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Abstract: In this work we discuss how and to what extent the thermodynamic concepts 

and the thermodynamic formalism can be extended to the description of high temperature 

states of the plasma not necessarily associated with a Boltzmann distribution and with 

thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy 

concept”, an interpretative and predictive tool based on probability and information, 

defined in a suitably coarse-grained possibility space of all current density or of all electric 

charge density distributions under testable constraints, and whose variation properties are 

proven to be related under certain conditions to the equilibrium and the stability of the 

system. In the case of magnetic equilibrium the potentiality of the magnetic entropy 

concept is illustrated by comparing the predictions of the current density and pressure 

profiles with the observations in different tokamak machines and different tokamak 

regimes, as well as by showing how the equilibrium and the stability in devices as different 

as the reversed field pinch or the magnetic well are described by the variation properties of 

the same entropy functional applied to the different situations. In fact it emerges that the 

maximum of the entropy can be seen in these different cases as an optimization constraint 

for the minimum of the magnetic energy. The application of the entropy concept to the 

electrostatic processes shows in particular that the so-called reactive instabilities (non-

dissipative, non-resonant instabilities with a marginal point) admit a neighboring state with 

higher entropy and are therefore of special relevance from the point of view of the physical 

evolution of the system. In this case the thermodynamic formalism allows the introduction 

of the concept of “thermodynamic fluctuations” of the macroscopic charge density and 

provides a method for the calculation of the “thermodynamic” fluctuation levels both on 

the stable as well as on the linearly unstable side of the marginal point. The paper discusses 

the relation between the variations of the entropy functional defined on statistical grounds 

and the motion of the underlying system of particles. It is found that the vanishing of the 

first variation of the entropy is connected, under certain assumptions, with the Hamilton’s 

principle, while the second variation is not directly related to the dynamics but is an 
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expression of the fact that the entropy is a predictive tool based on probability and 

information. 

Keywords: Thermodynamics of Plasmas; General Theory and Basic Studies; Tokamaks; 
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1. Introduction 

 

We say that the plasma has a high temperature when the time scale of the processes taking place in 

it is much smaller than the collision time arising from the Coulomb interactions of its particle 

constituents. 

In the high temperature plasma the term that takes into account the effects of the individual 

collisions in the time evolution of the plasma configuration in phase space described by the Boltzmann 

equation, is neglected. This term, in its various versions and implicit assumptions, determines the 

evolution of the plasma toward a uniquely defined stationary distribution in phase space, namely the 

Boltzmann distribution. 

In the case of high temperature plasma one can set up a description based on a distribution function 

satisfying a conservation equation in a reduced 6-dimensional space, the so-called Vlasov equation. In 

the Vlasov picture all kinds of individual particle-particle correlations are neglected and only collective 

(macroscopic) effects involving organized cumulative motions of charged particles with the associated 

electric and magnetic fields are taken into account. A relevant consequence of this collective 

description is that the uniqueness of the stationary solution is lost because any arbitrary function of the 

constants of motion is a stationary solution of the Vlasov equation. This arbitrariness is not reduced 

when one restricts himself to the consideration of particular symmetric geometries, as the axis-

symmetric geometry of the tokamak, and of particular closure approximations as that of the 

Magnetohydrodynamics. In this case the equilibrium is described by the Grad-Shafranov equation, 

which depends on two arbitrary functions. 

In contrast with this theoretical situation, it is an experimental fact that the magnetically confined 

plasma adopts well-defined equilibria, which, in some cases, exhibit a remarkable stiffness, 

particularly in the current density and in the pressure profiles. The question arises whether some 

general criterion can be found that selects a very limited set of high temperature states among the 

infinite possibilities allowed by the theory in its present form. 

A possibility that occurs naturally to the mind is the existence of a functional of the equilibrium 

quantities, which select the collision-less states of the plasma according to their variation properties 

and which play the same formal role of the thermodynamic potentials of classical thermodynamics. In 

other words the question is whether a thermodynamic theory can be formulated of the static or quasi-

static (i.e. very near to the marginal point of stability) collision-less states also in situations very far 

from the Boltzmann equilibrium. 

The possibility of such a theory is related to the existence of a functional whose variation properties 

could characterize the collision-less states according to a hierarchy of probabilities and whose formal 

properties could be the same as that of the entropy of classical thermodynamics. Once this functional is 

constructed, the thermodynamic properties will eventually emerge after comparison of the formal 

properties of the functional with the concrete physical features of the collision-less states of the plasma. 

According to this point of view one defines the probability of a collective macroscopic state by 

operating in the possibility space of all current density distributions or electric charge density 
distributions (conveniently coarse-grained) and assigns the probability Pi of each distribution (labeled 
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by i ) of a canonical ensemble by requiring that the entropy  i
i

i PPS ln  be stationary with 

respect to the variation of the Pi under given constraints. 

We shall consider a scheme where the collective system is so constrained that its collective energy 

(magnetic or electrostatic) is fixed, as well as its interaction energy with external sources of energy and 

electric charges. The latter is simulated by the interaction with an infinite background of independent 

particles (electrically neutral in the average) that acts as an infinite reservoir of energy and electric 

charges. The collective distributions of current density or electric charge density of the equilibrium 

states are introduced through the constraints as given but not “a priori” specified functions of space 

and the privileged collective states are determined by the variation properties of the entropy pertaining 

to the collective equilibrium integrated over the fluctuations of the background.  

Subsequently, when the collision-less states of maximum entropy are determined, one can apply the 

classical relation between the variations of the entropy and the fluctuations for calculating the 

“thermodynamic” (in the sense that will be specified in the text) fluctuation levels of the collective 

system around the collective equilibrium state. 

The development of a thermodynamic theory along the lines outlined above is the purpose of the 

present work. The result is the emergence of a set of conditions that strongly reduce the arbitrariness of 

the magnetic and electrostatic collision-less states of equilibrium, consistently with the experimental 

observations. 

The thermodynamic point of view reveals unexpected relations concerning the stability of a 

dynamical system and the stability defined thermodynamically in accordance with the variation 

properties of the collective entropy in regimes as different as those of the plasma in the tokamak, in the 

reversed field-pinch or in a magnetic well.  

In the case of electrostatic processes, the thermodynamic treatment points to the so called “reactive” 

instabilities (characterized by absence of dissipation and existence of bifurcation points) as the most 

relevant from the physical point of view, in view of the fact that they involve neighboring states of 

maximum entropy for critical values of the parameters. 

Even though the entropy is not a dynamical quantity, but a predictive tool based on probability and 

information, a connexion can be found between the equilibrium described by the vanishing of the first 

variation of the entropy and the motion of the underlying system of particles described by the 

Hamilton action principle. Through the comparison with the Lagrangian description of motion at the 

single particle level, as well as at the macroscopic level, the quantities involved in the construction of 

the entropy find a precise physical interpretation and the determination of the scale length 

characterizing the domain of validity based on the entropy functional emerges clearly. However a 

direct connexion with the dynamics does not hold for the second variation of the entropy, which fact 

reflects the peculiar non-dynamical content of the entropy concept. Nevertheless, the structure of the 

entropy functional is such that the maximum of the entropy can be seen, in many significant cases, as 

an optimization constraint for the minimum of the energy (magnetic or electrostatic). In other words, 

the energy is minimized under the condition that the probability of the magnetic or electrostatic 

configuration be at a maximum. 

Though independent of the detailed dynamics, the global point of view offered by the 

thermodynamics of high temperature plasmas can be hopefully useful, just as in the classical case, for 
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unraveling those phenomenological parameters which are at the heart of the physical process and 

which are worthy of a more specific dynamical analysis. 

 

CHAPTER 1: The statistical model of magnetic collisionless equilibria 

 

Summary: We start with the definition of the information space, that is, of the possibility space of 

all current density distributions compatible with the information expressed by given constraints. The 

volume V  in ordinary space is partitioned into N  volume elements V  in which the macroscopic 

current density can be considered as uniform, so that V  measures the coarse-graining. The N  volume 
elements are the basic objects of the statistics. Each volume element V j  is susceptible of occupying 

at random a position in the 6N -dimensional possibility space of all positions 

x i  in V  and of all current 

density values 

J i  at 


x i . The current density 


J i  is divided in two parts   jjj jxjJ

 ~ , where 

j 

x   is a 

macroscopic current density due to collective motions of the electrons involving a scale length larger 
than V 1/ 3

 and defined in a volume  that satisfies the inequalities VV  .  

The electrons carry the current and the ions form a uniform neutralizing background. The part jj
~

 is 

due to the velocity fluctuations around the average value of individual electrons that can be considered 
as effectively free inside each V j  provided V j  is so small that one can ignore the collective 

interactions between many particles inside it. The concept of separation between electromagnetic or 

electrostatic collective and individual effects described by characteristic lengths, goes back to old 

papers by Bohm and Pines [1-2] and will play a natural central role in our formulation. 

The partition of the current density is introduced through the following two independent constraints in 

information space: 
1) The sum of the collective magnetic energy 


1/2c 


j 

A d , and of the interaction energy of the 

collective vector potential 

A  with the background of fluctuating currents    dAjc

~
2/1 , is 

prescribed.  

2) The dispersion of the current density   jrj
 ~  arising from the fluctuating part j

~
 is fixed. This is 

the same as to fixing the temperature of a “heat bath” modeled by the background of electrons 
effectively free in each V j  (1 j  N ), covering the whole volume V  ). In this scheme the 

individual particle-particle correlation is neglected. Indeed, this approximation is the basis of the 

derivation of the Vlasov equation from Liouville equation and of the description of collective 

collision-less processes. However, while the particle-particle interaction is neglected, the 

interaction of the current fluctuations due to the individual particles with the “smeared out” 

collective field is taken into account and will be seen to vanish only for the isolated system at 

thermodynamic equilibrium. In fact, the interaction energy with the background of independent 

particles will prove to be a useful device for simulating the reversible interaction of the collective 

system with external sources of energy.  
The entropy S   Pi

i

 ln Pi   follows from the requirement to be stationary with respect to 

variations of the Pi under the constraints above. 
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In the thermodynamic limit, N / with V  fixed the entropy S  turns out to be divided in a 
part Sp  called “magnetic entropy” that depends only on the collective quantities of the plasma 

equilibrium and in a part Sb  related to the infinite background of individually uncorrelated particles in 

interaction with the collective field. 

When the plasma is enclosed in a perfectly conductive shell and the quantities of the collective 
equilibrium vary slowly in time, the time derivative of Sp , calculated with the help of the Maxwell 

equations and with a suitable modeling of the image currents in the shell, is expressed in terms of the 

inductive electric field generated internally to the plasma. When an external electric field has 

penetrated into the plasma through narrow cuts in the shell and the global plasma configuration is 
stationary, the entropy Sp  is also stationary. The condition that the plasma is stationary locally leads to 

an equation for the current density profile 

j 

x   [3]. 

 

2. The separation between collective and individual effects and the statistics of the plasma 

volume elements in information space 

 

For tackling the question outlined in the introduction one must define, as a first step, a suitable 

space   where all possible current density distributions can be represented and where the information 

on the system can be introduced in the form of constraints on these distributions. We adopt the 

Bayesian point of view of information theory [4] where the constraints have a hypothetical meaning. 

