ICR heated H-state at 47s) and shows how the theoretical profile of the current
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Figure 12. JET55809 NBI+ICR heated L-state; experimental (symbols) and theoretical
(line) profiles of the current density (a) and of the pressure (b) normalized on the q=1

surface (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001) (with

permission).
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Figure 13. JET58148 NBI+ICR heated H-state with intense non-inductive current in the
central region (q,,, =~1.6); (a) total theoretical (line) and experimental (circles) current
density and the non-inductive part (full squares); (b) theoretical (line) and experimental
(circles) profiles of the current density and of its non-inductive part (full squares) in the
outside zone 2.17 < q < 5.36 with r(m)>0.36; (c) experimental and theoretical normalized
pressure in the outside zone (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48,
045001) (with permission
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density rejoins the experimental one outside the region of large non-inductive current (fig13(a)). We
then solve the SME equations in the outside region i.e. 0.36 < r(m)<0.90, taking the experimental

values of j and p at the inner and outer borders. With this additional information the theoretical and
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experimental profiles of the current density and of the pressure agree in the region above, as shown in
the figs.13(b) and 13(c). The other shots with g, >1 listed in Table Il are treated with the same
procedure as above: first one solves the SME equation in the whole interval from r=0to r=sa in
order to determine the region of adherence between theory and experiment which turns out to be just
outside the zone where non inductive currents are important. Then the SME equation is solved again in
this region with the appropriate boundary conditions.

Fig. 14 is an example (JET 50630) of a H discharge with significant non-inductive current
(~ 0.35MA) in a high density plasma (n,, ~0.71x10*m™®). The non-inductive current density is

localized in the central region and around the q =1 surface ( j,;,4 =0.15 MA/m™). The anomalous high
value of gsa (1s8a~1.70) is due to the effect of the non-inductive current density on the boundary
condition at g =1 for the inductive part of the current density described by the SME equation. By
solving the SME equation in the region r(m)> 0.30, g >1.10 where the non-inductive current becomes
much smaller (j,,., <0,05MAm?), one finds essentially the same values of erj and erp as in table 111,
independent of ssa for zsa <0.50.

Figure 14. JET50630 NBI+ICR heated H-state with high density (n,(0)x10™% =0.70);

theoretical (line) and experimental (symbols) profiles of the total current density (a),
including 0.22MA of non-inductive current and of the pressure (b) in the range
1.03<q<2.78 (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001)

(with permission).
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CHAPTER 7: Connexion between magnetic entropy and Lagrangian description of the particle
motion

Summary: In this chapter the relation between the magnetic entropy and the Lagrangian motion of

the underlying system of particles is investigated. We consider the motion of independent groups of
N, particles, each group being identified by the volume element AV, in which the guiding centers of
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the N; particles were contained at the initial instant of time. Radiation effects are neglected and the

magnetic field is treated as a given, albeit “a priori”, unspecified function of space.

The Lagrangian motion is constrained by the condition that the system of particles contributes to an
organized (macroscopic) motion such that the total interaction energy of the system of particles with
the macroscopic vector potential is fixed. This macroscopic constraint is the counterpart of the
constraint (2.3), which is at the base of the introduction of the interaction energy @, in chapter 1.
This condition, together with the coarse-graining involved by the partition of the total volume into
volume elements AV, allows for establishing a correspondence between the Lagrangian description of
the motion and the properties of the magnetic entropy.

It is a characteristic feature of the formalism, which results from the macroscopic constraint above,
that the Lagrange equations of motion imply simultaneously the equations describing the motion at the
single particle level and the equation describing the macroscopic motion under stationary conditions.

The Lagrangian L averaged, at a given instant of time, applying a Maxwellian distribution to the
single particle velocities, is related to the magnetic entropy S, by the equality L =U + TS, where U is

the thermal energy (3/2)j nTdv.

It will be shown that the present thermodynamic description holds at scale lengths much larger than
the screening length 1, :(mc2/47znqz)l/2 arising in the system of electromagnetically interacting
particles [1], [29].

The quantities introduced in chapter 1, for instance the generalized temperature z, will find their

physical interpretation through the process of average.
The Lagrangian L can be splitin a part L, that describes the motion at the single particle level and

inapart L, related to the macroscopic configuration. This separation allows for treating the collective

part independently of any assumption on the velocity distribution at the single particle level. The

collective part is averaged applying the coarse-grained canonical distribution (3.5). It is shown that the
vanishing of the averaged variation 5L, with respect to suitably defined variations of the equilibrium
implies 65, =0,6D,, =0 and that the vector potential must satisfy the equation V x V x Ap +y2Ap =0

in an isolated system and in the limit (I, )2 <<1.

When one assumes that, in the same limit, the canonical average of the variation oL of
L=L, +L, is equal to its time average, one finds an equivalence relation between the Hamilton’s

action principle and the vanishing of the first variation of the magnetic entropy.

22. Lagrangian motion of the particles with macroscopic constraints

We start from the Lagrangian of a system of N independent particles with mass m and charge g
moving with velocity \7n =dX, /dt in a magnetic field described by the vector potential A()?,t):

NP NP

L(t)= %2\7”2 + %Zvn AR, 1), (22.1)
n=1 n=1

where

ACY e (x,.1), (22.2)

a
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For comparison with the point of view of the magnetic entropy concept, we must see how the
coarse-graining of the magnetic configuration and the constraint (2.3) implied basically by this concept,
can be taken into account in the Lagrangian formulation of the motion.

We consider the Lagrangian at a given instant of time t, and divide the particles into groups whose

guiding centers are contained at this time into volume elements AV .
The average velocity of the particles present with their guiding centers in the element AV, at t, is

then given by the expression
_ ~dX,,
0i(t)=1 ZV ()= &gt
J n=1 J n=1
where N; >>1 is the number of such particles at that instant.
We now look at the equation of motion of the group of N; particles, thus identified at t =t, as is
described for t > t, by the action principle involving the Lagrangian (22.1). The variation of the action

(22.3)

will be calculated under the condition that the motion is associated with a prescribed value of the
quantlty

d an ARV, (22.4)
where n; = N; /AV, is the density and
Nj
X;(t)= @/N D%, (1), U,(t)=dX, /dt = Zv (t). (22.5)
n=1 J n=1

The constraint (22.4) expresses the fact that the magnetic interaction energy of the system of
particles with the macroscopic part of the vector potential is fixed. The value of (22.4) will be
determined in the next section where (22.4) will be compared with the similar constraint (2.3)
introduced in section 2 for the derivation of the magnetic entropy.

Introducing the Lagrangian multiplier A, the Lagrangian of the constrained motion is expressed as

Np No
=%Z_£Vf +%Z_l:vn AR, 1)+ 2L g ZZV A(Xt) (22.6)

j=1 n=1

Let us single out the k-td partlcle belonging to the j-td group of N; particles. The equation of

motion is given by

iv L-V,L=0. (22.7)
dt %
We have o
0w, 23, -AlX, )= LA, )= 3, v, A% o) A
‘ j n=l dt n=1 " a
=—ZV -V A(Xj,t)+%j’t):gj.VXjA()Zj,t)dea‘(;i’t). (22.8)

j n=l
(Note that Vxn)zj = (1/NJ.)V>Z ). The first transition in (22.8) is a consequence of the fact that only the
k-td particle among the N; particles contributes to the derivation; the subsequent equalities follow
from the relations (22.5). The contribution of the A —term to the equation of motion is then

GIEAR » R

=1 n=1
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,1q [Lt) uj(t).vx.',&(ij,t)—anUj(t). A(Xpt)J -

2C a j J
A0 ( =(= - -
- —2—2(CE(X L)+, () B(X 1)) (22.9)
and the equation of motion takes on the form
)1 (5, 0+ 5, 23 L, <K, 1)+ 0%, 2210

Let us sum both members of (22.10) over the group of N; particles at the time t=t, when all N,
particles are in AV;. After dividing by N; one has

1 (U d\7k 3 aY1l. =(c R
mN—j(z - L —(q+/1§j[gujx8(xj,to)+ E(xj,to)j, (22.11)

k=1

where we have supposed that B is practically uniform in AV so that é()?k,to): B()?J.,to). We shall see

in the next section that A is very close to —2 but it cannot be identical to it. This means that

N
(dUk /dt)t:to = (1/ N, {Z dv, /dt} is very close to 0 and that the macroscopic system tends to be
k=1 =,
stationary, even though not exactly stationary. If we want to eliminate any arbitrariness or indefinites
in our conclusions about the behavior of the system, while remaining consistent with the result above,
we are forced to admit that the two members of eq.(22.11) must vanish independently. So we obtain
the equations

[dﬁ(;-t(t)j _o, Lo xB(X .1, )+ E(X .t )=0. (22.12)
t=t,

Since this reasoning can be repeated for any group of N; particles in any AV, and at any time
t=t,, we conclude that, under our assumptions (in particular eq.(22.4)), the motion at the collective
level should be always stationary everywhere and described by the equations (22.12) at any time.

Taking into account (22.12), eq. (22.10) gives

md\zkt() q( V, x B(X,,t)+ E(xk,t)} (22.13)

This equation describes the motion at the level of the individual particles. Thus the introduction of
the constraint (22.4) has made possible a unified Lagrangian description of the motion at the two levels.
The macroscoplc equation of motion can be completed with the introduction of the effects of the
pressure tensor P and of the dissipative forces R. This can be done in a phenomenological way,
accordlng to a standard procedure of classical mechanics [28], by defining

j dt_z'[( ———J-a” dt—(1+ jzl:itj F(X, (1)) o, dt, (22.14)
where
FX,)->(v-F-R) (22.14)

By following the same lines as above we arrive at an equation of the form (22.11) involving the
term F(X;) so that the macroscopic equation of motion becomes
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o |lo

(6, xB(X, t)+ E(X, .t)-2(v-B-R)=0. (22.15)

23. The relation between the magnetic entropy and the Maxwellian average of the Lagrangian

In this paragraph we assume that the velocity distribution of the particles are Maxwellians with
local temperature in each AV, and centered at an average velocity consistent with the macroscopic

description of our model. We wish to see what form the Lagrangian (22.6) will take when the single
particle velocities are averaged, at a given instant t,, with the Maxwellian distribution. This will enable

us to see a relation between the Lagrangian description of the motion of the system of particles and the

description of the macroscopic system based on the magnetic entropy and to gain a better physical
insight of the latter. For this purpose we shall express S=S_ +§, in terms of the velocities rather than

in terms of the current density.
To simplify the discussion, we shall take the density n(X) as uniform and fixed. That is, we assume

that the number of particles N; at t =t; is fixed and equal for all AV;. In fact the fluctuations of
J; =0qN,U;/AV; (q is the electron charge) arising from the Poisson’s fluctuations of N; in AV (with
N; >>1) are negligible with respect to the fluctuations arising from the random velocity \7n.

We suppose that an organized or macroscopic velocity distribution \7()2) IS present in the system
superimposed on a random velocity \7n. That is to say, the particle velocity \7n measured at any given
time t, is composed of a random part \7n and of a collective part \7()21.), considered as a given function
of X; and supposed as essentially uniform in each AV, so that V(Xn):v(ij)for any X, € AV,.

Thus,

VA —v(x )47, for %, (t,). X, (t,) € AV,. (23.1)
The average velocity (22.3) is then

0, =v(X,)+V}, (23.2)

where \Z = —Zv for X,(t,) e AV,. (23.3)

J n=1

Correspondingly the current density is divided in a collective part ](Xj) and in a fluctuating part

J; according to the expression

=qni; = an()Zj)+ nq\7].

Here jj and ]()ZJ] are the same quantities introduced in chapter 1; in particular ?=n2q2\7
satisfies the relation (4.9).