That is to say, one advances testable constraints that imply a determination (an assignment) of a 

probability distribution P  by maximizing the entropy  


dPPS ln  with respect to variations of P  

under the constraints to be tested. If the probability P  and the entropy, calculated with these 

constraints, prove to be consistent with the observations, then one infers the physical consistency of the 

constraints and, at the same time, the internal consistency of the theory. In our specific case the 

existence of a given macroscopic current density distribution will be introduced ‘a priori’ through 

‘testable’ constraints whose probability assignment in the space of all possible current density 

distributions is determined by the entropy principle and is to be confirmed by the experiment. 

We then proceed to define the space   where all our information on the system will be expressed. The 

volume V  of the plasma is partitioned into a large number N  of volume elements in which the 

macroscopic current density can be considered as uniform, so that V V /N  measures the coarse-

graining through which the plasma will be seen. The size of V  is subject to lower and upper limits. 

The lower limit arises from the requirement that the number of particles contained in V  be very large. 
At the same time V 1/ 3

 should not be larger than the screening length below which the particles can 

be regarded as effectively free and can be treated individually while the collective effects dominate at 
scale length larger than V 1/ 3

. We shall meet the precise value of the screening length, according to 

the calculations of Bohm and Pines [1-2] in the course of development of the theory (chapter 7, section 

23, chapter 11 section 33). At present we assume that, at scale lengths larger then the coarse-graining 

described by V , only collective effects be visible and that, compatibly with the conditions above, 

V  can be chosen so small that the collective quantities can be taken as uniform in it. 
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The current density 

J i  can be divided in two parts   jjj jxjJ

 ~ , where 

j 

x   is a macroscopic 

current density due to collective motions of the electrons involving a scale length larger than V 1/ 3
 

and is defined in a volume  that satisfies the inequalities V   V  and is vanishing outside . 

The electrons carry the current and the ions form a uniform neutralizing background. The part jj
~

 is 

due to the velocity fluctuations around the average value of the effectively free electrons inside each 

V j  where V j  satisfies the limits given above. In view of the fluctuating part j
~

, 

J j  is a random 

variable. 

We consider an assembly formed by the large number N  of volume elements V ; the elements V  

are the basic objects of our statistics. Let us introduce a six-dimensional space for the values of the 

current density 

J  and for the position 


x  in the volume V . We now take one volume element from the 

assembly, call it Vj  and place it at random in a copy of the above six-dimensional space denoted by 

Sj . The volume element will be at a certain position, denoted by (

x j ,


J j)  (where 



x j  is for instance the 

center of Vj ). We do the same for another volume element Vi , in another space Si , taking care that 

Vi  can only occupy in Si  a position 


x i 


x j  because the volume elements cannot overlap in V . After 

repeating this procedure for all N  volume elements, one obtains a single point in a 6N dimensional 
space   which is the Cartesian product of all the Sj . This point represents a particular current density 

distribution of the plasma, reconstructed in the volume V  with a coarse-graining V . 
The space   is called ‘information space’ and the current density 




J j  is the ‘information variable’ 

(other examples of information variables are the charge density. in the case of the electrostatic plasma 

equilibrium and the mass density in the case of the gravitational equilibrium). Our purpose is to 
calculate the probability P(


J 1...


J N ;


x 1...


x N )  for the assembly of N  volume elements to occupy at 

random any given volume element d  in information space. To see the form of d , we note that the 
volume accessible in 3 dimensional space to the volume element j 1, is V  NV . The volumes 

accessible to the volume elements j  2  and j  3 are V  V  N 1 V , and V 2V  N  2 V , 

and so on. Thus the volume accessible to the assembly of N  volume elements is 

N N 1  N  2 ...1 V N  N!V N .        (2.1) 

This must be divided by N! because a permutation among the N  volume elements has no physical 

effect and must not contribute to the total volume element in information space. Hence d  is given by 

d  V N d

J 1...d


J N .           (2.2) 

Further constraints are now imposed on the part of information space that concerns the current 

density distributions.  
As we said, the total current density in each Vj  is formed by the coarse-grained contribution 

(uniform in Vj ) of a macroscopic (or collective) current density 



j 

x j  and by a fluctuating part jj

~  

arising from the global effect of the particle discreteness in Vj . The part 



j 

x j , related to the 

collective equilibrium, is not specified ‘a priori”, as it is an unknown to be determined later from the 

variation properties of the entropy. The total current density   jjj jxjJ
 ~ , where  jj

~ , is 

a random variable in view of its fluctuating part. The jj
~

 are the integration variables, while 



j xj  can 

be treated as a constant. Additionally, 



j xj  is taken as vanishing outside a volume   V  while 
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0
~ j


 everywhere in V . The quantities V  and N  will that tend eventually to infinity with fixed V  

and  (thermodynamic limit: see section 3).  

We adopt a scheme in which the plasma configuration is characterized by the magnetic energy 
interaction of the current density 


J  with the part 


A 

x   of the vector potential created only by the 

collective part 

j 

x   of the total current density 


J . That is to say we neglect the interaction of the 

fluctuating part j
~

 with itself.  Then we put 

       .
~

...;...
2

1
int

1
11 



dVxAxjjxxJJP
c jj

N

j
jjNN


     (2.3) 

In view of the normalization condition 


P

J 1...


J N ;


x 1...


x N 


 d 1,          (2.4) 

the equation (1.3) can be separated in the parts 

    ,
~

...;...
2

1

1
11int 




N

j
jjjNN dVxAjxxJJP

c


       (2.5) 



 
1

2c


j 

x j 


A 

x j 

j1

N

 V j .          (2.6) 

Here  int  is the energy of the interaction between the current fluctuations of the background and the 

collective potential of the macroscopic configuration. 

In the derivation of the Vlasov equation from the Liouville equation the particle-particle correlations 

are neglected and the Vlasov equilibrium is collisionless. Consistently with this picture the fluctuating 

part jj
~

 arises from the velocity fluctuations of particles that can be treated as individually independent 

in each V j , covering the whole volume V . 

Pure Vlasov equilibria are uncorrelated to the fluctuations arising from particle discreteness. This 

fact should be expressed in our scheme by equating to zero the particle-collective field interaction 
energy int . However the assumption of a non-vanishing energy interaction of the individual particle 
belonging to the fluctuating background in each V j  with the “smeared out” collective field will prove 

to be a useful device for simulating the complicated external interactions that tend to drive the 
collective (macroscopic) equilibrium outside the pure Vlasov equilibrium. Indeed,  int , when 

calculated explicitly in the formalism that we are developing, will play a crucial role for the description 

of the energy emitted or absorbed by the collective system, through the Poynting flux of 

electromagnetic energy (see section 8). In other words the interaction of the collective system with the 

fluctuating background simulates the interaction of this system with the external world. We then 

consider the equation (2.3) as a constraint to the maximization procedure of the entropy, where 
 int    is fixed and  and int are to be determined later according to the physical situation at hand. 

A further constraint on P  arises from the fact that 

J  is a random variable, whose values are then 

subject to dispersion. It is convenient to characterize the dispersion by fixing the value J2  of the 

following average quadratic form 



J 2 
1

N
P

J 1...


J N ;


x 1...


x N 





J j

2 d.
j1

N

         (2.7) 
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We shall see in section 4 that this form is consistent in the proper limit (the thermodynamic limit) 

with the conventional definition Ji
2  Ji

2
 of the local variance in each Vi  (see eq. (4.9)). It is not 

necessary to specify now the value of J 2 . This value will be found in section 23 while discussing the 

relation of the present model to the dynamics of the underlying system of particles. 

The probability P  can now be determined from the requirement that the entropy  
S   P ln P d


  

be stationary with respect to arbitrary variations of P  under the three constraints (2.3), (2.4) and (2.7). 

 

3. The thermodynamic formalism 

 

Applying the technique of the Lagrange multipliers we are led to find the extreme of the functional 

  ,
1

ln
11

2    
   


N

j
jjj

N

j
j dPdVxAJP

c
JPdPPS 


 

    (3.1) 

where ,  and   are constants to be determined later in order to satisfy the constraints. The vanishing 

of the first variation of S  with respect to arbitrary variations of P  gives 



P  P0 exp 

J j

2 
1

c


J j 


A 

x j V j

j1

N


j1

N










,        (3.2) 

where P0  exp  1  . Let us put 




J j

2 
1




J j 


A 

x j V j 


J j 


J j 2 C j ,        (3.3) 

where 

J j  and C j  are independent of 


J j  and are given by 


J k 

j
 

1

2c
Ak


x j V j ,            C j  

1

4 2c 2 Ak
2

k1

3

 V j
2,     (3.4) 

where k  denotes the components of 

J j  and 


A . The   integration then reduces to integration over 

Gaussian distributions. Recalling the normalization condition (2.4), we obtain 
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


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
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
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     (3.5) 

P0 

exp C j

j1

N












V N  / 3N / 2 .         (3.6) 

One can verify the relations 




J i 


j 

x i  ˜ 


j j  P


J i d


  

1

2c


A 

x i Vi,       (3.7a) 
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1
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~
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1 
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      (3.7b) 
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2  P

J i

2 d

 

3

2


J i

2


3

2


V 2

4 2 2c 2
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A 2


x i ,       (3.7c) 
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

J 2 
1

N
P

J j

2 d



j1

N

 
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4 2 2c 2N
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A 2
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 .       (3.7d) 

Combining (3.7d) with (3.7b), we obtain 
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
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We can now proceed to the calculation of the entropy: 
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     (3.10) 

Another quantity of interest is the free energy defined by F   ln P0 . Combining (3.6) with (3.4) 

and (3.7b,d), we obtain 

F   lnP0   C j

j1

N

 N ln V 3 / 2  3N
2

ln   

  .
3

2
1ln

2

3

3

2
ln int

2/3
2

int 





 
























 





N
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VN     (3.11) 

The comparison with (3.10) gives the following relation between F  and S : 

F  S int 
3N

2
.         (3.12) 

 

4. The thermodynamic limit 

 

We shall now pass to the limit N  ,V    with V  fixed, considering also as fixed the volume 

  where the macroscopic (collective) system is localized. That is to say, the collective configuration 
described by 


j 

x  , localized in the volume  , is considered as immersed in a background (a heat bath) 

of particles freely fluctuating in each V j 1 j  N  covering the volume V    (electrically neutral 

in the average). In this limit the entropy and the free energy will be separated in two parts 

corresponding respectively to the collective system and to the background. The two systems however 
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are not independent but they can eventually interact by exchanging energy through the interaction 
energy int . 

Effects related to the macroscopic configuration and to the fluctuating background are both 

contained in J 2 , which can be split as follows: 

   
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        (4.1) 

Here the first term is a purely collective part. The second term describes a spatial correlation 

between the collective current density and the average of the fluctuating current density of the 

background in interaction with the collective system, and the last term is the mean square of the 

fluctuations of the background. 

Using (3.7a), (3.7c) and (3.7d) and replacing the sums Vj
j
  with integrals d


 , the last two 

terms can be written in the form: 
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After inserting (4.2) and (4.3) into (4.1), we obtain 
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      (4.4) 

In the limit V  , the last term in (4.4) is much smaller than unity and lnJ 2  in (3.10) and (3.11) 

can be approximated by an expansion up to first order in  / V . Moreover, the limit V   implies 

the limit N   in order that V  remains finite. Since also   is finite (see the explicit expression for 
  given by equation (23.18)), it follows that  int / N  is much less than unity, so that the last 

term of (3.10) and (3.11) can also be approximated by expanding the logarithm up to first order in 

 int / N . Finally, recalling (4.2) and that   V , one has 2~
2/3 j


 . It follows that S (3.10) 

can be expressed as the sum of two parts 
S  Sb  Sp ,         (4.5) 

where Sb  contains the effects of the background, 
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and Sp  depends on the collective quantities of the macroscopic configuration: 
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The free energy is calculated from (3.12), using (4.5) and (4.6): 
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Here, for reasons of completeness of the calculation, we have retained terms proportional to N . 

These terms are in fact meaningless as they tend to infinity with N  and play the role of infinite 

constants, independent of the collective equilibrium, while only variations of S  and F  with respect to 

collective quantities are physically relevant. 

The thermodynamic limits of other quantities of interest are as follows (use is made of (3.7c), (3.7d) 

and (4.4)) 
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5. The magnetic entropy concept 

 

Comparing the expression (4.11) with (4.7), one can write 

.
~

4
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2
cp J

j

N
S            (5.1) 

This relation tells us that the entropy of the macroscopic system is proportional to the correlation in 

space between the macroscopic current density and the fluctuating current density of the background 
described by (4.3) and this correlation vanishes for S p  0 . Let us put  int  0 , so that also the 

correlation in space between the fluctuating current of the background and the collective potential 

vanishes. After substituting   (4.10) into (4.7) we obtain 
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Applying the Schwartz inequality, we find that S p  0 , Thus, the absolute maximum S p  0  is 

associated with complete absence of correlation between the macroscopic system and the background. 
This occurs when 


j 


A  where   is a constant. 

By fixing  int  0  and by eliminating   from (4.7) we have implicitly supposed that   is varying 

when the macroscopic quantities are varied. A different physical situation arises when we keep   fixed 
and eventually vary  int  instead. Indeed   is a kind of generalized temperature (as can be formally 

seen by inspecting the formulas above) and in the limit of the Maxwellian plasma is related to the 
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Maxwellian temperature by a linear relation given in section 23 where its relation with the underlying 

dynamics of the particles will be discussed. Variations with   fixed are therefore isothermal variations. 

We then consider   as a parameter of the macroscopic equilibrium and in view of the comparisons 
with practical systems we find it convenient to replace   with a parameter   according to the relation 

.
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Using this relation, Sp  can be written in the form 
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and the interaction energy is given by the expression 
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A variation of the macroscopic quantities 

j  and 


A  with   (and  ) fixed, implies eventually a 

variation of  int  and, at the same time, the presence of correlation between the fluctuating and the 

macroscopic quantities and an energy exchange between the collective system and the background. 
The variation of  int  will be calculated explicitly for typical situations of practical interest in section 9, 

in section 12 and in section 16. It will turn out that  int  describes the exchange of energy of the 

macroscopic system with the external world. Thus, the background allows for simulating the behavior 

of this system when it is not isolated 

 

6. Time evolution of the magnetic entropy 

 

We now consider that the collective equilibrium is time dependent, but changing so slowly as to 

justify the application in a significant time interval of the concepts of canonical ensemble and 

canonical average implicit in our procedure. 

In this section we shall investigate how the magnetic entropy changes in time when the plasma 

evolves in accordance with Maxwell equations. For this purpose it should be noted that in the 

derivation of sections 4-6 the localization of the plasma equilibrium in a finite volume   played an 

essential role. Thus, in order to proceed consistently with our statistical model we have to express this 

situation in physical terms. We shall consider a situation where the plasma is carrying a volume current 
with density 




j p  and is in contact with a surrounding conductive shell. The presence of a closed shell 

has a precise thermodynamic meaning because it allows us to consider the enclosed system as being 

isolated from the external world. However if narrow cuts exists in the shell which allow the penetration 

of an electromagnetic field, then the plasma interacts with the external world and the shell defines 

merely the localization of the plasma equilibrium in the finite volume delimited by the shell. This 
model will be useful for the discussion of the physical meaning of the interaction energy  int  in 

section 8. 
We assume that a current 


j s  exists on the shell, which creates outside the shell a magnetic field 

screening the magnetic field 

B  created by 




j p , so that the total magnetic field vanishes outside the shell: 



4
c


j p   


B ,         .

4
Bej

c nss


 

       (6.1) 
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The function    s , where   is the coordinate along the minor radius, describes the localization 

of 

j s  on the conductive shell with effective radius s , and, whenever convenient, will be approximated 

by a   function; 

e n  is the unit vector orthogonal to the shell and directed outwards.  

The entropy functional (5.4) is expressed in terms of the total current density 


j 


j p 


j s  and 


A p , 

where
  


A p  4 / c 


j p . Thus the collective part Sp  of the magnetic entropy can be subdivided 

into a part depending on the plasma quantities 


j p  and 


A p , denoted again with Sp , and a part Ss  which 

depends only on the current density 

j s  on the conductive shell: 



Sp 
2

2 c 2
 jp

2  2

j p 


j s d

2c

4

j p 


j s 


A p d















,      (6.2a) 

  .
8

12 22

2

2

22
 



dBdj
c

S sss







      (6.2b) 

where d  ddS  and the integration includes the shell. 
We now concentrate on the part Sp  pertaining to the plasma. Approximating (6.1) with the 

  function one obtains 

  .2
8

1 222

2 

















  

  


 ppp ABSddABBSdBdBS



 

(6.3) 

Applying Faraday’s law 



1

c



B 

t
  


E ,

1

c



A p
t

 

E ,          (6.4) 

and after repeated application of Gauss’s theorem, the time derivative of Sp  takes the  following form: 

  







   

     







tjBSd
c

BESd
c

SdjEdjj
E

dt

dS
pppp

p /
1

4

11
22

22
2




 


 

1


1

2  

j p 

c

4


B 












   


E  d











1

2c
d

S 


B 



j p
t

 ,     (6.5) 

where d

S 


e ndS ,  


j p  0.  

We distinguish two cases: 
Case 1: 




E 


E ext  Eext


e   is a toroidal inductive electric field that has penetrated through narrow cuts 

in the volume enclosed by the copper shell where  

E ext  0 , while the magnetic configuration of the 

plasma is time independent. This is the case of the tokamak in static equilibrium. 

Case 2: The plasma is enclosed in a perfectly conductive shell without cuts so that the component of 

the electric field tangent to the shell vanishes and 

E  d


S  0  on the shell. In general  


E  0  and the 

magnetic configuration is not static due to dissipation and/or instabilities. With 

j p /t  0  on   (see 

section 10) the first expression (6.5) becomes 

  .0
1 22

2
 



djj
E

dt

dS
pp

p 





        (6.6) 

The same expression for dSp / dt , but with dS p / dt  0 , is obtained in case 1 when one requires that 

the volume and surface contributions of the first expression (6.5) for dSp / dt  are vanishing separately. 

This requirement follows from the condition that in the confinement region, under conditions of static 
equilibrium, the time derivative of Sp  should vanish locally, that is to say, in every small volume 
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element   of  . Indeed, a prerequisite for applying this condition is that the volume and the surface 

integrals vanish separately. More generally, introducing an arbitrary function F  (to be determined 

later) the volume and the surface contributions can be separated by putting 




E ext

2  2

j p  

2

j p 


 d  Fd


 ,           


F d 

1

2




E ext  


j p  d


S 

c

4
d

S 


E ext 


B 





 

1

c2
d

S 


B 



j p
t

 ,   (6.7) 

where one equality is a consequence of the other. 
The requirement that dSp /dt  vanishes locally in the tokamak leads to the equation 

Eext

2 2 j p  
2 jp  F, 

where 



j p  j


e  , 




E ext  Eext


e   and F  will be determined in the next section. 

 

CHAPTER 2: Plasma states and state transformations 

 

Summary: Time independent magnetic configurations of the plasma associated with a time-

independent magnetic entropy are called “plasma states’. The electric field present in a plasma state 

can only be the stationary electric field induced externally. 

The requirement that the magnetic entropy is stationary in the tokamak implies the balance between 

the net power deposited on electrons and the power lost by electron thermal conductivity. The 

additional requirement that the balance holds locally leads to an equation for the profile of the current 

density induced by the external electric field (the SME equation). 

One can consider reversible transformations of the states described by the SME equation associated 
with emission or absorption of electromagnetic energy described by the variation of int  related to the 

Poynting flux of energy. The corresponding change in time of the collective magnetic quantities gives 

rise to an internal inductive electric field and to an increase or decrease of magnetic entropy whose 

correspondence with the magnetic states is then defined by the reversible process. In the absence of 

external drive the same states of entropy can be accessed only through an irreversible entropy increase. 

In section 9 the transformations among states satisfying the SME equations are discussed in detail. 

In the absence of external interactions, i.e. when the plasma is completely isolated from the external 

world by a perfectly conductive shell, the state of maximum entropy is a force-free state. The stability 

properties of the reversed field pinch are contained in the variation properties of the magnetic entropy 

and of its time derivative.  

 

7. Stationary magnetic entropy (SME) and power balance of the tokamak 

 

As is customary in statistical thermodynamics the physical meaning of the terms contributing to the 

entropy change emerges after comparison with the power balance equation. For the purpose of this 

comparison let us write the first equation (6.7) in the form       

  .0
11 22

2
 



dFdjj
E

dt

dS
pp

extp









       (7.1) 
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Here the second term describes the work of the external electric field on the plasma current density 




j p  j


e  , which can be interpreted naturally as the induced current carried by the electrons. 

Correspondingly, the magnetic entropy calculated with this current density should pertain to the 

system of electrons. 

In conditions of stationary equilibrium the thermal energy of the electrons is constant in time and 

the power balance is expressed by the relation 

.0 


dpdjESdq Epexth





        (7.2) 

Here qh  is the heat flux related to the thermal conductivity of the electrons and the third term 

contains the contribution of the net power density deposited on electrons (auxiliary power, electron-ion 

energy transfer, non diffusive losses) in addition to the Ohmic contribution described by the second 

term. Thus, according to (7.2), the open system of electrons is in thermal equilibrium with the external 

ambience. There is neither energy gain per unit time of the electrons, nor global entropy production, 

the entropy production due to the thermal dissipation in the volume   of the plasma being 

compensated by the entropy per unit time injected externally into this volume. This is consistent with 
the relation dS p / dt  0  implied in the derivation of (7.1). The comparison between (7.1) and (7.2) 

leads to the identifications F  pE , and  

  .
11

2
2

2
SdEjjEdVjESdq extextpexth


 

 


 
     (7.3) 

It is of special interest to study the current density profiles associated with the magnetic entropy that 

is stationary locally, that is to say, in any arbitrary small toroidal shell  . As follows from (7.1) 

these profiles are described in the cylindrical limit, by the following equation: 

.
2

22
E

ext

p
E

jj
                   (7.4) 

In the cylindrical limit the heat flux (7.3) can be expressed in terms of the ratio sh r / q r   between 

the magnetic shear sh  r /q dq /dr  and the safety factor. Indeed combining the relation 

      ,
44

2











rq

r

dr

d

Rr

cB
rB

dr

d

r

c
rj

          (7.5) 

with the expression (6.3), one obtains 

,
2

1
2 

















 const

q

s

dr

d

q

s

R

cBU
Sq hh

h 
        (7.6) 

where U  2REext  is the loop voltage, S  4 2rR and the constant is fixed by the boundary condition 

at the inner border of the confinement region. The heat flux is then expressed in terms of the magnetic 

configuration, which in turn depends on the power deposited on electrons through the equation (7.4). 