In accordance with the constraint (2.3) of the statistical model, the velocity \7j is not vanishing in

general but it results from the effect of the collective field on the fluctuating background described by
the interaction energy @, . In absence of this interaction the collective system and the background are

isolated and the average Vj vanishes (see (17.3) and (3.7b), where TJ. = nq\7j ).
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We consider a plasma magnetic state in the absence of electric field, so that the collective vector
potential Ap (f( j) does not depend explicitly on time. Then, taking into account (23.2), the condition

(22.4) becomes (see (2.5) and (2.6))

%ZN:”J(V(XJ-)“z) ( )AV =0+, (23.4)
j=1
where
N = ~ -
%anvj A, (X j )Avj =Dy (23.5)
j=1

When the organized velocity \7()?1.) is subtracted from the velocity (23.2) averaged in AV, still

remains the average contribution \7j of the fluctuations \7n in AV;, due to the non-vanishing

interaction @, . Consistently with (3.7a), this average velocity for the group of N, particles in AV, at

int*

t=t, is given by \7j :—\7()? ) (y c/47znq) ( ) We then consider that the distribution of the v

velocities of the N; particles in AV, is a Maxwellian centered in VJ. and with temperature T;, namely

we put
. - N; L =
i..7 )=T1 fn,j(vn —vjj, (23.6)
n=1
where
—\2
_ N m(?n —\71)
folv -V |=| — exp— —————=——. 23.7
(o-9) (MJ S -

By averaging (23.3) with the distribution (23.6) one obtains

\7_j——zjv d°3 - —\7(>Zj)+(‘£:jl\p (x,) (23.8)

Jnl

Then the average of (23.5) is D = @, where @, isthe same as (3.7b) or (5.5).
Using (23. 1) the Lagrangian (22.6) at the time t, takes on the form

Zz~2+ Z( ( )+2v(X)\7jjnAVj+

j=1 n=1

L4 & (% l q

= e V.. 23.9

c Zzll 2 c ( )A ( )
The first term can be e xpressed with the Maxwellian temperature after performing the average with

Ny
a Maxwellian distribution of the single particle velocities V.. One obtains (1/ Nj)zvnz =3T;/m (we

assume ~‘ < (2T /'m)"'?), so that the term becomes equal to the plasma thermal energy

NNy —— N N
M ST =23 NT, =33 nT,av, =U. (23.10)
23 23 23

Let us calculate the average of the third term applying the distribution (23.6):
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(23.11)

2

=SS _ng( (%) CV(XJ')‘Z\“(X")]'

4/mnq

where the relations (4.3) and (5.1) have been used.

We now consider the fourth term
N

0. A ()= B3 A, 0= S Wl ) £,)s 37, @a12)

n=1 j=1 n=1 j=1
Here we take into account the fact that the positions X, of the particles grouped in AV, at the time t,

cannot be distinguished due to the coarse-graining of the configuration at the scale of AV . Thus
A, (%,) can be identified with Ap(Xj)for any X, € AV,. With this in mind and recalling (23.2) and

(23 3) one has
Zv A A (X v, (23.13)

This term comblnes with the last term of (23.9) to give (1 +2)(CD+CDim) after taking into account
the Maxwellian average of (23.4) where U; is defined by (23.2). We are now in position to write the

average of (23.9):

T ) RECHITEY

=1

W(%,)-A, (%, )JAV (142040 )=
—U+ ";”ii—vz(ij){fzc +[1+%]i]\7(>2j)-lip(ij)}vj +(A+2)D. (23.14)

= agn mc

The relation above contains the Lagrange multiplier A, which should be determined by the
constraint (22.4) after prescribing ® + ®. . However, as is customary in statistical mechanics, one can

int
reverse the procedure and consider instead the Lagrange multiplier 4 as the primary quantity. This is
the way followed in ordinary statistical mechanics for introducing the temperature and indeed we shall
see presently that even in the present case A is related to the generalized temperature .

We start by observing that if A4 is chosen in such a way as to satisfy the relation
2

2.2
q(“cmwuz] HE or pep=_#C¢M (23.15)
mc\ 27ng° 47nq 4nq?

the average of the Lagrangian can be expressed as a linear function of the magnetic entropy and of the
plasma thermal energy only. Indeed, applying (23.11), L takes on the form

C=U+MAY72 4 (2420 (23.16)

int*

_ _ N —
Here V' * is defined by (4.2) as V> =(1/ N )Y V> where, recalling (23.3),
i1

N .

1 (G- 3, = s
= W{Z;Vnz ZZV ] (23.17)
io\n=

#n'

/| << (2T /m)""?, the particle-particle correlation can be neglected, so one has
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N —

= 1 > 118z 3
Y] =Wj21:vj WZ_. Vis T, (23.18)

where N; =nAV and T = > T,/N. Thus, the generalized temperature  is related, in accordance with

=1
(5.3), to the Maxwellian temperature T by the relation
_47zAVn2q2\72 _4mng? T

- = 23.19

3u’c? 1c’m ( )
It follows that
2.2

Ay2=_tEM_T (23.20)
4dmg-

and the expression (23.15) for L becomes simply

L=U+T(S,+S,)=U+Ts. (23.21)

In the case of the tokamak the value of A is arbitrarily close but not identical to —2. Indeed, as we
know (section 17), the value of 47 is arbitrarily close but not identical to 0 (as would be required by
exact minimization of the poloidal magnetic energy within the family of the SME solutions, see
section 17). In other cases (the cases considered in section 10 and in chapter 3) |;z|’1 is a characteristic
length of the magnetic equilibrium. Taking, say y<(20cm)*1,n >10"cm™® and assuming that the
current is sustained by electrons, so that g and m are the electron charge and mass, one finds
4°c’m
4mq?

The value of A is then very close to —2; the parameter =, which is negative, becomes infinitely
negative in the limit 2 — -2 and the eq. (23.21) reduces to
L=U+TS, (23.23)

The inequality (23.22) has an interesting physical meaning. It means that (,ule)2 <<1, where

<10™, (23.22)

l, = (mc2/47znq2)1/2 is the screening length of the vector potential created by a particle in a system of

electromagnetically interacting particles as was discussed first by Bohm and Pines [1]. For a more
recent treatment see Essén and Nordmark [29] and references therein (in the theory of the
superconductors the length |, with the appropriate definition of m and q, describes the penetration of
the magnetic field in the superconductor and is called the London penetration length). It follows that
the characteristic length of the magnetic plasma equilibria described by the present approach must be
much larger than the length below which the effects due to particle discreteness are important and

where the particles can be treated as effectively free and the collective effects can be neglected.
The change of entropy of the background &S, = &, /7 vanishes in the limit 4 — -2,z — —oo, but

is otherwise positive (albeit infinitesimal) when &, <0, for instance when energy is reversibly

int
int
supplied from the background to the collective system. The parameter z can then be interpreted
formally as the temperature of the background consistently with the well-known fact that statistical
systems with negative temperature are “hotter” than systems with positive temperature, so that their
entropy increases when heat is released.
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24. The relation of the first variation of the magnetic entropy to the first variation of the
canonically averaged Lagrangian and to the action principle

The relation (23.23) suggests that the variation 65, at constant Maxwellian temperature T could be

related to the variation oL of the Maxwellian average of the Lagrangian. In this section we shall
investigate the form of this relation when no assumption is made on the probability distribution of the
single particle velocities \7n. We shall see that there is a significant implication between this relation
and the dynamics of the particles.

We start from the Lagrangian (23.9) taken at a fixed instant of time t=t,. This Lagrangian can be
split in two parts L(t,)=L 5(ty)+ Ly (t,) where, recalling (23.1), (23.2) and (23.3)

N; Ny N; =
L)="3 57+ 95 3% A (%)="3 377+ 93 nav v, - A(X )=
29w Citm 29w Ca
- (24.1a)
mz: V2420,
2 j=1 n=1
N _ _ = N - —
Lx (to)zgz VZ(XJ)+ ZV(XJ) Vj)nAVj +%Z\7(XJ) AP(XJ)nAVi
= = (24.1b)

AQ
+—= AV,
95,4, (5
The Lagrangian Lp( ) describes the unorganized motion at the single particle level and should be

ascribed to the background, according to our scheme. The part L, arises from the collective motion of
the macroscopic system, that is the motion seen at the coarse-grained level measured by the AV;.

We take the average of L, at the instant t=t,, applying the canonical distribution (3.5), which in
terms of the velocity reads

o 3N/2 1 =  =\?
P_(;j VL exp[— a(vj —ij ] (24.2)

where a = 3/2V . One has

V, = (X, )+ et 1ama)A, (X
=
Thus L, (t,) is given by the equality

)i (24.3)

J i)

Il
<
X

(C,u /47znq) ( )

N - SN - [ 252 -\ - (=
LG, :g;(_vz(xj)% iR A (X )+ (fmﬁ +%]v(xj).Ap(xj)jnAvj ,
+g—céﬁ/¥(>@)ﬂj = (24.4)
N _ 2 R oo N . Lo
) L e X o 3 EL RN 2 W

where the relation (23.20) has been used in the second transition.
We consider arbitrary primary variations &K, of the X (t,). The oX, produce a variation of the

X (t,) given by
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= _Zé” (24.5)

] n=1

In turn the éXj produce a variation of the )Zj — dependent quantities \7()21.) and Z\p(i,) (,&p is

treated as a given, albeit unspecified function of space)

§i(X,)=oX, -vi(X,), oA (X,)= X, -VA (X, ) (24.6)
One obtalns the following expression for the first variation of L, (t, ):
—  mnd - ,uzC qu N N
- | —2v. ——A, - : 24.7
: JZ_;AVJ( 20+ s A )j ZAV( 5 A+ — 5Apj (24.7)

For comparison with the magnetic entropy it is convenient to express the variations in terms of the
current density ](f( .)= nq\7(>? )

T, = g 3o <26, A2 ) ot 4, ) )
—AZAV( (( )R, + A (X))~ 2

A

A, oA, ] (24.8)

Thus, the variation of & , as well as of A, can be expressed in the form & = ¢, -VT()ZJ.),
oA, =&, VA, where & =X is a displacement field &, =$()?j]. One can choose E(Xj)according
to physical requirements (for instance, incompressibility), or one can consider the variation éf()zj) as
primary and determine 5()?]) by solving the inhomogeneous linear system of equations

J(X;)=¢, V](Xj) and then choose a set of variations &%, consistent with (24.5).

The two terms in the right hand side of (24.8) are related respectively to the first variation &5, of
the magnetic entropy, and of the variation o,, of the interaction energy, with respect to arbitrary
primary variations Jj (X ) or gf(xj ) The variation 6L, (t,) then takes on the form

Ay (t,) =035, + A5D,,,, (24.9)
with
2 —
08, =25 Ij-(]—‘;—cﬂp)v-gdg, /wcpim:—i A, - (J——AJV £dQ, (24.10)
Q T

where G):m\ﬁNjIB (®=T in the case of the Maxwellian distribution of the single particle

velocities, see (23.18)).
To show (24.10) we consider the equalities

ZAVJ( JE-VA (j.):ﬁg.w&pdg:iv.(g(j.Ap))dg_iﬂp.jv.gdgz

Q

—IA € vi)e, (24.11)
Where
Iv-@(}- A, )po= I(j A, B xdS. (24.12)
Q X _ _

We assume that the surface integral is vanishing either because £xdS=0 or because, more
stringently, & =0, which implies &] = 5Ap =0 on A2, Then we obtain the relation
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J-j'é,&deJr J ApﬁfdQ: J‘].Apv.gdg

Q Q Q
(24.13)
and similarly, the relations
- = 1ez,0 = + = 1iwpe =
IAp-5Ade:—EIA§V-§dQ, j;-éde:—Ejjzv-gdg. (24.14)
Q Q Q Q

The equalities (24.10) follow from these relations and from (24.7).
Thus 6L, (t,)=0 leads to @55, + A6®,, =0. This implies, recalling (24.10), that the plasma is

in (24.9) must

incompressible, V-E:O or, for an arbitrary E that the integrand of ®JS, + 150

int
vanish. In this case, defining C = j — (y20/471')5\p the following equality must hold:

m - =z A+ =

-C——A,-C=0. 24.15
2ng® ) 2c ° ( )

We shall show that this equality is satisfied only by C =0. Indeed, by eliminating Ap with the help

of the definition of C one has

2.2
MEE__j|j-C+ac? =0 (24.16)
47an

Recalling the considerations at the end of 822, the first term is negligible (recall eq. (23.22) and its
physical interpretation) so that C-((f—i)=0 and applying again the definition of C we can write
C- A, =0 from which follows, using (24.15), that C-  =0. Then (24.16) implies C* =0.

As a consequence of this result the two terms (24.9) vanish separately, that is the condition
AL, (t,)=0 implies &5, = 0,60, =0 and A  must satisfy the equation
VxVxA —i’A =0. (24.17)

At the same time one has from (24.3) and (23.5) that V = ®,, =0, which is consistent with the fact
(recalling the meaning of ®@,,) that the unperturbed, as well as the perturbed collective system, are

isolated.
Finally let us note the curious coincidence that, if one assumes that the canonical average L, (t,)

(where L(t,)=L,(t,)+ Ly (t,), see (24.1)) is equal to the time average over a long time interval t, - t,,

1 t
oL ()= [ oL, ), (24.18)
2 by

U

t;
one would find that the Hamilton’s action principle jéL(t)dt:O implies 65, =0 in the limit

4
(Ieﬂ)2 << 1. Indeed, from (24.1a) one has (for isothermal variations, that is to say, by keeping fixed the
sum of the kinetic energies of all the particles)

oL, (t,) = 250, (24.19)
Combining (24.18) with (24.9) and (24.19) one obtains
b e
t 1t [oLthdt = oLy (t,)+ oL, = (2+ 4)3D,, + O, > O3, (24.20)
27y

The term in the left hand side vanishes in view of the action principle and the equations of motion
(22.12) and (22.13). It follows that in the limit (Iey)2 <<lor A—-2one has &5, =0. Conversely,
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applying the more restrictive condition dL, (t,)=0, one has not only that 3S,=0, but also that

t
o®,, =0 as shown above, and then j SL(t)dt follows according to (24.20).
4
The primary variations considered here are the variations ¢ (t) (vanishing at the boundaries t, and
t,) of the positions of the particles in AV, with respect to the positions X, (t,). The &, (t) produce the

variation X of the X, according to the (24.5); S, and @

interpreted as the time average of (24.5):

E=t INLZ &K, (t)dt (24.21)

tz _tl t, o Vjon=l

are varied as above where the &; are

int

Np . .
The restriction to isothermal variations requires that Zin (t)X, =0. In view of the extremely
n=11

large value of N the arbitrariness in the choice of the &%, (t) is practically unaffected by this condition.
The result above shows that, under the hypothesis (24.18), one has 55, =0 as a consequence of the

t
equations of motion (implicit in Id_(t)dt:O) and therefore the entropy is conserved at first order.
b

However the same does not hold for the second variation. This reflects the fact that the entropy is
basically not a dynamical quantity, but an interpretative and predictive tool based on probability and
information. Nevertheless we have seen in many examples (see chapters 2 and 3) that the negative
second variation of the entropy is related to the positive second variation of the magnetic energy. This
can be seen as a minimization of the energy under the optimization condition that the probability of the
configuration be at a maximum.

CHAPTER 8: Statistical model of electrostatic collisionless equilibria

Summary: The statistical model developed in chapter 1 and applied there to magnetic equilibria is
extended here to the case of collective electrostatic equilibria. The entropy functional and the other
thermodynamic quantities are calculated with the procedure of chapter 1, sections 2-5 by operating in

the information space where the current density 51. = I(Y()+T is replaced by the charge density
o; =a(>?j)+ o; and the collective vector potential A()?j) is replaced by the electrostatic potential

(p()? j). The partition of the plasma volume into volume elements AV is such that the collective effects
1/3

are visible at scale lengths much larger than AV, where (AV) " < 4, (4, is the Debye length).

One can consider reversible transformations in which electric charges and electrostatic energy are
exchanged between the collective configuration and the fluctuating medium, which acts as a reservoir
of electric charges. These transformations correspond to the magnetic transformations considered in
section 9, with the exchange of electrostatic energy by means of exchange of electric charges,
replacing the Poynting flux of electromagnetic energy.

The entropy change of the collective system defined by means of the reversible process above holds
also when the medium is not considered or the collective system is isolated from the medium and
undergoes an irreversible transformation with entropy increase.
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It will be shown that the minimum of the electrostatic entropy corresponds to the instability of the
collective equilibrium predicted by Vlasov equation. Any distribution function with a single maximum
is stable and corresponds to the maximum of the entropy. The Maxwellian case is contained
consistently in the theory.

The electrostatic interaction energy with the medium can be expressed in a phenomenological way
in terms of a dielectric constant that describes the reaction of the plasma, considered as a polarizable
medium, to the presence of a collective charge. The plasma is unstable with respect to the variations of
the charge density around the marginal point such that the linear dielectric constant becomes negative.

It will be shown that the total entropy S=S_ +S, is at a maximum with respect to variations of the

bifurcation parameters (e.g. the temperature gradient) around the marginal point.
25. Thermodynamic formalism for electrostatic collisionless equilibria

The entropy pertaining to a collision-less electrostatic equilibrium can be constructed following the
same procedure of chapter 1 after replacing the current density Jj = ](XJ.)+ L averaged in the
volume element AV, with the charge density o; = a()?j )+ ;. The value of AV measures the coarse-

graining through which the electrostatic collective equilibrium is seen: collective effects should be
visible at the level larger than the coarse-graining described by AV . This means that (AV)“3 must be

lower than the Debye length A :(Ts/47znsq§)1/2 of the species s forming the plasma, and that

particles in AV can be considered as effective free particles as shown by Pines and Bohm [2]. In
addition AV must be large enough for containing many particles.

The collective charge density a()?j) is considered as superimposed on a background or medium of
independent particles and the fluctuation of the number of uncorrelated particles contained in AV,

gives rise to the charge fluctuation o . The electrostatic energy of the collective field is
D= (1/2)] o(X)p(X)dQ. We neglect the particle-particle correlation but consider instead the particle-

Q

collective field interaction described by the interaction energy @, between the fluctuations &; and

int

the collective potential ¢(X). Just as in the magnetic case ®;, will prove to be a useful device for

int
describing the interaction of the collective system with the external sources of electrostatic energy and

will acquire a definite physical meaning.
The probability distribution of the charge density P(o;...0,;X,...Xy ) is then constrained by the

condition

%jZN_;jP(al...aN %, %y No(®, )+ o, (%, AV, dr =@ + D, (25.1)
where (similarly to (1.3)

o zgggo(zj)f(xj)avj, (252
and

1 N
D, =§J.P(al...an;xl...XN )jz_;aj(”(xi)Ader' (25.3)
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Here dI'=AV"do,...do, ; AV =N/V measures the partition of a large volume V of plasma,
electrically neutral in the average, surrounding the collective charge distribution o(X) localized in a
volume Q<< V.

The vanishing of @, , characterizes a “purely’ collective equilibrium in the sense that the interaction
with effects involving particle discreteness are ignored and only collective effects are considered. So,
the condition @, =0 is the very definition of “Vlasov” equilibrium in our phenomenological picture.
In fact we shall consider variations around the Vlasov equilibrium with @, , # 0 and this will describe
the exchange of energy between the collective system and the medium associated with exchange of
electric charges. So, in the presence of this interaction the system is no longer in the “pure Vlasov”
equilibrium.

A further constraint arises naturally from the fact that the o, in view of their fluctuating
component &, are random variables whose values are subject to dispersion. Similarly to eq.(2.7), we

introduce the constraint
N

A_02=%Jp(al...cz;il...in)Z(aj)ZdF. (25.4)

=t

The probability P is calculated from the requirement that the entropy S:—JPInPdF be

stationary with respect to variations of P under the constraints (25.1), (25.4) and the normalization
condition J PdI" =1. At this point we follow step by step the calculations of sections 3 and 4 and

arrive at the relations

eXp_i“("J _‘7_1)2 EXp_i“(‘}i _5_1)2

Plo,...oy ;% ...% ) = = = I , (25.5)
(@1 0ni % Ry AVN (1) AVN (1)
where
— = 1 (.
o, =olx, )+ =—5— (%, Jav,, (25.6)
— —2 1
imO =5 (25.7)
N — N
Aot =L (%, )+ Ao, +iz&f,where Ac, zgzgja(f(j) (25.8)
N 4 N N 4
After application of the thermodynamic limit (V — o0,N — 00,AV =const,Q/V — 0) one finds
. _ [e*(x)e
rT=—=-AVg*& — | (25.90
2 O+,
Aol=ol-g =t 52 where ?:iig (25.10)
Pl 2 NE '

The entropy S is divided in a part S, pertaining to the collective system and in a part S,, which
contains the effects of the medium

S=S,+S,, (25.11)
where

N 1 _ 1 AVG?
S, =—Ac, = — | o(X)o(x)dQ =— — | [c3(X)dQ + o(X)p(X)dQ |, (25.12)
e L L [T RO
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j J (25.13)

T Q Q

o, 1 = 1(c
Sb=—t=ZJ-Q(padQ=—Z[J. (%)oo( )dQ+

The free energy is given by the same expression (4.8) as
F=-©5,6+0. (25.14)
In the equalities above terms tending to infinity with N have been neglected. For instance the exact
form of S, would be
. —\L/2
s, = P, N In(AV (2;:52)‘ j+% (25.15)
T
Indeed, one sees that these terms are independent of the quantities of the collective equilibrium and

do not contribute to its variations.
26. The electrostatic entropy concept

We consider a neutral plasma perturbed by a single collective k- mode
o()?,ki,a)): (1/(2)“20k exp ilZ)?—icot) (k; are the components of k ) and assume that a mode

o, (x, m.,a)m) exists which is marginally stable with real k@, so that a reference frame can be

found where the mode is time independent. Thus, in this frame the mode describes a static electric

equilibrium to which one can apply the concepts of canonical ensemble and of canonical P — average
implied by our statistical procedure. We also assume that the equilibrium o, corresponds to a

vanishing interaction energy ®,, =0, in other words there is no electrostatic interaction of the
collective system with the fluctuating medium and o,, is a pure collective mode in the sense of Vlasov.

In general one can write o, = o (x @, 77) where 77 denotes the set of parameters that characterize

H m|l

the particular dynamical situation at hand, expressed by the specific form of the ion and density
perturbations on, on, building up the electric charge density o = e(5ni — o, ). During the perturbation

the parameter 7 is kept fixed to its equilibrium value

- |eadQ G’
SR NVE=1 J _ _4”Ak\§a | (26.1)
2 —Jam(pmdQ m
where kZ¢, =470, . Then the variation functionals S, and S, take the form
1
S, = —| - | o%dQ+-" | pdQ |, (26.2)
" 2Av ~2[ i 47rI ]
@, k2
S, =—"=- - ¢(G——§D]d9 = —J(padQ (26.3)
T 2 4

where o=0,, + do and ¢ =@, + 5p and use has been made of (25.6), (25.7), (25.10) and (26.1).
It will be shown that 55, =0, provided the total collective charge is conserved in the variation. Indeed,

let us start from the first variation of S,:

P — ( 2o 5adQ+—j 9,00 +0, 5(p)dQJ (26.4)

" 2AVG?
The application of the Green’s theorem gives
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jamﬁq)dQ = —LJ. (Vzgpm )§¢)dQ =
1 ary 1 (26.5)
2 B}
‘EI(V 5k, 4O ‘Ei}(w‘”m - p,Vp)-dS.

We assume that the boundary surface &2 is equipotential, thus 6p=0 and ¢, = ¢, =const on X2.
Substitution of (26.5) into (26.4) and use of the Poisson equation for the electric field leads to the
expression

2
&K, = 1~_[—Iam50d§2+k—mj-(om50'd —&Iﬂé-ng:
2AVG2\ 4 4y 4r 3,
k? ~
Sty [v.Eda =2 [sodo,
327°AVG? ) 27,
and 65, =0 follows from J 00dQ =0 (we exclude the case ¢ =0, so that the result does not depend
on the arbitrary choice of the reference potential). One also finds that 65, = -dS, =-&®;, /7, =0 with

(26.6)

int
a similar calculation. This means that there is no exchange of electric charges and of entropy between
the collective subsystem and the medium and that the entropy S=S_ +S, of the total system is

unchanged at first order. In the case J&on;t 0 the relation oS, = -5, still holds with &5, =0, apart
from the adiabatic variations dp = (471'/k§])50 with respect to which 65, =65, =0 and the variation of
the collective charge is zero. Indeed one can verify that the first variations of S (26.2) and of S,,(26.3)
with respect to primary variations o = (47z/k2)§a are related as follows:

oD

T

int (26.7)

&5 —ij 150 \soda = —s, = -
JEPYS Ll s :
In this case the collective subsystem is not isolated but exchanges entropy and electric charges with

the medium. We shall return to this point in section 27.
Let us consider the second variations of S, and of S,

2 1 Kn 2 2 ks Kn 2
8’8, =———=[|1--2(6o)*dQ, and 6°S, =2 [| 1- 2 (o) dQ. (26.8)
2AV G° k k k

These relations hold independently of the value of the total charge variation J 0odQ. One has
(summing up (26.2) and (26.3))

2 2
525 = 52(s, +sb)=—2A\i§j(1—t—";] (So)?d <o. (26.9)

The entropy of the total system is at a maximum (the adiabatic variations apart) and the total system
is therefore globally stable. The collective subsystem, at the contrary, can be stable or not in its
interaction with the medium depending on the sign of SZSp.

It is essential to note that the entropy change of the collective subsystem holds also in the case
where a medium is not considered and the collective subsystem is isolated and undergoes an
irreversible transformation with entropy increase, while the same amount of energy —o®,, (see (26.7)),
exchanged in an equivalent reversible process with the medium, is transformed and eventually

dissipated internally to the subsystem. This irreversible process is associated with the same second
variation of the collective entropy 628p as that given by (26.8). The sign of 528p establishes a
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direction in the evolution of the collective subsystem, namely the collective system evolves, when
isolated, only along directions such that 528p >0. Therefore 528p <0 implies stability and 528p >0
instability.

One sees from (26.8) that the unstable situations occur for the modes with k* < k?. We shall see in
the next paragraphs that these thermodynamically unstable modes are associated with reactive (non
dissipative) instabilities. For example, the reactive (non-resonant) modes predicted unstable by the
dispersion function of the Vlasov equation associated with symmetric distribution functions in velocity
space that are the sum of two Maxwellians centered at displaced velocities +v, whose difference is
sufficiently large and the minimum of the distribution function sufficiently deep. This is the case of the
two-stream instability.