In order to determine the temperature one needs a constitutive relation, for instance 

.h
e

effe q
dr

dT
n              (7.7) 

The electron temperature Te , calculated from eq.(7.7), is therefore the result of the combined effect 

of the magnetic configuration which follows from the condition (7.4) and of the specific mechanism of 
thermal transport determining eff , which is not contained in this condition. Further conditions are then 

needed for fixing at the same time  eff  and Te  (see the discussion in section 20). 
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The validity and the limits of validity of the profiles predicted by the equation (7.4), called the SME 

(Stationary Magnetic Entropy) equation, will be the object of close scrutiny through comparison with 

the experimental data (chapter 6).  In view of this comparison, it is worthwhile to stress already now 

the theoretical conditions under which equation (7.4) holds. 
It is implicit in the derivation that the electric field Eext  is the external electric field of the ohmic 

transformer and not the electric field generated eventually inside the plasma. The term 

E ext 


j  

describes the work of the transformer on the induced current sustained by the electrons. The equation 

is derived assuming that the entropy functional (5.4) is stationary in time and that the plasma is 

uniformly quiescent everywhere. So the equation holds under completely stationary conditions and 

dynamical effects (i. e. sawteeth and others) should be excluded. Consistently with eq. (7.2), the 

integral of the SME equation implies equilibrium of the power balance of the electrons so that the 

temperature and the density do not depend on time. We shall discuss in section 17 the special role 
played by the parameter sa in tokamaks.  

It is worthwhile to recall that in the presence of non-inductive currents the loop voltage and the 

electric field in eq. (7.4) tend to zero. One sees by inspection that the equation breaks down in this case. 

So the profile of the non-inductive currents cannot be described by eq. (7.4). This is consistent with the 

fact that the profiles of the non-inductive currents have a different origin described by their specific 

generation mechanisms. For instance, the bootstrap current depends, among other things, on the 

pressure profile, which presupposes a pre-existing well-established equilibrium. The non-inductive 

currents driven externally are the result of a local interaction, which determines their profiles. These 

external local dynamical manipulations are not taken into account in the statistical derivation of the 

entropy functional (5.4) which does not make a distinction “a priori” from one plasma region and 

another, and consequently cannot be contained in eq. (7.4). 
The macroscopic current density will be taken as the sum of an inductive part 


j , described by 

equation (7.4), and a non inductive part (assuming that the non inductive part is small and neglecting a 

possible interaction between the two parts): 
     .rjrjrj nindtot


           (7.8) 

The form of 

j nind r  is taken from experiment, that is to say, it is calculated from the generation 

mechanism consistently with the experimental data. 

Clearly the validity of the current density profiles described by the equation (7.4) depends on how 

large are the effects whose description is not included in this equation. For instance, the larger is the 

non-inductive current or the larger is the sawtooth zone, the larger is the deviation of the profile of the 

total current density from that described by eq. (7.4). We shall return on these points in the discussion 

of the experimental data in chapter 6. 

 
8. The physical meaning of the interaction energy  int  

 

An insight into the physical aspects of the statistical model is obtained by inspecting the time 
derivative int  of the interaction energy  int . Putting 




j 


j p 


j s  into eq. (5.5) one has 

,
88

1

2

1 2
2

int 


 dAABSddAj
c pppp 


 


      (8.1) 
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1
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int

    (8.2) 

Note that the screening field created by 

j s  exists only outside   and the same holds for the 

corresponding vector potential 

A s . 

After application of Gauss’s theorem one is led to the following expression: 

.
44

2
int 




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


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
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c

jBESd
c
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d
pp
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




       (8.3) 

The first term in the right hand side is the Poynting flux of electromagnetic energy across the 

boundary  . To see the meaning of the last term we specialize to the tokamak. We note a relation 
between j  and the related component A  of the vector potential, which follows straightforwardly 

combining (7.4) with D’ Alembert equation     jcA /42  . One obtains 





  A
c

j
4

2

,  where    2  2 pE

Eext

.        (8.4) 

The term   describes the part of the current density which is generated by the interaction of the 

plasma with the external world, namely with the power input and output described by pE . 

Applying (8.4) the last term of (8.3) becomes 


dEext , which describes the work of the electric 

field on that part of the current density, which is generated by the net power deposition on the 

collective system of electrons. It will be shown in section 17 that this term becomes negligible under 

the conditions that insure the profile consistency in the tokamak when the magnetic entropy is 

stationary. Thus, under these conditions (to be presented in chapter 4), only the electromagnetic effects 
described by the Poynting term are present in the expression of d int / dt  and dint /dt  0 when the 

collective system is isolated.  

In the case of a force free equilibrium, which satisfies the equations 




j 

c

4


B 

c

4
 


A p 

c

4
 


B .         (8.5) 

The integrand of the last term  of (8.3) can also be seen to vanish after a proper choice of the gauge. 
Indeed, if the equations above are satisfied by 




A p  they are also satisfied by 




A p   . Let us determine 

  from the equation 



c

4


A p   

c

4


B 


j 


.          (8.6) 

This equation can be integrated and   is known, the integration constant apart. If then 



A p  in (8.3) is 

replaced by the new gauge 



A p  4 /c   4 /2c 


j , the integrand vanishes identically. 

 

9. Adiabatic transformations 

 
Let us consider the infinitesimal transformation j  j j  where j   2c / 4 A  with A 

satisfying the equation 2A   2A  0. It is immediately seen that j j satisfies the same equation 

(7.4) for j . It will be shown that the magnetic entropy of the total system formed by the collective 
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equilibrium and by the background is an invariant of the transformation above, while the entropy of the 

two subsystems is varying separately at first order. It follows that no heat can be emitted or absorbed 

by the total system as a consequence of a reversible transformation, which is therefore adiabatic.  

We assume that the total current is conserved during the variation so that the poloidal component of 



B  vanishes on  , which gives a condition on the radial derivative of A . The first variation of Sp  

(6.3) is then (dropping the subscripts) 

 
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The first variation of  int  (8.1) is given by the expression 
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Recalling that Sb   int /   is the entropy pertaining to the background we have that the first 

variation of the entropy of the total system vanishes 
S  Sp  Sb  0.           (9.3) 

Let us now consider the second variation of S . One has for generic primary variations A  and 
j   c / 4 2A : 
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One then obtains the following inequality 

 2S   2Sp  
2Sb 

1


2j

c

A

2













2

d  0,       (9.5) 

where the equality holds only for the adiabatic variations that we are considering. It follows from (9.5) 

that the total system formed the collective equilibrium plus background, considered as isolated, is 

thermodynamically stable because the entropy S  is maximum, the adiabatic variations 
j  c2 /4 A  apart. Stability is a theoretically necessary prerequisite in order that the total system 

could be identified as a not fading but present object on which conceptual experiments can be 

performed. 

We have seen that the entropy of the total system formed by the collective equilibrium plus 

background is invariant under the adiabatic variations so that no heat can be emitted or absorbed by the 

total system in a reversible transformation. The total system is then isolated during the transformation 

while, in contrast, entropy can be reversibly exchanged at first order between the collective subsystem 

and the background. The variation of the collective equilibrium is produced by varying the parameters 

that enter the solution to the equation (7.4) as for instance the location of the inner boundary of the 
relaxed region (the surface q 1) and the boundary values of the current density and of the related 
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magnetic quantities. At the same time the total current can be kept fixed while electromagnetic energy 
is emitted or absorbed by external sources described by the variation of  int .  

It is instructive to see the rate of change at first order of the entropy and of  int  due to the adiabatic 

time dependence of the parameters. We neglect at this moment the inhomogeneous term of (7.4). This 
will be justified in section 17. In this case eq. (8.4) becomes j  2c /4 A  and  

j

t

2c

4
A

t
 

2c 2

4
E .          (9.6) 

For calculating the first derivative of Sp  we apply the first expression (6.5). Since the SME equation 

is preserved in the transformation, the first term in the right hand side of (6.5) vanishes. The second 
term, using the relations above for j , can easily be seen to combine with the third and the last terms to 

give 



dSp

dt
 

c

4
d

S 


E 


B 


 .          (9.7) 

Thus, recalling (8.3) we have 


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c
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d

S 
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
B 


  

dint

dt
.         (9.8) 

This relation shows that the electromagnetic energy lost by the background is gained by the 
collective system (and vice versa) and confirms the interpretation of the interaction energy  int  as a 

formal device for simulating the interaction of the collective system with external sources of energy. 

The rate of change in time of the entropy can be expressed in terms of the changing magnetic 

configuration by the equality 
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         (9.9) 

In the SME states there is a balance between the loss of energy related to the heat flux and the 

ohmic input in the stationary plasma. The relations (9.8) and (9.9) describe a supplementary input or 

output of electromagnetic energy associated with the adiabatic change in time of the parameters of the 

SME states and of the entropy. This exchange of electromagnetic energy with external sources is a 

reversible process. But the same change of entropy occurs when the transition between the same states 

is irreversible. The entropy change is then defined also in the realistic case where the infinite 

background does not exist and the collective system is isolated and undergoes an irreversible 

transformation. So, albeit fictitious, the introduction of the background allows the definition on ideal 

theoretical grounds of the entropy changes of the magnetic macroscopic equilibrium through reversible 

processes involving energy exchanges with external sources.  

While in the isolated system the entropy is constant in a reversible transformation, the irreversible 
change of state described by (9.9) can only occur with dSp /dt  0. This establishes a direction in the 

transitions among the SME states when they can be treated as isolated: only those transitions are 

allowed such that (9.9) is negative (remember that   is negative, see eq. (5.3))). 

We will illustrate these points by constructing explicitly the SME states that can be accessed from 

one another by conserving the total current during the quasi-static change of magnetic entropy related 

to emission or absorption of electromagnetic energy according to (9.8). Recalling (9.9) the entropy 

change in the relaxed region, at first order of the varied quantities, is given by the following expression 

(in mks units): 
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where   is given by (5.3) and is fixed, x  r / a  and x 1, x    are the outer and inner borders of the 

relaxed region. 

In the sawtooth region, where the theory is not expected to hold, the magnetic configuration is 
modeled by taking for the safety factor the expression q x   q0  1 q0  r / 2 . A JET-like geometry 

is assumed ( R / a  3,a  1m ), but, for simplicity, a circular cross-section for the magnetic surfaces will 

be assumed here, although a geometrical correction for taking into account the non-circularity will be 

applied when the theoretical data will be compared with the observations (chapter 6). 
We take 1.5MA for the total current and 3.3T  for the toroidal field. The location of the q    1 

surface is taken at   0.18 and the total current is kept fixed. Once the continuity conditions for the 
current density and for the poloidal field across the q    1 surface are satisfied, while the poloidal 

magnetic flux is left unchanged on this surface, (it turns out that the flux remains practically fixed also 

on the minor axis) one is left with one parameter free. This is the poloidal flux across the border or, 
related to it, the value of the current density at the border. In Table I   0  is the outgoing poloidal 
flux (divided by 2 ), q0  is the value of the safety factor on the minor axis, j  , j 1  are the values of 
the current density at the inner and outer border respectively, and  Sp  int  is the electromagnetic 

energy released by the collective system when the entropy increases. 

Fig.1 shows the evolution of the current density profiles when the parameters of Table I are varying. 

One observes that the increase of entropy and the concomitant release of electromagnetic energy are 

accompanied by outgoing poloidal flux, by the increase of the current density on axis and by a 
pronounced increase of the current density at the border together with a decrease near the q  1 surface. 

 
Table I. Meaning of symbols:  , outgoing poloidal flux (divided by 2 ); q0 , safety 
factor on magnetic axis; j  , current density on the q 1 surface; j 1 , current density at 

the outer border of the relaxed region; int , electromagnetic energy released associated 
with the magnetic entropy increase Sp . 

 
  

T  m2  

q0  j   
MA / m2  

j 1  
MA / m2  

 Sp  int  

MJ  

0.00 0.98 1.72 0.022 0.00 

-0.026 0.92 1.62 0.057 0.307 

-0.053 0.87 1.52 0.088 0.614 

-0.079 0.81 1.41 0.12 0.922 

-0.10 0.77 1.34 0.15 1.150 

 

When the system can be considered as isolated from the external circuits, the change of entropy is 
no longer related to the energy output int , but the same states of higher entropy described by (8.9) 

can be accessed by means of an irreversible process where the electromagnetic energy released in the 

transformation is dissipated internally to the system.  
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We note that the transformations in the opposite direction, i.e. in the direction of the decreasing 

entropy, can only occur when the collective system is not isolated because they imply an input of 

electromagnetic energy from external sources. 

If one admits that the current is ohmically relaxed, the statements on the current density can be 
transferred to the temperature profile T  j2 / 3 . In particular, the increase of temperature at the border is 

accompanied by a decrease of temperature near the q  1 surface (and vice versa). 

 

Figure 1. Current density of a succession of SME states with constant total current and 
fixed position of the q 1 surface. The direction 0  4  (from flat to peaked profile at the 

centre and increase of the current density at the border) is associated with increase of the 
entropy Sp , release of electromagnetic energy int  and outgoing poloidal flux   (see 

Table I). 

 

 
 

10. The force-free state 

 

We now consider the case 2 of section 6, which applies to the plasma isolated from the external 
world by a perfectly conductive shell so that, in contrast to the tokamak, one has d int / dt  0. We 

shall investigate the behavior of the entropy with respect to infinitesimal primary variations 

j , static 

or quasi-static (i.e. near the marginal point of stability, when it exists) around a static equilibrium, in 
order to determine the state of maximum entropy. The variations 


B ,


A  and 


j s  follow from 


j  

according to the equations 
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c

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

4
c


j s     s e n 


B .     (10.1) 

Putting Sp  Sp0 Sp  
2Sp  one has for Sp :  
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 
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2c
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
S 


j 

B 


 .      (10.2) 

We put 

j  0  at the toroidal wall  . To see the physical meaning of this condition we note that it 

implies  

B  0 at the wall, so that one can write 


B    where   is some function that we take 

as a periodic function of the toroidal and poloidal coordinates on the wall. Thus, denoting with CT  any 
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toroidal path around the wall of the torus, one has that  
TC

ldB 0


  which implies that the current 

through the hole of the torus is kept constant during the variation [5].  
It follows from (10.2) that Sp  is stationary if the magnetic configuration satisfies the equation 


2

B  2


B ,                          (10.3) 

where   is arbitrary. The force-free state 

B  


B  satisfies this equation with   0 .  

The second variation 2Sp  has the form 


2Sp 

1

 82


B 2


B  2


B  d


 .        (10.4) 

In order to discuss the sign of 2Sp  let us consider the eigenvalues m  of the equation 

 

a m m


a m,          (10.5) 

with boundary condition 

a m  0  [6]. Noting that 


B m 


a m    is also a solution of (9.5) and 

determining   in order that 

B m  0 with 



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B m 

n
 d


S    0 at the boundary, one has  


2

B m m

2

B m  0.                               (10.6) 

Identifying the variation 

B  in (10.4) with a mode 


B m  we obtain 

2Sp 
1

 82
Bm

2 m
2  2 d


 .         (10.7) 

It follows that for 2  m
2  one has 2Sp  0  so that Sp  is at a maximum. If m  is the lowest 

eigenvalue of eq. (10.5) the magnetic entropy is maximum with respect to all eigenmodes 

B m . 

One can make predictions on the time evolution of the perturbed system by inspecting the time 
dependence of the second variation. The first and the second variation of dSp /dt  (6.5) are as follows: 
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B  d,        (10.9) 

where we have put 0/ tj   on  .       

In order to see how the system evolves in time let us consider the case where 2Sp  0  and m
2  2, 

so that Sp  is at a maximum. Since the varied system, supposed to be isolated, but time dependent, must 

evolve to states of increased entropy, one must have d 2Sp /dt  0 and  
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Therefore a sub-domain   of   exists where 

 
.0

2


t

Bm





            (10.11) 

It follows that 



B m  tends to zero in   with time. Then, after some time, the contribution to the 

integral (9.10) arises only from the domain outside  . If one admits that   0/2 dtSd p  in any  , 

then 



B m  must tend to zero everywhere. Conversely one finds that if Sp  is not at a maximum, so that 

2  m
2 , a sub-domain   exists where 0/

2
tBm 


, and the equilibrium is unstable. 
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The formulation above of the time evolution of the perturbed force-free state, is based on the same 

eigenvalue equation (10.5) that determines the stability of the reversed field pinch in the Taylor’s 

model [7]. In this model the magnetic energy is minimized under the constraint of fixed helicity. This 

is defined as 


 dBAK


 where   is the whole volume of a dissipative plasma. The energy is 

minimum and the equilibrium is stable when  m  where m  is the lowest eigenvalue of eq.(10.5). 

Taylor has pointed out the relevance of this mathematical formulation for the description of relaxation 

and of the magnetic reconnection in plasmas [8]. A derivation of the more general equation (10.3) 
from a variation functional similar to Sp (5.4) has been given in 1958 by Chandrasekhar and Woltjer 

[9]. 

In the present formulation the time dependent magnetic energy is compensated by the term of work 

involving perturbed inductive electric fields and currents generated internally to the collective system. 

The helicity conservation is not assumed explicitly but it is necessary for restricting the solutions of 

(10.3) (see Woltjer [10]). 

Although the mathematical formulation of the stability of the pinch based on equation (10.5) is the 

same as that of the Taylor’s model, the derivation from the entropy concept is more comprehensive. 

The entropy concept provides a unifying point of view in the description of the global ideal properties 

of the tokamak and of the reversed field pinch as well as of effects related to the local structure of the 

magnetic field, to be discussed in the next paragraphs. The Taylor’s model of the pinch was the first 

look on a new land, ready to be explored. 

 

CHAPTER 3: Local entropy and local plasma properties 

 

Summary: The plasma states considered until now were global states involving the whole plasma 

volume and the entropy and its variations were defined with an integral over this volume. However it 

is often observed that the plasma stability depends on the excitation of localized perturbations or 

internal modes which give rise to localized structures. It is then worthwhile to investigate the 

properties of the magnetic entropy with respect to localized variations. In this chapter the entropy 

functional is expressed in a form sensible to localized perturbations. It turns out that, on one hand, the 

sign of the second variation of the magnetic entropy depends on the positive or negative definite 

character of a certain quadratic form, and, on the other hand, that the sign of the quadratic form is 

related to the stability with respect to interchange modes. In the case of the anisotropic plasma this 

leads naturally to the magnetic well as a state whose entropy is locally at a maximum. 

The quadratic form expresses the energy change arising from interchange of adjacent filaments of 

current and depends on the physical effects which give rise to the density of current. When the current 

density introduced in the quadratic form arises from the inhomogeneous magnetic field, the sign of the 
quadratic form is related to the low-  interchange instability. 

In situations where the magnetic energy decays as a consequence of localized dissipative effects, as 

in the case of a dissipative resonant layer, the energy transfer from the magnetic system to the 

background (or to the external world) is taken into account by the variation of the interaction energy 
int . This is the case of the tearing modes to which the present thermodynamic concepts can be 

instructively applied (section 15). 
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11. Local entropy variations and local structure of the magnetic equilibrium 

 

In the preceding sections the properties of the magnetic entropy functional where studied with 

respect to changes of the magnetic configuration involving the whole plasma volume. In order to 

include in our thermodynamic description also those physical aspects that are localized in a limited 

region of the plasma and depend on the local structure of the magnetic field one should introduce a 

definition of the entropy appropriate for this purpose.  

A convenient procedure consists in dividing the plasma into relatively small but macroscopic 
volume elements n  and in calculating the entropy Sn  in each n  by taking into account the local 

structure in n  and assuming that the entropy of the global system is the sum of all the Sn . Of course, 

n  should be large enough to satisfy n  V V /N  as is required by the statistical description. 

On the other hand, when one looks at the magnetic structure locally inside each n , what really 

matters is not the average value of the current density or of the vector potential in n , but how these 

quantities are changing inside n , for instance, with respect to the average value. In other words the 

information variable consistent with our present point of view to be introduced in the calculation of §1 
of the entropy functional is not 


j 

x   but its deviation 


j (

x ) 


j 

x n  from its value at some point 


x n  

inside n . Correspondingly one should use the deviation 



A 

x  


A 

x n   instead of A(


x ) . The 

calculation that leads to the entropy functional (5.4) and to the interaction energy (5.5) remains 
unchanged when the information variable 


j 

x   and the vector potential 


A 

x    are replaced everywhere 

by 



j 

x  


j 

x n   and 




A 

x  


A 

x n . Thus, in accordance with our considerations, the entropy of the 

whole system takes on the form  
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where , in accordance with (3.10) n is given by the equality 
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We start from a zero order equilibrium with 0,int  0 and consider variations of Sp  and int  with 

respect to primary variations of the current density and of the vector potential by keeping 2 nn   

fixed at the equilibrium value (isothermal perturbations). In this situation the sign and the form of the 
numerator of n

2 (see eq. (11.2) with int,0  0) are crucial for determining the variation properties of 
Sp  and, at the same time, the structure of the magnetic equilibrium, as we shall see. 

We suppose that the volume elements n  are sufficiently small so that the magnetic field of the 

equilibrium can be considered as uniform in n  and one can write in first order in 

x 


x n  n , 


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
j 

x n .  

Putting nxx


 , the equality (10.2) becomes 
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We shall show the following relation: 

  .222
nxx BBB

n
 




           (11.4) 

Let us introduce curvilinear coordinates  i(i 1,2.3) where 1, 2  are such to be constant along the 

magnetic lines of force, with 

B 1  2, while  3  is parallel to 


B  
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      .ii jj 
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      (11.5) 

Noting that 
2

B   4 /c  


j , one has in this co-ordinate system that 
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where ikr  is the Ricci tensor (ikr  0 for i  k  r  and equal to  Detgik  according as an even or odd 

number of transpositions changes the order of i,k,r  to 1,2,3 where 123  0). 