Any distribution function with a single maximum is stable according to the Vlasov equation and
corresponds to k? <O,525p <0 and to a maximum of the electrostatic entropy. Detailed examples of
stable electrostatic equilibrium and unstable situations associated with k® <k’ are discussed e.g. by
Bernstein et al. [30].

For illustration’s sake of the observations above let us consider the simple case of the electrostatic
equilibrium described by the one-dimensional Vlasov equation, static in the laboratory frame of
reference

v O A g (26.10)
X m N
E
where — = 247zqu f.dv. (26.11)
XK 5
Combining the two equations above one readily derives an equation for the electric field
2
K (E =0, (26.12)
X
4my’ o A&
where k2(x)=) —| —dv. 26.13
() ZS: m, -[ VA ( )
In the Maxwellian case one has
2
k2 = —47zzq;i <0. (26.14)

The entropy S is at a maximum and —kfn is the sum of the inverse square of the Debye lengths of

all species. In this case the equation (26.12) does not admit oscillatory solutions.

An oscillatory one-dimensional static solution of the electrostatic VIasov equation is always associated
with a non -Maxwellian distribution function and with a positive k?.

The solution of (26.10) must be a function of the energy, namely f =f(&) where
& =(@1/2)my? + .. Thus (26.13) becomes

k2= 4 Ij—gd%. (26.15)

The condition & /2 >0 in some domain of velocity space for at least one of the species, is
necessary for k2 >0 and implies thermodynamic instability.

See the paper by Bernstein, Greene and Kruskal [32] for a nonlinear treatment of the solution of egs.
(26.10), (26-11),
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Recalling (26.1) and (26.14), in the Maxwellian case 7 is given by the expression
AV G*?

_ 0. 26.16
> (a2n, )/, - (26.19)

S

The mean square deviation in the number NS =n,AV of independent particles of species s

contained in AV is given by (ﬁ_f—ﬁ_sz)AVZ =n,AV (where n, =E) and the variance of the charge
density of the system of uncorrelated particles with charge g, in AV will be

T:qu(ﬁ ) qus (26.16)

Then,

Zq_f n,
qun /T

When all species have the same temperature T, 7 is identical with the Maxwellian temperature T.
The Maxwellian case is then contained consistently in the present approach.

In the case of an inhomogeneous plasma one can define an electrostatic entropy functional which is
sensible to the local structure of the equilibrium following step by step the same lines of section 11 for
the magnetic case. Taking in mind egs. (11.2), (11.3) one can write the following condition, which is
sufficient for the minimum of the electrostatic entropy and for the linear thermodynamic instability of
the one-dimensional Vlasov equilibrium

| (p—o)o-o)ix>0, (26.18)

where Ax is the characteristic length of the equilibrium and @, are averages in AXx.
The criterion above has been compared with the results of numerical simulations in the case of self-
consistent inhomogeneous gravitational and electrostatic equilibria [32-34].

(26.17)

27. Physical meaning of the electrostatic interaction energy

The electrostatic interaction energy has a precise physical meaning, which we are going to illustrate.
The first variation of ®,,(26.3) around the equilibrium o, =k’¢, /47 with respect to variations

Sp=(4x1k* Yo has the form

k

As noted above (section 26) one has 6@, =-7,65, and comparing (27.1) with (26.6) one finds that

| 50dQ 0 implies k? k2 and 50,

Q is accompanied by a perturbation k® = k2 away from marginal equilibrium. The value of k2 will

depend on the set of parameters 7 that characterize the physical situation at hand around the marginal

equilibrium and may depend also on the components k_ ; of k as well as on the marginal frequency
®,,, supposed to be real. Introducing the definition

kri(kmi’a)m177)

)= el o)

2 —
5D, = —%I@méa(l—k—r;JdQ = % [pnocdQ. (27.1)
Q Q

# 0. It follows that the variation of the total collective charge in

int

e, (k. k, o

Y m,i m’

, (27.2)
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the first variation of ®. ., becomes

int

1 1
oD, = —Ejgomgméo'dQ = —Ej¢m5aeﬁ dQ, (27.3)

where (see .(27.1))
00 4 =&,00 = -56
is the effective charge which determines the amount of electrostatic energy transferred from the
collective system to the medium (when &D,, >0) or vice versa, in a perturbation that brings the
system outside the marginal equilibrium. In this way ¢, acquires the meaning of a dielectric constant
and @, #0 is the response of the polarizable medium, which reacts when a free charge distribution
o(Xk,o)(k=k,) is introduced besides the preexisting collective charge distribution
O =0 (XK, 0,,7) Of the (initially) isolated (@, =0) collective equilibrium. One can also say that
the transition from the state o, with ®; =0 to the state o(X.k, @) (k=k,) with 7 fixed and
@, #0, simulates the reaction of the medium to the (reversible) exchange of free charges o between
the collective system and the external world (feigned by the medium).

In the absence of interaction one has from (27.3) that &, (k,,,®,,7)=0, or k* =k (K @n, 1), which
is the dispersion relation of the purely collective (Vlasov) mode o, .

This interpretation of the electrostatic interaction energy can also be seen from another point of
view open to generalizations. The electrostatic equilibrium is characterized by a specific functional

dependence (in general non-linear, see the examples in chapter 10) of the charge density on the
potential o, = o, (¢, ), which follows from the solution to the static Vlasov equation, involving the

potential ¢, through the constants of motion. A generic perturbation a(IZ, 7() of this equilibrium can be
considered as formed by two parts
o= O-m((om +(p)_o-m((0m)+o-eff J (274)

where the first part is the adiabatic perturbation, which maintains the initial functional dependence
o, = 0n(9,) of the zero-order equilibrium, and the second part o, describes the effective departure

from this equilibrium. Let us expand (27.4) in powers of ¢ obtaining up to first order

o= 3(;: P+ 0y =%(p+aeﬁ. (27.5)
Substitution in (25.3) gives

®,, = —% [ po.y d2. (27.6)
So —®@,, can be interpreted as the electrostatic energy needed for driving the plasma outside the

zero order adiabatic equilibrium specified by the function o, = o, (@, ).

This interpretation opens the question what effects the higher order terms of the expansion (26.5)
could have on the reactive process considered above and what could be the plasma response to the
non-linearity of the dielectric constant that arises from the higher order terms. We shall discuss this
question in the next sections.

Let us proceed by considering the role played by the free energy F, defined by equation (25.14), in
the charge exchange reactive process. The first variation of F is given by the equality, recalling that
85, =-05, (see section 26):

F =—1,85, + 5D =30, +5D=—| ¢ 50(s, ~1)dQ. 27.7)

int
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The quantity do(g, —1) is the polarization charge density of the medium. The polarizable medium
is therefore the reserve of free energy in the unstable plasma with &, —1oc—k’ <0.

In the reversible process of charge exchange between the collective field and the medium one can put
oF =-oL where JL is the work of the polarization charges in the potential ¢,,.

The energy balance can be written in the form
oD, + L =-50. (27.8)

Here oD, , >0 is the energy input to the medium associated with the charge exchange with the

collective system and AL is the work spent by the polarization charges of the medium. The two terms
are compensated by the variation 6@ of the electrostatic energy of the collective system.
We end this section by noting a relevant variation property of the total entropy S=S§, +S, that

emerges when S is expressed in terms of the dielectric constant &, :

S=— 1~_Iazg;d§2. (27.9)
2AV G°
We assume that a critical value 7=, of the parameters exists which corresponds to a bifurcation
point of stability, namely
Ky 0,
és gm( m a)m 77m ) — O

gm(lzm'wm!nm)zo’awm = Ow

where all quantities are real. One sees that S is at a maximum with respect to arbitrary variations
n=n,, + on around the marginal point 7. Indeed the first and the second variations of S (27.9) are

2

—_ 1_jazgm 2 ondQ=0,5°S = - 1~_ az(ﬁgm 577j dQ < 0. (27.11)
on AV G? on

The global entropy S contains the contribution of the medium and is sensible to the reactive effect

of the dielectric constant of the plasma as a whole, that is to say, the plasma including, at the

appropriate scale lengths, the collective electric field and the effective free particles which act as a
polarizable medium. In fact, the first variations of S and S, do not vanish separately with respect to

non adiabatic variations, while the global system with entropy S=S +S, can be at the

, (27.10)

m

thermodynamic equilibrium described by 65 =0. Therefore one should expect that in a reactive (non-
dissipative) instability, generated by perturbation of 7 around the marginal point, the plasma would set
itself at the critical value =7, where S is at a maximum. For instance, in the case of the temperature

gradient instability, it should set at the critical value of the temperature gradient.
CHAPTER 9: Non-linear effects in reactive instabilities

Summary: In the case of unstable plasmas and of non-Maxwellian velocity distributions the charge
density cannot be separated in a collective component and in an effective free particle fluctuating
component. The separation or screening distance described by the Debye length is a concept that holds
only for thermal plasmas and Maxwellian distributions. We consider a model according to which the
plasma with a negative dielectric constant on the unstable side of the marginal point reacts as a whole
to the instability, without distinguishing in the nonlinear domain between collective and free particle
effects, by providing promptly free electric charges for counteracting the collective instability as soon
as the marginal point is crossed. In this way the whole plasma acts as a dielectric medium with an
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effective non-linear dielectric constant, whose non-linear terms are naturally the higher order terms of
the expansion (26.5), which defines the effective departure o, from Vlasov equilibrium.

When second order terms in ¢ are taken into account in the expansion of o, (¢, + @), a term of
fourth order appears in the expression of the entropy S , appropriate for the description of the
electrostatic equilibrium in a nonlinearly reactive medium. One finds that for &, =1-(k, /k)2 <0 the
non-linear entropy is minimum for =0 and is at a maximum for a definite value of & with respect
to variations of the charge density. So, for g, <0 the homogeneous equilibrium, when considered as
isolated, is thermodynamically unstable, but the system builds up a neighboring equilibrium with a
charge density o = k*p/4 7 that stabilizes non-linearly at a definite value of & that will be calculated.
A further maximization of S determines the most probable value of the wave- number k.

In a different point of view, one introduces the probability distribution of the amplitude fluctuations
of ¢ around the marginal point according to the relation AI' = e*) where AT is the volume element
in ¢-space accessible to the subsystem with entropy S (p). One has an intrinsic background of

thermodynamic fluctuations extending from thermal fluctuations of Maxwellian plasmas in the stable
side of the marginal point to fluctuations at the marginal point of stability and in the linearly unstable
side of this point. On this side one finds fluctuations whose mean square amplitude are equal to the
corresponding values associated with the neighboring equilibrium considered above.

The thermodynamic fluctuations can be the seed for the excitation of collective modes that can
eventually evolve dynamically and reach a saturated value as a consequence of the dynamic interaction
between collective modes. These purely collective fluctuations should not be confused with the
thermodynamic fluctuations considered above.

28. The non-linear dielectric constant

The separation of the plasma charge density in the collective particle component and in the effective
free-particle fluctuating component (formed by particles moving freely with their comoving clouds
created by Debye shielding), which is relevant only at distances below the Debye length, has been
pointed out in the pioneering paper by Pines and Bohm quoted above. In our picture the concept of
separation has been applied and extended by considering a collective (macroscopic) equilibrium
(described by a static solution of Vlasov equation) on a space scale separated and screened from the

fluctuating medium of effective free particles by the Debye length, but susceptible of exchanging
energy with it. Indeed the introduction of the interaction energy @, of the collective system with the
fluctuating infinite medium involving particle discreteness, has been proved to be a useful device for
describing the reversible exchange of electric charges and energy of the collective system with external
sources and for defining the entropy changes through a reversible process. However, when considering
unstable collective equilibria (with k2 >0, see section 26) we are faced with the disturbing fact that
the screening effect described by the Debye length vanishes in the description based on the Vlasov
distribution function. Indeed the Debye length follows from the Maxwellian form of the distribution
function (as we have seen in section 26) while the distribution function in unstable equilibria may be
very far from the Maxwellian and this is true even in the simple case of a static oscillatory solution of

the one dimensional Vlasov equation for the electrostatic case (section 26). In contrast, in the
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Maxwellian plasma, the Debye length characterizes damped solutions of the equation (26.11) and these
solutions describe the screening by the plasma of an externally applied static electric field. The crucial
point is that, while the Debye length enters the dispersion relation of unstable plasmas through the
negligible term k42 <<1, it ceases to describe any screening effect. Therefore the separation of

collective and free particle effects based on a screening characteristic length as the Debye length,
disappears in the case of the non-Maxwellian equilibrium. In fact the value of —k? >0 which is equal

to the Debye length in the Maxwellian case and implies damped solutions of eq.(26.11), shielding a
static external electric field, becomes even negative in the unstable plasma, which implies oscillatory
solutions throughout the plasma volume. As a consequence we are led to think that collective and
individual effects not only cannot be separated in certain unstable situations, but that the interaction
between them could play a basic role on the evolution of the instability. In fact, as we have noted
above, when the electrostatic potential becomes large, higher order terms in the expansion (27.5)
cannot be neglected and this could modify greatly the reactive process considered in section 27,

leading possibly to a saturation of the instability in a state of higher electrostatic entropy.

In case we pursue this point of view, we have to admit that the interaction energy @, is not merely

a useful device for simulating charges and energy exchanges with external sources, but that the
reactive process described by @, has a phenomenological reality in which the plasma itself acts as a
polarizable medium. That is, electric charges are promptly available in the plasma for reacting to the
instability of the collective equilibrium as soon as the marginal point is crossed, and possibly for
quenching it. This is of course a conjecture and the purpose of the next paragraphs is to develop its
consequences to the point of calculating the thermodynamic fluctuation levels around a state saturated
according to the mechanism outlined above, so as to reach a basis for comparison with the
observations.

Clearly, the conjectured mechanism of saturation is basically different from that usually considered
in the non-linear treatment of the collective instabilities based on Vlasov equation. In this treatment
one considers the dynamic interaction between many k-modes that are purely collective. At the
contrary in the present approach we consider the reaction of the plasma to one single mode and the
saturation of the mode is due to the (supposed) reactive dielectric properties of the polarizable plasma
as a whole, that is, to its ability to provide free charges from the reservoir of effective free particles for
counteracting the instability and reach a stable state of increased electrostatic entropy. In a
fundamental kinetic approach this would mean that the backlash of the growing collective electric field
in a reactive (non dissipative) instability, on the hierarchy of the particle-particle correlation terms in
the exact Liouville equation, cannot be neglected, a fact that invalidates the purely collective
description of the Vlasov model.

We proceed according to our phenomenological scheme and start with a single k-mode that we now

write in the form:
GZFO'1COSH°X+O'ZS"]H-X .
L k-X k-X (28.1)

The nonlinear dielectric constant ¢, follows from a straightforward generalization of (27.5)

1 & n
G=(7m((0m +(p)_am(¢)m)+o-eff =Ezkn21,n%+aeff ! (282)
n=1 .
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where ki =4xd"c, /deh, k2, =k’ and o =e,0 =&, k@l 4x . Thus
1< Q"
g, =1-——> k> . 28.3
nl kz(ﬁ% m,n n! ( )
The interaction energy is now written as in (27.6) but with the dielectric constant ¢, (27.2) replaced
by &,:

O, = ;f |o-(odV———J.[o-——Zk —va (28.4)

Q

In the stable case (k:=k2,<0) ®,,
vanishes at the marginal pomt (section 27) and the first non-vanishing term is of order ¢°. In the

following we shall study the effects of this term and we shall see that they are considerable.
It will be useful to observe that the expression above for @, can be obtained from (25.13) with the

is finite at first order in ¢ while in the unstable case ®,

int

int

substitution

a—>an,—a—4i2k ——(dO' 1dg, )p+ oy - (28.5)
ﬂ-n 2

The observation above gives us the key for constructing the entropy of a nonlinear electrostatic

equilibrium in a nonlinearly reactive medium in accordance with our statistical model. Indeed the
statistical formalism outlined in section 25 is unchanged when the collective charge density o(X) is

replaced by the nonlinear charge density o, (X). After this choice of the information variable, the
formalism of section 25 leads directly to the interaction energy (28.4) and to the following expression
for the part of the entropy pertaining to the collective equilibrium (compare with (25.12) or with
(26.2)):

2 k4 ¢4
s ot [[o2d0-5n (o pdo|s— K (o2 +— 2l (28.6)
" 2~2AV U ' g[ | j 3272 52AV g[( 4(k/km,2)“J

where only terms up to second order in ¢ of the expansion of am((om + gp) were retained in the second

transition (odd powers of ¢ average to zero in the volume integration). In this approximation the part
S, of the entropy involving the interaction with the medium remains the same as in the linear case
(compare with (25.3) where 7, fixed at the quasi-homogeneous unperturbed equilibrium o, (¢,), is

given by (26.1)):

2 2 21,2
S, = D = @ J{Gnl + km(P}UdQ _ #J‘gm¢2 do. (28.7)
T 87G6°AV 3 Ar 3272 G2AV §

29. The nonlinear neighboring state

In this section we shall investigate the variation properties of the nonlinear entropy (28.6),
pertaining to the collective configuration. We introduce the mode (28.1) into (28.6) and perform the
volume integration:

k* 3 2
S, = g (p2rept)e———  (p2+p2) | (29.1)
p 64%252AV( (401 %) 16(k/km’2)4Q(¢l (/’2)
We look for the extreme of S with respect to variations of ¢,,¢,:
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p 3 2 2
= 2 B A — =
ap, %[ En ¥ 4(|</l<m)“gz((01 e )} .
p 3 2 2
By _ g 4 ° —0. 29.2
ap, %[ En ¥ 4(k/km’2)4Q((pl e )} (292)

These equations admit the solution ¢, = ¢, = 0, which corresponds to homogeneous plasma, and
the solution
4
2 +p2)===2 , 29.3
ool +0}) 3sm(km‘2 (293)

which exists only for ¢, <0 or k? <k?.
To see whether the solutions correspond to a minimum or a maximum of S we calculate

the second order derivatives:

o528 k4 3
P—— — 5m+—¢2+¢2+2gpnz , n=12)
ap; 327°5°AV [ s(k/km,z)“sz( Lo )« )
o°S k? 3
Po=— 2;—22 — 0, 0,. (29.4)
op,0p, 32725%AV 4Q

The solution ¢, = ¢, =0 is a maximum of S| for ¢, >0 and a minimum fore, <0. In the latter

case an isolated collective equilibrium, although homogeneous, is not expected to be stable. In contrast,
the inhomogeneous equilibrium described by (29.3) is a maximum of S as can be seen from the sign

of the second variation:

5% P 5%
5°S, 1 2 (6p,)" + ——— 50,00, +£—zp(5¢z)2 =
2 0”(01 op,0p, 2 5("2
3k 1
=———22 (0,00, + 0,0p,)" <0. (29.5)

25672G°AV Q
Thus, for &, <0, the homogeneous equilibrium is unstable, but the system builds up a finite charge

density, which stabilizes nonlinearly at the level (29.3).
The maximum value of S, corresponding to (29.3) is given by the inequality:

1 , k®
~2

= (C,‘m 7
4872'2 oAV km,z
S can be maximized further with respect to k :

p,max

S

p,max

Q. (29.6)

7]
p,max :4k3 2k4 _3k2k2 + k4 =0. 29.7
a( ( m m) ( )
Besides the trivial solution k = 0 one has the two solutions
2
ki=k2, &, =0, k? =k7m, g, =—1. (29.8)

The first solution corresponds to the marginal point and to a minimum of S_ . (k), while the
second solution is an absolute maximum of S_ corresponding to a large amplitude mode with a wave
number k, away from the marginal point. This mode will be interpreted in section 30 as the

manifestation on the average of large amplitude fluctuations of the marginal state towards the linearly
unstable side of the marginal point.
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30. Probability distribution of charge fluctuations around the marginal equilibrium

The collective configuration can exchange electric charges with the medium and therefore the
amplitude of the collective quantities is not fixed but fluctuates. In contrast the infinite medium,
considered as an infinite reservoir of electric charges, remains practically undisturbed by the charge
exchange (looking at the complete expression for S, (25.15), one can see that in the thermodynamic

limit N — o0, a finite variation of ®_ can be compensated by an infinitesimal variation of ?). We

int
wish to study the amplitude fluctuations of the charge density of the collective subsystem with entropy
Sp((pl,goz), (29.1). For this purpose we have to consider only the volume element AI" in the ¢,,¢,

space that is accessible to the electrostatic configuration of the subsystem with the entropy Sp((ol,goz).

We apply the well-known relation

AT =g%@7), (30.1)
Then, the probability p of finding the subsystem with the amplitude in de,dg, at @,,¢, is given by

the expression (here we follow the same line as in ref. [34]):
Sp(%vﬁﬂz)
e

”esp(%%)d%d("z |

We are interested in the mean square value E: (1/!2)((/)12 + gp§) of the potential. Recalling (29.1)

(30.2)

pdede, =

and performing the change of variables ¢, =(t—22)1/2,(p2 =z with dg, de, = (1/2)(t — 22)1/2 dzdt one

has

Y S L

P’ = =0 , (30.3)
Q”esp(%%)d(ﬂld@z QJ.eH‘t*ﬂtz)dt
0
where
4 3k*
a=8m2k—~_, ﬂ:z—m;i. (30.4)
(87)°52AV (327)*G2AV Q

Applying the equality —ot — A&* =—p(t+al2p)+ o’ 143 the integrals in (30.3) can be expressed in
terms of the error function as

— 1 ele14s) 30.5
¢ 480 erfc(a/Zﬂ“z)_a’ (305)

where erfc(z)= (2/7;1’2)T exp(-z®)dz .

z

One has three cases:
1)- ¢, >0, > 0; noting that

a k*
=¢

26" " 4k eava? |
is a very large number because Q is large, one can apply the asymptotic representation of the error
function [36]

_Q? (30.6)
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erfc(a /24?)~ E(EJ (1—%}(“2’“), (30.7)

a\rx a’
and obtain (recall (26.15)
— 1  647°G°AV  64r? )
¢ = = yE— 7 2. 9sNs-
[249) &, 0K En QK™ 5
In the special case of a Maxwellian plasma with the temperature T for all species one has
&, =1+1/K*Z, where A2 =47 q2n, /T (see (26.13) and

(30.8)

— 16z T
YT a el a)
This relation is comparable with that derived by Taylor and McNamara [37] for the thermal

fluctuations of a two dimensional plasma.
2)-¢, =0,a =0; this case concerns the fluctuations at the marginal point &, = 0. The integrals in (30.5)

(30.9)

are elementary and one obtains

1/2 1 1/2
— V4 _
pe ZBZ(EJ [z q’n? N—j ‘kmfz‘. (30.10)

These are Poisson-like fluctuations whose mean square value depends on the inverse of the square
root of the number of particles N, = nQ.

3)-¢, <0, < 0; in this case a/ 24" tends to minus infinity and (30.5) becomes

4
el T LS
10 —Zm—3|gm|[ka . (30.11)

This is the same expression (29.3) for the square of the potential of the nonlinear neighboring
equilibrium associated with a maximum of Sp(gol,(pz). This equilibrium is now interpreted as the
average of large fluctuations in the region of negative ¢, where the system is linearly unstable.

For the numerical evaluation of the fluctuation amplitude one must now calculate the coefficient
k;yz according to the expansion (28.2). In this connection it is worthwhile to recall that the equilibrium
relation o, (@, ), which is at the base of (28.2), follows from the static solution of the Vlasov equation,
which involves the potential ¢, through the constants of motion. We assume that the zero order
equilibrium is quasi-homogeneous, that is we shall consider the limit ¢, — 0. This implies that for
calculating the constants of motion, the linear approximation is sufficient. However the relation
o (@, ) is non-linear (see the examples in the next chapter) and the fluctuation ¢ brings the system
outside the Vlasov-Poisson equilibrium, from the collective charge density o,, to the charge density
o=0,(¢n+9)-0o,(p,)+¢&,0, as we have noted in section 28. So the fluctuation ¢, which can be
much larger than ¢,,, is not a solution to the Vlasov equation supplemented by Poisson’s equation (the
system of equations (26.9) and (26.10)). The probability of the fluctuation amplitude ¢ around the
Vlasov (collective) equilibrium ¢, is given by (30.2) where the entropy S, is determined according to
the non-linear reactive process described above, which is not contained in the Vlasov model. The
probability distribution of the amplitude fluctuations (30.2) describes an intrinsic background of
thermodynamic fluctuations near the stable side of the marginal point (thermal fluctuations) or near the
linearly unstable side of this point. We shall see in section 35 how the electrostatic force arising from
the fluctuating electric field can be compensated by fluctuations of the pressure.
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The picture above does not preclude at all the subsequent interactions of the basic fluctuation
background with collective modes; at the contrary the thermodynamic fluctuations can even be the
necessary seed for the excitation of collective modes. In a subsequent dynamic process the collective
modes will eventually reach a saturated fluctuation level as a consequence of non-linear dynamic
interactions between them. These purely collective fluctuations should not be confused with the
intrinsic background of thermodynamic fluctuations considered above.

CHAPTER 10: Thermodynamic fluctuation levels: examples

Summary: The scheme outlined above for the calculation of the thermodynamic fluctuations can be
applied to the large class of the so-called “reactive” instabilities characterized by absence of
dissipation, algebraic dispersion relations (in the slab approximation) and existence of bifurcation
points. This class includes unstable modes important for thermonuclear machines, as the ion or
electron temperature gradient modes (ITG or ETG), the trapped electron modes (TEM), the flutes
modes as well as instabilities not involving the magnetic field as the two-stream instability. A review
of the reactive instabilities relevant for magnetic plasma confinement can be found in the book of
Weiland [38].