Let us take for n  a volume element with cylindrical cross section and dn  ddzd  where   

and   are polar coordinates in the plane perpendicular to 

B  spanned by the vectors 1 and  2 , and 

dz  is parallel to the local direction of 

B . The quantity r

ikr
i
s Bj ,  can be taken out of the integral when 

only terms of second order in 

 are taken into account inside n . Denoting with  , s, k  the polar 

angles of the vectors sk   ,,


 respectively in the perpendicular plane ( s,k 1,2 ) one has, 

recalling the last equation (11.5) 
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    (11.8) 

where s  and k  have been taken out of the integral in view of the assumed uniformity of the 

equilibrium magnetic field inside n  

Applying known formulas of trigonometry (11.8) becomes 
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For the integrals involving the third component we have 
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where, in view of the properties of the Ricci tensor, one must have k  3.  

The relation (11.4) is then obtained combining (11.9), (11.7) and (11.6). We note that the parallel 
component of 


 is irrelevant in view of (11.10). 

Through the relation (11.4) one can connect n
2 with the pressure tensor P


 of the equilibrium, a fact 

that will be useful in the following. Indeed,by applying the equation of the equilibrium, 

PcBj
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to the relation 
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one obtains 
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where .: PcBj


  

 

12. Local variation properties of the entropy 

 

We shall now see how the relations (11.4) and (11.13) are related to the local variation properties of 

the magnetic entropy (11.1). We consider variations of (11.1) localized in a certain region   
covering a number of small suitably chosen volume elements n . The variations are rapidly varying 

inside   and vanish on the surface of  . Under these conditions, we expect that the entropy (11.1) 
is stationary with respect to a family of localized variations 


j  while n

2 is kept fixed, that is to say in 

our terminology, with respect to “isothermal” variations (n  is constant) and that the maximum or 

minimum is related to the sign of n
2. 

Indeed, let us take for 

j n  and 
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A n  the averages of 
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nnn djj
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
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/1 . 

When the n  are so small and the variations j  and A ( jn  and An  are kept fixed) are so slow that 

they can be considered as practically uniform inside each n  separately, the first variation of each 
Spn  (11.1) can be seen to vanish. The same holds in the opposite case when the variations are varying 

so rapidly in each n  with respect to the equilibrium, so that they average to zero in n . Indeed, 
under this condition the first variation of Sp  can be written in the forms 

    











 n
n

n
np

n n

djAAj
c

djjS
 









4
2

2

 = 

    


djAAjx
c

djj




 2

4
2        (12.1) 




































 ,

444
22

222

SdBA
c

SdBA
c

dBB
c

djj


   (12.2) 

where 
2 

x    n
2  is supposed to change so slowly in   that its derivative can be neglected ( n

2 

involves the second derivatives of the equilibrium magnetic field (see (11.4)) whose variation in space 

is assumed to be sufficiently slow). It follows that the volume integrals vanish in view of the rapid 

oscillations of the perturbations, while in comparison, the equilibrium quantities can be assumed as 

practically uniform in  , and that the surface integrals also vanish in view of the localization of the 

perturbations internally localized in  . 
We take it for granted that, with the appropriate choice of the size of n , the perturbations to be 

considered in the following are consistent with Sp  0. 

As for the second variation of Sp  we have with the approximation above for 
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When 2  0  perturbations may exist which increase the entropy and the isolated system is not 

thermodynamically stable. For instance, putting in (12.3) 

j  c /4  


B  with 


j  0 on  one 

finds that 2Sp  0 if perturbations 

B m  exist which satisfy the equation 

,022  mmm BkB


             (12.4) 

with km
2  2  and with 


B m  0. In contrast, when 2  0, one has 2Sp  0. 

We conclude that the magnetic entropy of a local isothermal equilibrium, with a given positive 
temperature, i.e. with fixed   022   xnn

 , is always at a maximum.  

 

13. The Magnetic Well 

 
We shall show that B2 has a minimum whenever 2  0. Indeed, in Cartesian coordinates one can 

write B2  B j
2

j

  and after deriving twice one obtains 
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From this and from (11.4) it follows that  2B2  0, that is to say, B2 is subarmonic, which implies 

that it takes its maximum on the boundary. If B2 is constant on the boundary, it has a minimum in the 

interior and one has a magnetic well. 
While the condition 2  0  implies a magnetic well, it implies also a condition on the pressure 

tensor through (11.13), namely  :

P  0 . We investigate the consequences of this condition 

presently. 

We start from the form of the pressure tensor originally introduced by Chew, Goldberger and Low 

[11] 
 ,||  PbbIPbbP
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where 

b 


B /B. It can be easily shown (see e.g. [12]) that the divergence of 


P  can be written in the 

form 
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where || 

b    and 


 denotes the curvature of the magnetic field 
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Here the equilibrium equation (11.11) has been used.  

A useful relation is obtained by projecting (13.3) along 

B : 

||P||  P||  P ||B

B
 0.          (13.5) 

Putting  1 4 P||  P /B2 and taking into account (13.4) and (13.5), (13.3) becomes  
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In order to proceed with the calculation of  :

P  in the case of the magnetic well, we introduce 

the assumption that P||  and P  depend on space only through B, that is to say, P||  P|| B ,P  P B  
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(this assumption implies that the distribution function of the equilibrium depends only on the kinetic 
energy,  m /2  v

2  v||
2  and on the magnetic moment   mv

2 /2B  [13]). Then eq.(13.5) becomes  

dP|| /dB  P||  P /B,           (13.7) 

and (13.6) takes the simple form 
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We observe that 
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Using this relation and (13.7) one obtains 
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In order that the entropy is not at a minimum this form must be positive definite. Since B has a 
minimum, as we know from above, one must have 

2 B  0 in a region around the minimum. Then the 

form (13.11) is positive definite if the following conditions are satisfied in this region: 1)  0; 2) 

dP /dB  0; 3) d 2P /dB2  0. The first condition implies the absence of the fire-hose instability, which 

exists only in the opposite exceptional case [14] 

P||  P 
B2

4
.            (13.13) 

The conditions 2) and 3) imply that, if B is constant at the boundary, P B  decreases everywhere in 

the region around the minimum B apart from a point where it is at a maximum.  

The conditions above were first derived, in the case of vanishing parallel current, by Santini [15] 
directly from the condition that the quadratic form 


2  d


j  d


A  1/2    


j  


B 


  be negative 

definite (see [16]). 
 

14. The Interchange Instability 

 
The sign of the quadratic form 




 


j   

B 

  plays a fundamental role in our considerations and it 

is then worthwhile to note that it can be seen from another point of view, susceptible of generalizations. 
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We start from the macroscopic magnetic energy 

 1/2c 


j 

A d  and consider the energy i 

contained in two small adjacent volume elements 1 and 2 (not necessarily flux tube elements) 

centered at two points 1 and 2 displaced along a vector  in a direction perpendicular to 

B . Choosing 

the volume elements small enough and each equal to  , one has 


i 


2c


j 1 


A 1 


j 2 


A 2  .         (14.1) 

Now we consider the new configuration in which the values of the current density in 1 and 2 have 

been interchanged while the vector potential 

A  was kept constant at each point. After this interchange 

the expression (14.1) has to be replaced by 


 f 


2c


j 2 


A 1 


j 1 


A 2  .         (14.2) 

Clearly, in a low   approximation one can indeed change the current distribution 

j x  without 

changing the magnetic field and its vector potential 

A . However the same result (14.2) could also be 

obtained with a more flexible procedure in which the values of the vector potential in 1 and 2 are 
interchanged, whereas the quantity 


j x remains fixed at each point. In this way   and 


j 

x   can 

change separately in order that 

j  is consistent with the variation of the magnetic field configuration. 

The energy variation due to the interchange considered above is then 


2  f i  


2c


j 2 


j 1  


A 2 


A 1   

2c
d

j  d


A .    (14.3) 

Restricting ourselves to first order in 

  we can write 




A 2 


A 1  1

2


B 1 


,     


j 2 


j 1 


  


j 1 ,       (14.4) 

and  2 becomes 


2 


4c


  


j 1   

B 1 

 .         (14.5) 

It follows that when the interchange energy is minimum ( 2  0 ) n
2  (defined by (11.2) with 

int  0) is negative, the expression (12.3) for 2Sp  is also negative and the entropy is at a maximum. 

In addition to its relation with the variation properties of the entropy, the interchange variation (13.5) 

has an interest in itself. Indeed one can discuss the stability of the magnetic equilibrium in a variety of 

physical situations depending on the special form of the current density to be introduced in (14.5). 
For instance, in the case of the low-  interchange instabilities, the process is driven by the current, 

which arises from the opposite drift of ions and electrons. As a simple example let us consider the case 

of the inhomogeneous plasma in a constant magnetic field 

B  (0,0,B) , with ions and electrons subject 

to a gravitational force msg

e x  (the subscript s refers to ions or electrons). In this configuration the 

particles drift in the direction 


e y  with the velocity 

vDy  
mscg

qsB
,             (14.6) 

which gives rise to a current density 

js,y  qsnsvDy  
msnscg

B
.          (14.7) 

Noting that dAy  Bdx  one has 

2djs,ydAy 
mscg

B

dns

dx
dx 2

,         (14.8) 
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and this quantity is positive when n x  increases in the direction of gravity, which implies, on one 

hand, that  is at minimum and the system is stable, and, on the other, that the entropy is maximum 

with respect to all perturbations (see (12.3)). 

We can extend this reasoning to the drift current density arising from the non-homogeneity of the 

magnetic field (see [11], p145): 




j d  c


B B

B3
P||  P .          (14.9) 

In the calculation of   

j d  we neglect all terms involving P /B2 with respect to the term involving 



 P  where P  P||  P. In particular we assume P /P  B /B . Then one has the equality 



d

j d  d


A  c


  P


B B

B3












B 




2












 P


B B 


B 


 

2B3



  P 


  B 

2B
.  (14.10) 

For   4P /B2 1, 




  can be approximated by B 


 /B . In the case of a scalar pressure 

p  P||  P , so 


2 


2c

d

j d  d


A  


2c


  p 


 


 .        (14.11) 

This term is the same as that describing the low-   interchange instability in the 

magnetohydrodynamic energy principle (see e.g. [17]).  

 

15. Thermodynamic interpretation of the tearing modes 

 

In a situation in which the magnetic system is subject to dissipation and part of the magnetic energy 

decays, the energy transfer can be taken into account in a phenomenological way by the variation of 
the interaction energy int . That is to say, the macroscopic system is not isolated and energy is 

transferred from the system to the background (or to the external world). This is the case of the tearing 

modes, which we are going to discuss presently. 

As is known from the conventional treatment of the tearing modes, one distinguishes two physical 

regions in the plasma: a resistive layer localized on a rational magnetic surface inside which 

dissipation is taking place and a non-dissipative outer region. 