In this chapter we shall limit ourselves to illustrate the method with two simple examples, namely
the case of the two-stream instability where the distribution function depends on one constant of
motion (the energy) and the case of the flute modes where the distribution function depends on two
constants of motion. In the more physically interesting cases of the thermodynamic fluctuations of
reactive drift modes one has a third constant related to the motion parallel to the magnetic field. We do
not consider the drift modes here.

31. Thermodynamic fluctuations in reactive purely electrostatic systems

As observed in section 26, a typical example of reactive electrostatic instability is the two-stream
instability that arises in the presence of two equal warm electron beams described by the one-
dimensional distribution function, symmetric in velocity space, formed by the sum of two Maxwellians
centered at the velocities +u respectively. A characteristic feature of this instability is that there is
practically no dispersion, the linear dielectric constant ¢, is negative in the unstable region and the
phase velocity of the unstable waves is exactly zero

In accordance with the procedure of section 28 we start from the Vlasov stationary equilibrium
characterized by the function o, = o, (¢, ) defined by the equality

oo(n)=220, ] £,(£)dv, (3L.1)

where &, =(1/2)m.v’ + 0.0,
We assume that the functions f, can be expanded in powers of ¢, provided that ¢,, is sufficiently
small. So one can also expand the function o, (¢, + ¢) around a vanishing value of ¢, obtaining up

to second order

2
4dro, ((pm + (p) = k;(p + k;z(%j (31L.2)
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The coefficient k2 becomes positive for values of 2u above a critical value 2u, and the system
becomes unstable for k* <k?.
Once the coefficients k> and k;yz are known one can apply the formulas of section 30 for

calculating the mean square amplitude of the thermodynamic fluctuations. On the unstable side of the
marginal point this is given by eq. (29.3) or (30.11):

- 12 _8(ka k)
() (k)—%—g k_2_1 kmvz . (313)

This expression is maximum for k*=k2/2 and also, as shown in section 29 (eq.(29.8)),

corresponds to an absolute sharp maximum of the entropy. Summing up with respect to the two signs
of £k one has that the most probable mean square value of ¢ is given by the expression

(%), =2 Kn 4 (31.4)
AT |
which corresponds to the following mean square value of the electric field:

— 4 k®

E?), =——2. 315
€2} =3 - (31.5)

As a curiosity let us compare these results with the solution of the one-dimensional Poisson’s
equation with the charge density given by (31.2)

d 2(/’ 2 1, 5
- =kip+=k : 31.6
oz Kn#+ S knog (31.6)
from which follows the first integral
do ’ 2 2 1., 4
| =—k -~k +C =Flp) 31.7
[dxj w0’ —3Kneo () (31.7)
where C is an integration constant. A second integration leads to the expression
4 d@
X=X = |—<7 (31.8)
w{(F(co))l’z

We look for a periodic solution, regular everywhere for the real values of x. Then F(g) should
admit another zero F(¢,)=0 such that F(p)>0 for ¢, < ¢ <¢,. This occurs when [39]
A=g5-279% <0, (31.9)
where g, =k; /12,9, = (ky /6° )~ (kn .C /(9-16)).

The condition (31.9) is verified for

2 6
K

(d—wj =C sﬂ s (31.10)

dx 3K,

M

where the subscript M indicates the maximum value of (d(p/dx)z. One has a family of solutions
depending on C whose squared electric field has the upper limit (31.10), which is the same as the
maximum mean square value (31.5) of the electric field of the thermodynamic fluctuations. The
solutions are expressed in terms of the Weierstrass function ¢ (X,02.93) as follows:

1 ! 1 " -
o-p=7F ((pl)(sO(X—Xl,gz,gg)—aF ((pl)j . (31.11)
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The solution oscillates with a wavelength 2a/k, (see [35]) where @ depends on C and @ — 7 for

C — 0 (linear limit). When C increases the wavelength also increases, corresponding to the unstable
modes k* < kZ of the thermodynamic treatment and to the non-linear region. However ¢ oscillates
between amplitudes ¢, and ¢, with opposite sign and with |¢,| #|e,|. The amplitude of the oscillation

is of the same order of (31.4) for k*<kZ?/2 but it does not exhibit the sharp maximum of the
thermodynamic theory predicted by (31.3) for k> =k?2 /2. Instead it grows steadily tending to oscillate
between —2k? /k? , and k? /k , While approaching the infinite wavelength for C — 4/3.

32. Thermodynamic fluctuations of flute modes

32.1-The constants of motion

We consider a inhomogeneous plasma, but with uniform temperature T, =T, =T, situated in a
constant magnetic field B = (0,0,B) and with ions and electrons subject to a gravitational force m.g.€, .
The constant g, simulates the effects of curvature of the magnetic field, i.e. g, = v, . /R, where R, is
the radius of curvature, v, , is the thermal velocity of species s and g, = m;g,/m,. The gravitational
force gives rise to a drift v, =—g./ Q, where Q. =q,B/ m.c is the cyclotron frequency. We consider
modes ¢ =g, exp(iky —iot) and operate in a reference system K’ moving with the phase velocity
w/k of the wave, so that y'=y-wt/k,v) =v, —w/k where v, is the velocity in the laboratory
system.

We recall that the problem of calculating the function o, =0, (¢, ) is a linear Vlasov problem
because the o,,¢, are arbitrarily small. Therefore it is sufficient to calculate the equations for the
orbits in linear approximation. These equations in drift approximation are given by the equalities

E,(y')

V. =V, cos(@-Qs)+c X' =—sin(6-Qs) +£jE ds+—sm9+x
B Q B)

v, =V, sin(0—Qs)+v, —%, y’=%cos(«9—Qs)+(vD —?js—aicoséhr y. (32.1)

Here @ is the gyration angle and |€ >>|@ — v K.
It can be verified that the quantity

2(5)= 2(x(s)v} () s) = x(s jE (32.2)

satisfies the equality dy /ds =0 and therefore is a constant of the motion described by (32.1). The
value of y is obtained after introducing (32.1) in (32.2) and putting s=0,

0
w q ,
7 =OX+V, +V, —?—ELEy(y )ds. (32.3)

We now consider the quantity
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2 (32.4)
q .
— ¢, expliky’).
— o expliky’)
By introducing the equations of the orbits (32.1) into (32.4) one obtains
1 o\’ Bw
§=§(vf+(vy+vD_?j J gx_?nck +r?1[ jfE d8+—(pk expiky(s), (32.5)

where v, =v;(0), v, =Vv}(0), x=x'(0), y = y'(0).
For evaluating the integral we use the well-known relation

expliky’) = exp(ik(er[vD _f]sjj S () (- i)"J,(k;/; ja[kgvz jexp(il(@—Qs))exp(— 0] (32.6)

I,I'=—0

After averaging over the rapid oscillations at the cyclotron frequency Q only the term 1=0
contributes to the I-summation. It is then easy to show that

AT , . .
%(VD _?j_([ Ey(y )dS +%¢k expiky (S)= %¢k expiky. (32.7)
Thus
5:1 v2+(v +V —2]2 gx—£+& expiky (32.8)
2l U Pk mck  m’¥ '

does not depend on s and is a constant of motion.
With the help of (32.6) we can evaluate the integral in the expression for the constant of motion y

(32.3).

As above, only the term | =0 contributes to the integral

r . : kv Co (kv )

E,ds = —ikg, [e®®ds=—— P ey | LS (i) g, [ 2L e, 32.9
JE ds=—iko | LT ol DO ST b (32.9)

(The integration involves the limit of exp(is(v, + @/k)) for s——oo, which does not exist;
multiplication of the integrand by the “measure” exp(es), where ¢ is an arbitrarily small positive

number, resolves the difficulty). In (32.9) the terms with I,1">0 can be neglected, as they will vanish
after the subsequent integration in velocity space with respect to €. So the expression (32.3) for y

becomes

|ky
2=y, by 24 90E clv, /Q) (32.10)
k m(vD—a)/k)

32.2-The form of the distribution function

From the constancy of y and & it follows that any function f(;((s),f(s)) satisfies the Vlasov

equation under the same approximations considered above,

a_4a vi+v d +&Ey(y)+gi+(2vi—vi =0. (32.11)
s & & 'F m Al & Al
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The functional dependence f(;(, 5) is fixed by the requirement that f be consistent, at zero order in
@,, with the following expression (in the moving frame of reference K’)

fo(x',v;,v;): N(1- Kx’)exp[— a(v;Z + (v’y +%j B (32.12)

where ozzllvj1 and x ' measures the characteristic length of the density inhomogeneity. Then f is

fixed as
f(z,&)=N (1— Kéj exp[— Za(g + Z%D (32.14)
Thus, recalling (32.8) and (32.10) one has
o 1 , » (@ ? q . Jé @
+y—=—|Vv,+lv, +Vvy ) —| — | [-0x+—¢, expliky) ————+1]|,
Sy 2[* (v, +ve) (k” gt o Xl y{vD—a)lkk (32.14)
v iky 712
18Xy x+—y+(vD—ﬁji+ ape7do | (32.15)
Q Q k)Q mQ(v, —wl/k)

These expressions are substituted in f (&, x) and the resulting expression is expanded up to second
order in @,. We can put y =0, for simplicity, and J2(kv, /Q)=1-b where b =(1/2)kv, /Q)*. Then
one has

f(&x)=N exp(—a(vf +(v, +VD)2)— Zozgx{l—zc[xjuvaiw(vD _Q]EJFML_BLN,

k)Q mQ(v,—wlk
v, ) (32.16)

_(1_ 200, Vp — b 1K +2[aq¢)k T VS —ZVDBa)/k}

m vp,-w/k m (vp —/kY

Here a term (a)/k)2 has been absorbed in the normalization constant N. We can neglect v, in the
parenthesis (vy+vD)2 because in the subsequent integration in velocity space it gives rise to the
negligible term kv, /Q <<1. Then the argument of the exponential reduces to —av?. Terms of the form
KvyB/Q do not give a contribution to the integration in velocity space and
(vVp —@/K)1/Q) << avg <<1 are neglected. We maintain only terms linear in b.

We recall that, while the function o, (¢, ) is calculated assuming a linear approximation for the
equation of the orbits in the procedure for the solution of Vlasov equation in view of ¢, — 0, the
quantity ¢,, which describes a fluctuation outside the Vlasov equilibrium, can be taken also at higher

orders because it is not required to be a solution of Vlasov equation (32.11) at second order (see
sections 28-30). Note also that the function o, = o,,(¢,, ) is evaluated with ¢ — 0 and therefore the

normalization constant N must be calculated in this limit. For a generic k, one has up to second order

Tf(f'l)"id\ﬂ :nEZWX(l+q¢k(2a(a)b—VDk)+K 1-D J]_

5 Vpok —@ om(v, —w/k)

2
qo, 2a 20,0 K
— - b 1k)) |,
(m] (VD_w,k)z[ Yo X (1 +b{v 0 »]

(32.17)
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where NTexp(— av? )/Lde =nb=k?/2aQ".
0

32.3-The coefficients k2 and kZ ,

We are now in position to determine the two basic coefficients k2 =4rdo,/dg, and
k:,=4nd’c, /dg? (see eq. (28.2). The coefficient k’ determines the marginal equilibrium through
the relation g, =1—k’ /k*=0 (see eq. (27.2)) and k,i'z determines the mean square average of the

thermodynamic fluctuations according to egs. (30.10) and (30.11).

We assume equal temperatures for ions and electrons, thus
T, =T, =T,ogm, =a,m, vy, =—0./Q, =0,/Q, =-v,,2.Q, =-2,Q,,2,0, = ;0.

We assume zero Larmor radius for the electrons, b, =0, while b=b, = k®/2a,Q? = k*p? /2 where
p; 1s the Larmor radius of the ions.