We consider the plasma in cylindrical geometry carrying in the unperturbed equilibrium an axial 
current density j r  that creates a vector potential A r . The plasma is situated in a uniform axial 

magnetic field B  so large to be practically insensitive to small perturbations, while the other 

components can be slightly helically perturbed. As is well known, in view of the helical symmetry, the 

current density of the perturbed system is a function of space only through the helical flux 
  mA r,,  nrA /R  where A  rB /2  and m , n  are the poloidal and toroidal wave numbers 

associated with the rational magnetic surface under consideration. Let us divide the plasma volume 
into small sectors of cylindrical shells n  and let 


x n  rn ,n ,n  be the co-ordinates of some point 

inside n . The co-ordinates of a point varying inside the sector of the shell with very small radial 
thickness r  and small radial and angular ranges   and   are 


x  rn ,,  where 


x  n . Thus 

we can write inside the small shell (henceforth dropping the subscript  ) 

j  jn 
dj

dAn

A  An   dj

dn

m A  An ,        (15.1) 

where the subscript n denotes the value of the quantities at the point 

x n.  



Entropy 2009, 11                            

 

 

156

It follows from (11.2) (with int  0 at the zero order initial value) that 

n
2  

4m

c

dj

dn

.           (15.2) 

Let us calculate the first variations of Sp  and of Sb  n ,int
n
 /  n  with respect to generic primary 

variations j  and A (where j   c / 4 2A ), keeping n  fixed at the zero order  initial value: 

Sp  
3

2V ˜ j 2
j 2 j  jn  cn

2

4
A  An 











cn
2

4
A j  jn 









dn

n


n

  

  ,
4~

2

3 2

2 n
n

n
n dA

c
jjj

jV
n



















  



       

 (15.3) 

Sb 
int

 nn

  
1

2c

1

 n

A  An 
n


n

 j  m
dj

dn

A








dn   


3

2V ˜ j 2
j  jn 

 n


n

 j 
cn

2

4
A









dn .        (15.4) 

It follows that S  Sp Sb  0 . For the second variations one obtains 

,
4~

2

3 2

2

2  















n
n

n
p

n

dA
c

jj
jV

S






          

(15.5) 

 2Sb 
1

2c

 2n ,int

 nn

  
1

2c

1

 n

A j 
cn

2

4
A









dn 

 n


n

  

.
4~

8

3 2
2

2 















n

n
n

n
n dA

c
jA

Vj

c










        (15.6) 

so that 

.0
4~

2

3
22

2

222 










  

n
n

n
bp

n

dA
c

j
jV

SSS






      (15.7) 

As already noted (section 9) the total system formed by the collective equilibrium plus background, 

is thermodynamically stable because the entropy S  is extreme and maximum, the adiabatic variations 
j  cn

2 / 4 A  apart. But instability can arise for the collective magnetic subsystem when the 

variation of the interaction energy with the background is positive because this means that magnetic 

energy is transferred from the collective (macroscopic) magnetic system to the background (or to the 

external world). In this case the collective system is not isolated but is allowed to interact and decay by 

exchanging energy externally to the system. This is indeed the case of the tearing modes where the 

dissipative layer acts as a sink of magnetic energy.  
Let s  be the site of dissipation, namely a cylindrical shell centered on the rational surface 

q(s) m / n  with infinitesimal radial thickness 2 . Outside s  the variations are assumed to be 
adiabatic and reversible so that Sp Sb  

2S  0  and, according to (15.3) and (15.4), A  must 

satisfy the equation 

2A 
4m

c

dj

dn

A  0,          (15.8) 
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 for any n  in the outer region. This is just the equation of the tearing modes in the outer region. 
Inside the dissipation layer the second variation (15.5) of the entropy Sp  is singular as a 

consequence of the singularity of n  n
1 at r  s. For getting a finite result one should take into 

account the non-linear effects in the evolution of the tearing mode that resolve the singularity and lead 

to the formation of the magnetic island. However, the variations of the magnetic energy  and of the 
interaction energy int , are not affected by the singularity of n at q  m /n , and  n

2Sp  remains finite. 

So we can discuss the thermodynamic interpretation of these quantities while remaining in the linear 

approximation. 
We then proceed to calculate the variation of the magnetic energy s  1/2c  j  js 

 s

 A  As ds 

localized in s. The first variation is easily seen to vanish because j  js, A  As  for   0 . The 

second variation is given as follows:  

.
4

2   



































s

s

s

s

s dr
dr

Ad
r

dr

d
Add

R
drrAjdd

c

Rs
    (15.9) 

The derivative dA /dr is discontinuous in r  s. In view of the integration in (15.9) we represent 

formally the second derivative of A  in the neighborhood of r  s  with the help of the Dirac  -

function  

 .
2

2

2

2

sr
dr

Ad

dr

Ad

dr

Ad

dr

Ad

ss








































      (15.10) 

In the limit   0  only the -function contributes to the integral (15.9) and one obtains 

2s  
Rs

4
 A s   2

d d,         (15.10) 

where 

 ./ sA
dr

Ad
s

s

 







            (15.11) 

When  2s  0 the system is unstable and   0. 
The variation 2 s  is related to 2s,int . Indeed recalling (15.6) one has in the limit   0  

2s,int  
2s,           (15.12) 

noting that the part of  the integral involving A2  vanishes in this limit. 
According to our model,  int  describes the energy interaction of the collective magnetic system 

with the external world. The relation (8.3) shows that a positive change of  int  describes the Poynting 

flux of electromagnetic energy lost by the collective system. So, consistently with (8.3), we put 
,int,

2 Qs              (15.13) 

where Q  0  denotes generically the energy supplied to the magnetic system. 
Then one sees that in the unstable case   0, 2s  0, energy is transferred from the magnetic 

system to the background, as described by (15.12) with 2s,int  0, and lost, as described by (15.13). 

By considering the system as isolated the decay energy is absorbed internally to the system in a 

irreversible process.  
In the outer region where Q  0, the energy conservation is expressed by 2out L  0  where 

2out  is the outer variation of the magnetic energy and L  is the work of internal inductive electric 

fields and plasma currents when the system can be considered as isolated, or otherwise, is due to the 
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mutual interaction with the external circuits that react when the magnetic plasma configuration is 

varying.  

 

CHAPTER 4: Minimum Principles 

 

Summary: The pressure profiles in tokamaks are restricted by the requirement that the thermal 

energy of the plasma be minimum for fixed magnetic entropy and fixed total current. 

The poloidal magnetic energy is minimized, within the family of states that satisfy the SME 
equation in the presence of auxiliary heating, when the parameter a tends to zero ( a is the minor 

radius), even though, for reason of mathematical consistency, it cannot be put identically equal to zero. 

The validity of these principles rests on the experimental verification of their predictions on the SME 

profiles (chapter 6). 

The assumption of stationary magnetic entropy is a crucial ingredient in the formulation of both 

principles. 

 

16. Minimum plasma thermal energy and pressure profile in tokamaks 

 
The pressure profile is expressed in terms of the poloidal flux  , which is determined in the 

cylindrical limit by the D’Alembert equation 

2 
4R

c
jtot ,           (16.1) 

where jtot  is given by (7.8),   RA  ( A  is the axial component of the vector potential and 

dA / dr  Bpoloidal ). The boundary conditions are  sa   0 and d / dr 
sa  2RI r / cr 

sa , where 

I r  is the total current flowing inside r , sa  and sa  are the outer and inner borders of the relaxed 

region respectively. 
One has a simple relation between   and the solution j  of eq.(7.4). Taking into account (7.8) and 

(16.1), eq.(7.4) becomes (with E  Eext ) 

 .
4

22
2

nindE Ejp
ER

c
j 














        (16.2) 

After a double integration one obtains 

  .lg)(
4 0

10
2

2

 
x

E

x

DxDdxxx
x

dx
sa

R

c
j 






       (16.3) 

Here x  r /sa, D0  and D1 are integration constants to be fixed by the two boundary conditions on 

the current density and 

 E (x) 
pE x  Ejnind x 

E
.          (16.4) 

The pressure profile is determined assuming that the plasma thermal energy in the confinement 

zone 

W 
3

2
p   d           (16.5) 
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is stationary (it turns out to be minimum in the practical cases) with respect to variations   in the 

confinement region such that the total induced current Iind  2jrdr  and the magnetic entropy 

(defined by (5.4) with the induced current density (16.3)) are fixed 
 W 1Sp 2Iind  0,          (16.6) 

where 

    ,4 2/3 2 drRrpW
sa

sa



  (16.7) 

  ,8 22  
sa

sa

sa

sa

p drrjcdrjrjRS
 

  (16.8) 

,2 drrjI
sa

sa



  (16.9) 

and j   c2 /4R  . Note that, as observed in section 9, the perturbed and unperturbed current 

densities j j  and j  satisfy the same SME equation (7.4). The factors 1  and 2  are Lagrange 
multipliers and the inessential positive factor of Sp  has been absorbed in 1. 

In view of the arbitrariness of   the variation condition (16.6) leads to the expression 
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12 2R2 .    (16.10) 

The integration of this equation gives p x  once  x  is known ( x  is calculated from (16.1) 

after solving (7.4) for j  and taking into account (7.8). There are three constants to be determined, 

namely 1,2  and the integration constant of (16.10) (the constants D0  and D1  are fixed by the 

boundary conditions on the current density). The values of p at the two boundaries of the integration 

zone (to be taken from the experiment) leave us with one constant free. This constant can be expressed 

in terms of the plasma thermal energy in the integration zone. Indeed integration of (16.10) gives 
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where    2 / 2B  , ps is the value of p at x 1,  0 and 
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Let us put 

X    dB
sa 2

c

3R

dx

x1

x  

  E x x dx 
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

0



 .     (16.13) 

Then the pressure takes on the form 
    .1  ss pXpp           (16.14) 

Denoting with the caps the values at x   one has from (16.14) that    ˆ/ˆˆ
1 ss ppXp  . Then 

(16.14) can be rewritten as 

     ,ˆ
ˆ1 ss ppYpp 



           (16.15) 

with     XXY ˆ/ˆ . 

In order to determine 1 we integrate (16.15) over the volume of the relaxed region, obtaining 
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  .ˆ
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Let us introduce the parameter K  defined by the equality 
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with pppN ˆ/ . The parameter 1 becomes 
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where 1ˆ/  ppp ssN  and 
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          (16.19) 

To see the sign of the second variation (16.7)  

  ,3 222 drRrpW
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           (16.20) 

we calculate from (16.14) the second derivative of p   
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We anticipate that the comparison with the observations shows invariably that the value of the 
parameter sa 2  has an upper limit much lower than one. The justification of this will be given in the 

next section. Thus the leading term of (16.21) becomes 
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where I   is the current flowing inside  . Applying (16.18) and (16.19) one has from (16.22) that 
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This expression can be rewritten in terms of the conventional dimensional poloidal flux 
  2B/  2   
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The integral at the denominator is positive. Indeed, (recalling that d / dx  0) 

d ln x  
d
dx

1


0

ˆ 

 ln x dx  0.         (16.25) 

It follows that 2W  0  for K  1, so that W  is at a minimum.  
The parameter K  is related to the width pN  and to the concavity of the pressure profile. As we shall 

see (chapter 6) the observed pressure profiles are almost invariably concave in the region where the 

SME theory holds, in agreement with (16.24). 