The charge density of the electrons (b, =0,q=—¢) at first order is then

Dy . 2 20,V K K

o, =ne“e ¢k[me (@-voK) + 0. (v, _w/k)], (32.18)
and that of the ions (b=0,q=¢€)

o = ne2ely, 20 Voik —ab | x(1-b) |
m o-vpk mQ (v, —o/k)

(32.19)

After some algebra one finds the following expression for the total charge density o, =o,, + o;; at
first order

2
o, = eZnQ)keZagx zae L {— b[(()2 - 0)[%4' kVDej—l_ 2Kg| - wk Tor J+ 2VDek2} (3220)

2 2.,2
m, o —k°vp R

It will turn out that v, <<@/k, so the terms in v, are negligible. In this limit the linear dielectric
constant becomes (noting that x/R, <<1 and then e*® ~1)

ki 8me’ a Kk, Tc

e Kk o rx)=1-—"~—""""h | w2 -0 —""+2xg. |=0. 32.21

(ki @) =127 kzwémm[m - Kg.j (32.21)

with o,,,¢,, — 0. One obtains, in the limit k*22 <<1 implied by the

where k2 = 4z(o, /9, )

k=kp =0,
second transition in (32.21), the dispersion relation of the flute modes with finite Larmor radius
correction (see e.g. [38]).
We now consider the charge density at second order:
200, KV,
Q.m2(vp, —w/k)’
Oy = ne%f(mf (V:iia)/ " [_ bé(vDe +%+ 2a,Vp, %j + K;;Die B

Neglecting terms v, <<w/k the coefficient ki,=87/¢, Yo, +0y,), is written as

2
k2, = —167zne3[ ik bm("VDe 4 20Vosn | KOy D (32.23)

miza)ri Q, K, Qk,

O-Ze = ne3¢k2
(32.22)
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where k., and @,, satisfy the dispersion relation (32.21). According to this relation the instability exists

in the following range of &R,
32
(pikm )2 .
The lower limit arises from consistency with @’ >>k>V2 . The upper limit is the bifurcation point
determined by ¢, =0, &, /dw,, =0:
Rc,mK‘ZLZ’ Dy, :(Zgi,mK)llz’ gi,m =3
(pikm)
The consistency with (pk_ ) <<1 implies that R.. is very large, i.e. R is precisely near the
boundary R, — c between favorable and unfavorable curvature where R changes sign trough

2<<R.x< (32.24)

(32.25)

infinity.
Taking into account the relations above one finds that the first three terms of (32.23) are negligible
with respect to the last term in view of the inequality v, <<@/k. Thus only the last term survives:

. 16me’k, o, (xR, |2 3. 3
K2, =_167zn2e a'kabm _ Uzma,( em b =— 6247zne a, b, =_167zr21e b, (32.26)
’ myQ; @, (2) miZQiVi,th MLV, 4 P T
Insertion into (30.10) gives the fluctuation level for the mode k at the marginal point ¢, = 0:
2 2 12 2 \1/2 1/2
ik =E£ij yhe izﬂij 4 (32.27)
T n\ 3z s N, b, \3r N, “K*p;

Insertion into (30.11) with g, =-1 gives the large amplitude of the fluctuating single
k=k, /(2)1/2 —mode corresponding to the absolute maximum of the entropy in the linearly unstable

region:
—_— 4
e’p’ 8 T? 2 2. 1[ O,
7| T v =3 i , (32.28)
i (167ze nobm) Pi @ip

where o’ =4me*/m;.

The example above serves as illustration of the method for calculating the amplitude of the
thermodynamic fluctuations of the charge density in reactive electrostatic systems. In practice the
simple situation considered above is modified by a number of important effects, in particular by the
presence of magnetic shear, by effects related to the propagation parallel to the magnetic field (k, =0,
drift modes, electromagnetic interchange modes) and by the finite toroidal geometry of practical
devices (see e.g. [38]).

CHAPTER 11: Connexion between the electrostatic entropy and the Lagrangian description of
the particle motion

Summary: In this chapter the relation between the electrostatic entropy and the Lagrangian
description of motion of the high temperature system of Coulomb interacting particles is investigated.
The global system is considered as isolated and the motion is constrained by the macroscopic

condition that the total electrostatic energy U of the interacting particles belonging to different volume
elements AV, is fixed. The quantity U is the mutual electrostatic energy of the system of particles
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when the charges of the particles are “smeared out” in AV,. Thus the Lagrangian contains the term U

multiplied by a Lagrangian multiplier A4

Proceeding as in the magnetic case treated in chapter 7, we look first for a linear relation between
the canonical average of the Lagrangian and the electrostatic entropy, as well as between their
variations.

The canonical average involves the consideration of a coarse-grained system partitioned into
volume elements AV, inside which the positions X, and X, of particles n and n" at a given instant of
time are not distinguishable. The relation with the entropy arises from a term that expresses this fact.
The Lagrange multiplier A turns out to be related to the degree of coarse-graining.

As a consequence of the macroscopic constraint imposed on the system by fixing U and of the
relation of A with the coarse-graining, the Lagrange equations of motion imply the equations of
motion at the individual particle level and, at the same time, that the momentum of the global system is
constant in time and that the system is electrically neutral globally.

Under the hypothesis that the canonical average of the first variation of the Lagrangian is equal to

its time average, one finds equivalence between the Hamilton’s action principle and the vanishing of
the first variation of S with respect to adiabatic variations.

33. Coarse graining of the high temperature system of Coulomb interacting particles

We consider a system of N_  particles interacting through a Coulomb potential

P

1< enen,

Let us mtroduce a partition of the volume V of the system of particles into N volume elements
AV, each containing, at a given instant of time t=t,, a large number of particles N ;. We assume that

the temperature is so high that the Debye length A, = (T/47zne2)1/2 is larger than the edge | = (AVJ.)”S,
in spite of the fact that AV, should be sufficiently large for containing many particles. Thus the
particles in AV, can be treated as effective free particles and their number, as well as the total electric

charge can be considered as fluctuating at random. Applying the partition above the expression (33.1)
at t =t, takes on the form

=HHH)

j=1 nen’ J_1n—1|X Xn'(toj.

The coarse-graining consists in the approximation of considering as indistinguishable the positions
X, and X, of particles in the same AV;. We express this by taking in the Fourier expansion of

(33.2)

X, —>*<n,|*l only the wavelengths larger than 21. The k-summation is then cut-off at k,, = z/l. The
positions of the particles in AV, can be identified with any chosen value X; in AV, for instance with

the average

= —Z (33.3)

J n=1
In particular one can no longer distinguish between n=n"and n=n’in the same AV, because the

concept of a point particle looses its meaning in the coarse-graining and one has to deal with a
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“smeared out” charge rather than with point charges. In this point of view W (t,) can depend only on

N;
the )?j and on the total charge Zen in each AV,. The Fourier representation of W (t,) is then the

n=1

foIIowing'
N; N

iZeniZen—i—exp( ik - (X -X. )) (33.4)

j=1 n=1 =1 n'=1 —kM
It is convenient to separate the terms with j = j’ from the terms j = j’,
N; N;
ZZe ZZe kz +U(t,) (33.5)
j=1 n=1 j=1n'=l —Kknm
where
I3 Y e S Lol (%, %,) (336)
j¢j n j’=ln'=1 —Km
In this expression one has ‘Xj - Xj,‘ > | and even ‘)Zj - )Zj,‘ >> | for the majority of the terms of the
J # ] summation. It follows that the cut-off at k,, is ineffective in (33.6) because the contribution of
terms with k > k,, is sensible only for ‘)?J. —)?j,‘< I, which is not the case of (33.6). So k,, can be

replaced by 0 and one obtains

zzezz z L expl-ik e (X, - X, )= ;ZZeZZe KX (33.7)

Let us divide N; in an average part and in a fluctuating part N =W+ N ;. Correspondingly the

charge den5|ty can be divided Jn a collective part and in a fluctuating part
AV,o(X )= Zen AV =Y. (33.8)
-

Here Nj(lé j<N)is a set of numbers whose specification determines a()Zj) and the collective

electrostatic charge density. By substituting (33.8) in (33.5) one obtains

Wity =238, o, )¢5, F 473 L ) (339)
where M

N
~ 1
=13, of%, )13, )3 4V, olR, )+ 3, (329)
j¢j j'=1 ‘X —X ‘
The quantity U can be expressed in terms of the collective electrostatic energy ® and of the
interaction energy @. .. Indeed, putting

|nt

AV, (33.10)
( ) ,Z;] ‘X B X ‘
one has, neglecting terms quadratic in &,
Ult,)=®+20,,, (33.11)

where
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QZ%ZN:(”()Z;)’(XJ)AVJ’&)int :%iq”()zj)g()zj)&/r (33.12)

The quantity U is interpreted as the mutual electrostatic energy of the system of particles when the
charges of the particles are “smeared out” in AV.

34. Equivalence of the first variations of the electrostatic entropy and of the canonically averaged
Lagrangian with respect to adiabatic variations

We shall study the motion of the particles under the constraint that the electrostatic energy U is

fixed. In particular the value of U is fixed to the average U =® + 2®, . calculated with the canonical

int

dlstrlbutlon (25.5). The Lagrangian appropriate for the description of the motion is the following
Zm vZ-W(t)-AU(t), (34.1)
where W(t) is given by (33.1), U(t) by (33.7) (with t, replaced by t), the X (t) and the X ;(t) are

time dependent and A is a Lagrange multiplier related to the constraint that U is fixed.

The parameter A should be determined from the constraint U =U after solution of the equations of
the constrained motion, but one can do the reverse and determine U after a proper choice of 4. We
show presently that, with a proper choice of A, one has a linear simple relation between the canonical
average of the Lagrangian at a fixed time t = t, and the electrostatic entropy, a fact that will be relevant
for connecting the variation of the Lagrangian with that of the entropy.

The sum of the single particle kinetic energy K = (1/2)Zmnv§ is considered as fixed by taking, for

n

instance, the average with a Maxwellian distribution with fixed temperature. The collective quantities
are averaged with the canonical distribution (25.5):

L(ty)=K-W(t,)- AU(t,) (34.2)
where, recalling (33.8) and (33.11),

W) =3[ av, o7 (8 ool i+ 157 |3 3.5 40

—k? (34.3)

Ult,)=®+2D,, = +2.,.
Recalling (25.10) and (25.12) one has

Jo (X - 2av s, oo JolR ol

_ (34.4)
[o(x)6(X ha =2av5es,
Q
Insertion of (34.4) into (34.3) (replacing the j-summation with the integral) gives
_ 2 N J— Ky _
W(t, )+ AU(t,)= (AV&ZSF, +;—mja¢d9 +%2Avj &f}%’zkiﬁu(u ) (34.5)
T j=1 —ky

We note that the term involving the entropy arises from the term in (34.3) that depends on k,, and
expresses that the positions of the particles in the same AV, are undistinguishable.

Let us put
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2 Km
A= k klz,/1=—l—/11. (34.6)
Then
=
L{t,)=K - 2,12”“/“ - 4”A\£" S, +24,0,,. (34.7)

m

Finally, recalling (25.11) and (26.1), one obtains

L(t,)=K +/11&+zl(zs + @), (34.8)
where S = S +S and S, =@, /7.

int
The variation of the collective quantities with z fixed (isothermal variations, see section 26) gives
A(ty)=4,(z85 +50,,) (34.9)
The condition &L =0 implies 765+ &, =0. In the case of adiabatic variations (in the sense of
section 9) one has dp = (4z/k;, oo around the Vlasov equilibrium ¢, = (47/k;, )o,,. Then one has
separately o5 =0,6®;, =0 (section 26). It follows that &L =0 and &5, = z&Q =0 are equivalent with

respect to reversible adiabatic variations. The significance of this relation will be clarified in the next
section.

To conclude this section let us evaluate the Lagrange multiplier A4 given by (34.6). In the limit
V — oo the expression (34. 6) for A, becomes

= ‘T\IZ kk 5o (2k2v jdkjsm ada_kfi'z‘#AV, (34.10)
where k,, =z /l. Introducmg the characteristic length of the Vlasov equilibrium 7 = |7z/km| one has the
inequality
|/11| = l(ljz <<1. (34.11)

2\/

We see that the parameter 4, although finite, is very small. It follows that A is very close to -1 but
not identical to it.

35. Particle motion in the electrostatic system with the collective constraint and the relation of
the first variation of the entropy to the action principle

We now proceed to the derivation of the equations of the constrained motion according to the
Lagrangian (34.1). The application of the Hamilton’s action principle gives

jaLdt = IZ( ———j-é”n(t)dt =0, (35.1)

t, n=l n
and in view of the arbitrariness of the &X, (t) (vanishing at t, and t,) one obtains the equation of

motion for the generic s-particle:
a da_, (35.2)
X

S

The following equalities will be applied:

S
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N N N = =
1 Looeey Loee,  &ee (X -%,)

eelX )=-V.W=-2V i = !
58( S) % 2 XSZ:|_> __’n’| XS§|Xn_is| n=s |5< - X |3

S n

(35.3)

Indeed, we start by showing the relation

v U_Niv u_—Ni{ze] E(X,) (35.4)

Js js =1
where N, is the group of particles that contains the s-particle defined by the position X,(ty) in AV, .
Nj

For simplicity of notation we put j,=S, X, =X, N, =Ng, AV, =AV,. We also put Q, = ¢, , S0
1

that the expression (33.7) for U (where t, is replaced by t) becomes

ZQ ZQ W (35.5)

J¢J

One has
VU=V, U= . 1 QS 9 $qv _
ZNS =i ‘ J‘ S j=S ]_XS‘
(35.6)
1 1 & =(c
— e e Vo = -— ) e E\X.
Applying these relations, the equation of motion (35.2) for the s-particle takes the form
m, %\75 e 5(%,)+ ASI—S E(X,) (35.7)

S
For seeing the meaning of this equation let us sum up with respect to all the N particles in AV, at

the initial time t,

Ns
st Ze 2(%,)+ 1Q.E(X, ) (35.8)
s=1

The foIIOW|ng equality holds:
Ng R
> e,é(%,)=Q,E(X,) (35.9)
1

Indeed, one can write

Yeilr)- Yo de, 2R - Se e

n#s | | n#Ss | n |

N i )—(>

— iZen Zes (35.10)
j#S n= s=1 | Xn|
The first term in the right hand side vanishes in view of the antisymmetry of the term under the sum.
The last term is formed by summations over groups of particles that are contained at the instant t,
inside volume elements with j = js. In the coarse-grained approximation one can replace X, and X,
with the averages X and )2 in AV, and AV obtaining

iesé'( _Se3Te XX o ¥Fey

s=1 j#S n=1 j#S n=1

=Q,E(X,) (35.11)

S n

S n

Recalling from section 33 that A =—A4, —1 one arrives at the relation
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N

im V. =—2QE(X,) (35.12)

We know from section 34 that 4, is close to 0 but not identical to it and then (35.12) would imply
that the time derivative of the total momentum of the system is close but not identical to 0. If we want
to eliminate the unphysical dependence on the coarse-graining described by A, while remaining
consistent with the result above, we are forced to admit that the two members of (35.12) must vanish
separately

Np R
ZmS%\?S =0,  QE(X,)=0 (35.13)
s=1

It follows that the total momentum is constant in time and that the collective system is globally

electrically neutral.
The reasoning above leading to (35.13), can be repeated for any group N, of particles in any AV, at

any time t=t,, so we conclude that the collective system is always described by egs.(35.13).
Using (35.13) in (35.7) one obtains the equation

m, %\73 =e &(X,), (35.14)
which describes the motion of the s-particle in the field of all other particles. The solution of this
equation has been treated by Pines and Bohm [2] in the case of an electron gas, assuming that phase
factors, which depend on the position of the particles, average out to zero, due to the randomness of the
positions (the so-called random phase approximation). It has been shown by Pines and Bohm, that this
approximation holds for thermal plasmas. In this way one can derive from (35.14) the plasma
oscillations at the frequency w, = (47zne2 /m)llz.

Deviations from electric neutrality arise in the presence of fluctuations of the electric field around
the global neutral equilibrium. We shall see that the electrostatic force associated with the fluctuation
of the electric field can be compensated by the fluctuation of the pressure.

The pressure gradient is introduced through an inhomogeneous term in the action principle, as in
section 22:

2 & N VR(X, )

_[éLdt _ Iz(__ﬁﬁj X, (t)dt=—4, IZZﬁ

%, (t)dt, (35.15)

t n=l =1 n=1
Where n(Xj): N;/AV; is uniform in AV;. The coefficient 4, in the right hand side has been chosen in
order that the pressure force be of the same order of the electrostatic force, consistently with (35.12).

Following the same procedure as above one arrives at the equality
(X4 E(Xs )-v,. P(Xs)=0, (35.16)

N
where a()?s):(l/AVS)Zes. Taking P =P,+ 6P, where P, corresponds to the uniform neutral
s=1

equilibrium and &P is the pressure fluctuation that balances the electrostatic fluctuating force, one has
—o(X Wy o=V, P (35.17)

In the case of fixed temperature considered above one can write 6P =Toh for the Maxwellian
plasma and from (35.16) one gets (noting that a()?s) is uniform in AV;)
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Ns
D e,p~ AV P = AV Toh =ToNy. (35.18)
s=1

Ns
Introducing the average charge in AV, e= (1/Ns)ZeS one arrives at the relation

s=1

& _Ns (35.19)

T Ng
which shows that the fluctuation ¢ is related to the fluctuation of the number of particles in AV.

We finally return to the basic relation (34.9),
A(ty)=2,(z85 + 5D, ) =0, (35.20)
and note that, under the hypothesis that the average m is equal to the time average

t
(1/('[2 —tl))jé]_dt , (35.20) asserts the equivalence between the Hamilton’s action principle and the
t

vanishing of the first variation of S, with respect to adiabatic variations (which entail also the
t

see section 26). Indeed the variation of the action IéLdt:O, as well as the
t1

variations &S, and 5, can be considered as produced by the same primary variations X, (t)

(vanishing at t, and t,) when &S, and &®;, are generated by variations 6o and J¢ defined by the

vanishing of &,

int?

int

equahnes
So=¢E-Vo, Sp=E-Vo, with o= (k2/47z)¢ (35.21)
where in turn f IS produced by all the &, (t) averaged in time
t
~(= 21
E(X,)= j Za" (t)dt. (35.22)
t, —t1t =

As in section 24, the &, (t) are interpreted as variations of the positions of the particles in AV ; with
respect to their positions X, (t,).
It is worthwhile to note that the condition (35.20) holds also in the case of AL(t,) equal to the

variation (35.15) of the action provided that the pressure is vanishing at infinity and the displacements
5()? ) are incompressible. Indeed one has

3 VPQXJ)-& (t)it = > vP(X Jav,
2 _tl j=l n=ly¢ n i =1 tz

= [V-PEdv - [PV.ZdV = [PZ-dS - [PV-£dV =0.

1 % &1
_tligN—a“ (t)dt

]

= [&.vPdv

(35.23)

(The fact that the right hand side of (35.15) is vanishing does not interfere with the variation procedure
which requires the vanishing of the action with respect to each single &% (t); also, in spite of the

condition V- & =0, the &X, remain essentially arbitrary in view of the very large value of N ).
We have seen, among other things, that the descriptions at the particle level, at the collective level
and at the coarse-grained level are reduced to the variation properties with respect to the variations ox,,

of one single mathematical entity, the Lagrangian, which adapts flexibly to the different levels of
description.



Entropy 2009, 11 220

References

1. Bohm, D.; Pines,D. A Collective Description of Electron Interactions: . Magnetic Interactions.
Phys. Rev. 1951, 82, 625-634.

2. Pines, D.; Bohm, D. A Collective Description of Electron Interactions: Il. Collective vs Individual
Particle Aspects of the Interactions. Phys. Rev. 1952, 85, 338-363.

3. Minardi, E. The Magnetic Entropy Concept. J. Plasma Phys. 2005, 71, 53-80.

4. Jaynes, E. T. Papers on Probability, Statistics and Statistical Physics; Rosenkrantz: Dordrecht-
Reidel, 1983.

5. Reiman, A. Taylor Relaxation in a Torus of Arbitrary Aspect Ratio and Cross Section. Phys. Fluids
1981, 24, 956-963.

6. Jensen, T.; Chu, M. S. Current Drive and Helicity Injection.Phys.Fluids 1984, 27, 2881-2885.

7. Taylor, J. B. Relaxation of Toroidal Plasmas and Generation of Reverse Magnetic Fields. Phys. Rev.
Lett. 1974. 3, 1139-1141.

8. Taylor, J. B. Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 1986, 58, 741-763.

9. Chandrasekhar, S.; Woltjer, L. On Force Free Magnetic Fields. Proc. Nat. Acad. Sci. 1958, 44, 285-
289.

10.Woltjer, L. Hydromagnetic Equilibrium Il. Stability in the Variational Formulation. Proc. Nat.
Acad. Sci. 1959, 45, 769-771.

11.Chew, G. L.; Goldberger; M. L.; Low, F.E. The Boltzmann Equation and the One-Fluid
Hydromagnetic Equations in the Absence of Particle Collisions. Proc. Roy. Soc. London 1956,
A236, 112-118.

12.Hazeltine, R. D.; Meiss, J. D. Plasma Confinement; Addison-Wesley Publ. Company: Redwood
City (Cal.), 1991; p.79.

13.Hastie, R. J.; Taylor. J. B.; Haas, F. A. Adiabatic Invariants and the Equilibrium of Magnetically
Trapped Particles. Ann. Phys. 1967, 41, 302-338,

14.Grad, H. Velocity Gradient Instability. Phys. Fluids 1966, 9, 498-513.

15.Santini, F. Collisionless Entropy and Interchange Stability of a Representative Adiabatic
Magnetoplasma. Physica 1967, 36, 538-546.

16.Minardi, E.; Santini, F. The Thermodynamics of a Collisionless Plasma at Equilibrium in a
Magnetic Field. Physica 1967, 35, 19-28.

17.Bateman. G. MHD Instabilies; The MIT Press : Cambridge (Mass.) 1980; pp95-97.

18.Coppi, B. Non-classical Transport and the “Principle of Profile Consistency”. Comments Plasma
Phys. Contr. Fusion 1980, 5, 261-269.

19.Minardi, E.;Weisen, H. Stationary Magnetic Entropy in Ohmic Tokamak Plasmas: Experimental
Evidence from the TCV Device. Nucl. Fusion 2001, 41,113-130.

20.Minardi, E.; Lazzaro, E.; Sozzi, C.; Cirant, S. Profile Consistency Based on the Magnetic Entropy
Concept: Theory and Observation. Nucl. Fusion 2003, 5, 369-384.

21.Minardi, E.;Sozzi, C.; Mantica, P. Stationary Magnetic Entropy Tokamak States and Experimental
Observations. Nucl. Fusion 2008, 48, 045001 (13pp).

22.Weisen, H.; Behn, R.; Furno, I.; Moret, J.-M.; Sauter, O. (TCV Team). “Profile Consistency”
Features in Shaped Sawtoothing Ohmic TCV Plasma Phys. Control. Fusion 1998, 40, 1803-1818.



Entropy 2009, 11 221

23.Weisen, H.; Behn, R.; Furno, I.; Moret, J.-M.; Sauter, O. (TCV Team) “Profile Consistency”
Features in Strongly Shaped Ohmic Tokamak Plasmas. Phys. Plasmas 1999, 6, 1-4.

24.Baker, D. R.; Rosenbluth, M. N. Density Profile Consistency and its Relation to the Transport of
Trapped versus Passing Electrons in Tokamaks. Phys. Plasmas 1998, 5, 2936-2931.

25.Weisen, H.; Minardi, E. Evidence for the Role of Magnetic Entropy and Turbulent Equipartition in
Stationary Ohmic Tokamak Discharges. Europhys. Lett. 2001, 56, 542-548.

26.Razumova, K.A.; Andreev, V.F.; Donné, A.J.H.; Hogeweij, G.M.D.; Lysenko, S.E.; Shelukhin,
D.A.; Spakman, G.W.; Vershkov, V.A.; Zhuravlev, V.A. Link between Self-Consistent Pressure
Profiles and Electron Internal Transport Barriers in Tokamaks. Plasma Phys. Control. Fusion 2006,
48,1373-1388.

27.Razumova, K.A.; Andreev, V.F.; Dnestrovskij, A.Y.; Kislov, A.Y.; Kirneval, N.A.; Lysenko, S.E.;
Pavlov, D.; Poznyak, V.l.; Shafranov, T.V.; Trukhina, E.V.; Zhuravlev, V.A.; Donné, J.H.;
Hogeweij, G.M.D. The Main Features of Self-Consistent Pressure Profile Formation. Plasma Phys.
Control. Fusion 2008, 50, 105004 (13pp).

28.Goldstein, H. Classical Mechanics; Addison-Wesley Publ. Company; Redwood City (Cal.), 1980;
p24.

29.Essén, H.; Nordmark, A. Hamiltonian of a Homogeneous two-Component Plasma. Phys. Rev. 2004,
69, 036404 (9pp).

30.Bernstein, I. B.;Trehan, S. K.; Weenink, M. P. H. Plasma Oscillations: Il. Kinetic Theory of Waves
in Plasmas. Nucl. Fusion 1964, 4, 61-104.

31.Bernstein, I. B.; Greene, J. M.; Kruskal. M. D. Exact Nonlinear Plasma Oscillations. Phys. Rev.
1957, 108, 546-550.

32.Cupperman, S.; Tzur, I. The Verification of Minardi’s Instability Criterion for Non-homogeneous
Selfgravitating Equilibria. Astrophys. J. 1973, 180, 181-187.

33.Finzi, U.; Doremus, J. P.; Holec, J.; Feix, M. Classification and Stability of Double Water-Bag
Plasma Equilibria Plasma Phys. Contrl. Fusion 1974, 16, 189-200.

34.Schwarzmeier, J. L.; Lewis, H. R.; Abraham-Schrauner, B.; Symon, K. R. Stability of Bernstein-
Greene-Kruskal Equilibria Phys. Fluids 1979, 22, 1747-1760.

35.Minardi, E. Fluctuation Levels Connected with Reactive Marginal Instabilities. J. Plasma Phys.
1974, 11, 471-483.

36.Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover Publications INC.
New York 1965; p298.

37.Taylor, J. B.; McNamara, B. Plasma Diffusion in Two Dimensions. Phys. Fluids 1971, 14, 1492-
1499.

38.Weiland, J. Collective Modes in Inhomogeneous Plasma; Institute of Physics Publishing: Bristol,
2000; p42.

39.Whittaker, E. T.; Watson, G. N. Modern Analysis; Cambridge University Press: Cambridge (U.K.),
1959; p452.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).