Entropy 2009, 11                            

 

 

161

We are then restricted by the variation procedure above to a family of normalized pressure profiles, 
which depends on the parameter pN  and (to a lesser extent) on the normalized value psN  at the outer 

border. Note that by combining (16.11) with (16.3) one obtains a relation between the pressure and the 
current density and consequently a relation between pN  and the average of the current in the relaxation 

zone. 

 

17. Minimum poloidal magnetic energy and profile consistency of the SME states 

 

Let us investigate whether one can select among the solutions of the SME equation (7.4), those 
associated with a minimum of the poloidal magnetic energy w  1/2c  jA d  (recall that j  j  is 

the axial current density) 
We start by observing that the solution of the SME equation can be written in the form j  jho  jinho 

where jho satisfies eq.(7.4) without the inhomogeneous term, and jinho  is a particular solution of the 

inhomogeneous equation. The part jho  contains two arbitrary constants to be determined by the 

boundary conditions, while, as can be easily verified, the part jinho  is formed by terms of order sa 2
 

and sa 2
lnsa  lower than the part jho  in the limit sa  0 . It follows that the effect of the 

inhomogeneous term disappears in the integral (16.3) of the SME equation when 2 is sufficiently low. 

In fact the comparison of the SME profiles with the observations shows invariably that they agree, in 
the expected region of validity, only by choosing sa 2  0 (chapter 6). 

For seeing the physical meaning of this fact let us express the poloidal magnetic energy w  in terms 
of the vector potential A  redefined according to the equality 
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with 2A   4 /c j . By replacing   with A  in the expression (16.3) for j , one obtains 
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     (17.2) 

In the presence of auxiliary heating, the term involving E  is positive, but this term disappears in 

the limiting process sa  0 . Also the dependence of j 2 on sa disappears for sa sufficiently small 

(see chapter 6). It follows that the limiting process minimizes the poloidal magnetic energy. In contrast, 
in the purely ohmic case, E  describes non-diffusive losses and it is negative and the poloidal 

magnetic energy is maximized by the limiting process. These facts are at the root of the profile 

consistency of the SME states (the term “profile consistency” has been used for the first time by Coppi 
[18]). Indeed, one can ignore the integral term involving E  in the equation (16.3) and write 

approximately (recalling (17.1)) 

.
4

2




A
c

j               (17.3) 
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 As a consequence, one can put   0 in eq. (8.4) when A  is defined as above, and the interaction 

energy (8.3) becomes identical to the Poynting term. 

The relation (17.3) is associated with the extreme of the part of the magnetic entropy (5.4) that 
depends on j  and A . So the limiting process sa  0  implies that both the poloidal magnetic energy 

and the magnetic entropy pertaining to the axial current density are extreme. 
The role played by the parameter sa 2

 in tokamaks is subtle. One cannot put  identically equal 

to zero because this would be inconsistent with the relation (5.3) of 2 to the Lagrange multiplier   

and would also be inconsistent with the fact that 2 appears at the denominator of the power balance 

equation (see eq. (7.1) which is identical to the power balance (7.2) when (7.3) and F  pE  are taken 

into account). While the effect of the inhomogeneous term in the solution of j  to the SME equation 

can be neglected, it must be maintained in the integral of the power balance equation (7.1), which is 
divided by 2. Indeed, even though 2 enters explicitly in the expression (7.3) for the heat flux, its 
effect is balanced by the implicit dependence contained in the derivative of j  and in the boundary 

condition for the continuity of the heat flux. These facts insure that the heat flux compensates in the 
relaxed region the energy input described by pE , which is independent of . We shall return to this 

point in section 20 with an explicit example. 

 

CHAPTER 5: SME states in toroidal geometry 

 

Summary: The SME equation is re-derived by assuming that the ohmic transformer and the source 

of energy of the primary (for instance, a battery of capacitors) are integral parts of the macroscopic 

system described by the magnetic entropy. In this point of view the variation of the interaction energy 
int  vanishes because the transfer of energy from the ohmic transformer to the plasma is internal to the 

macroscopic system and there is no energy exchange with the external world. 

When the Grad-Shafranov form of the current density is introduced in the integral expressing the 

vanishing of the time derivative of the magnetic entropy one finds strict conditions on the functions 
F   RB  and p    for the toroidal magnetic field and for the pressure. These functions are 

determined by two separate integro-differential equations (involving the first derivative) that depend 

on four constants. These equations supplement the Grad-Shafranov equation in the determination of 

the SME states in toroidal geometry. 

 

18. Another derivation of the SME equation 

 

In the derivation of the SME equation for the current density in section 7, the induced electric field, 

which is a basic ingredient of this equation, has been assumed as generated externally with respect to 
the macroscopic system described by the magnetic entropy Sp . It is instructive for a better 

understanding of the physical aspects of our model, to present a formulation in which the ohmic 

transformer including the energy source of the primary current, is treated as an integral part of the 

macroscopic system described by the magnetic entropy. This means that the current of the primary 

should be included in the functional in addition to the macroscopic current in the plasma. The 

transformer-plasma interaction is modeled by considering the cylindrical plasma as surrounded by a 
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thin conductive shell, with effective radius rs , that carries a sheet current density 

j e . This current 

simulates the current in the primary. The current density in the functional (5.4) is the sum of the 
current density 


j p  in the plasma volume and of the time dependent current density 


j e  localized in the 

shell. The time dependent magnetic field 

B e  created by 


j e  outside the plasma induces the electric field 




E ext  inside the plasma. The field 


E ext  vanishes inside the perfectly conductive shell, while 


E ext  0  with 

 

E ext  0  in the plasma. The shell is then a surface of discontinuity for 


E ext  and 


B e /t . The time 

derivative of the sheet current satisfies the relation 
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where 

e n  is the surface unit vector directed outwards. Thus the external time dependence contributes to 

the time derivative of Sp  (5.4) according to the relation 
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where S  is the discontinuity surface, 



A p  and 


A e  are the vector potentials related to 


j p  and 


j e  

respectively, and 




E ext  

1

c


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A e
t

,    d

S 


e ndS,   d dSdr,        (18.3) 

It will be shown presently that the first integral in the right hand side of (18.2) can be expressed in 
terms of the jump across the discontinuity surface in the direction d


S  of the quantity 


E ext  


j p .  

Let us apply the coordinate-free definition of the curl to the equations 1/ c 

B e /t   


E ext  and 

4 /c 

j p   


B . We consider an infinitesimal volume element   with bases of area dS situated at 

opposite sides of the discontinuity surface S  and parallel to it, and with infinitesimal thickness. 

According to the definition one has 
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where the integral is extended to the surface of the volume element. Noting that 

E ext  and 


j p  vanish 

within the conductive shell, that is on the outer side (with respect to  ) of the discontinuity surface, 

and are different from zero on the inner side, one obtains 
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In the infinitesimal vicinity of S , on the inner side where 

E ext  0 , one can write 
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This quantity jumps to zero while crossing the surface S  from the inner side towards the conductive 
shell, where 


E ext  0 : 
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where use has been made of (18.5). Summing up the value (18.6) on the inner side to the jump (18.7), 
one obtains the value of 


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j p  on the outer side, within the conductive shell, which vanishes. So 
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Applying the divergence theorem to the integral over the volume   enclosed by S  one gets 
(remembering that  


E ext  0  inside ) 
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Finally, by combining (18.8) and (18.9) we obtain the desired relation 
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The last surface integral of (18.2) can be treated in the same way as above by replacing 



j p  in (18.10) 

with 

A p 


A e , where 


A p  and 


A e, similarly to 


j p , drop to zero across S  and are different from zero on 

the inner side of S . Noting that 
2

A e  0  in  , one obtains 
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        (18.11) 

Introducing (18.10) and (18.11) into (18.2) we obtain the change of the entropy of the plasma due to 

the interaction with the ohmic transformer 
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The total rate of variation of the entropy is the sum of the contributions of the ohmic transformer 

(18.12) and of the contribution of auxiliary power and non-diffusive losses 
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If we assume that this relation vanishes locally, i.e. for any small volume element   in which  

can be subdivided, we obtain again the SME equation (7.4): 



dSp

dt


1


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E ext

2  2
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 d 0.       (18.14) 

Let us see what form takes the time derivative of the interaction energy according to this 
formulation. The time derivative is calculated starting from the expression (5.5) of int  where 


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j e t   and 
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A e t . One has 
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Applying the relation (18.11) this equality becomes 
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But the minimum principle for the poloidal magnetic energy tells us (section 17, eq.(17.5)) that 
2  0  and 


j p   2c / 4 


A p , from which follows that d int / dt  0 . 

This result can be understood considering that  int  describes the interaction of the macroscopic 

system with the external world. But in the present formulation the ohmic transformer should be 

thought as part of the macroscopic system together with the energy source of the primary current (for 

instance, a battery of capacitors). At the contrary, in the formulation of section 7 and section 9 the 

induced electric field was applied to the macroscopic system externally and this is reflected in the fact 
that d int / dt , given by (8.3) or (9.8), describes the Poynting flux of electromagnetic energy related to 




E ext  across the surface enclosing the macroscopic (collective) system. 

 

19. Conditions on the toroidal equilibrium of the tokamak 

 

The toroidal axis-symmetric equilibrium is described by the Grad-Shafranov equation 

j 
c

4
R  R2 ,          (19.1) 

where 

     . 4
2
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FcR
j          (19.2) 

Here p   is the pressure, F   RB  and the poloidal flux   is related in symmetry coordinates 

to the magnetic field by         ReeRFB //


. 

In this section it will be shown with the help of the SME condition (18.14) and of the minimum 
plasma energy principle discussed in section 16, that the functions F   and p   are determined by 

two separate integro-differential equations (involving the first derivative) that depend on four constants. 

We shall use the relation 
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where I   is the current flowing inside the magnetic surface S  . Indeed, denoting with dA the 

element of area of the cross section of a surface   const  and with d 2RdA the volume element, 

one has 
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We now proceed by applying the Green theorem to the SME condition (18.14) where   is a 

toroidal shell comprised between two magnetic surfaces: 
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Here d

S  dS / , and Se,Si  are the outboard and inboard magnetic surfaces delimiting the 

toroidal shell  , e,i  are the volumes enclosed by Se  and Si  respectively and Eext  E0R0 /R 

where E0,R0 are values on the minor axis. In order to satisfy the equality (19.5) the two members must 
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be independent of  , that is to say, for any surface enclosing the volume   , the following relation 

must hold: 
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     
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    (19.6) 

where D is independent of  . After expressing j  with (19.2) (we neglect the contribution of non-

inductive currents) the equality (19.6) becomes a relation between F   and p  : 
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Introducing two functions k1   and k2   (arbitrary a priori) one can split the relation (19.7) into 

separate equations for F   and p  : 
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In a situation where the cross-section of the magnetic surface is up-down symmetric the first 

integral of (19.8a) vanishes. In this case the first integrals of eqs. (19.8) take on the form  
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Here p s and F 2 
s
are values at r  sa (where we have taken   0). 

Since the functions k1   and k2   depend only on the poloidal flux and not explicitly on the 

aspect ratio, they will maintain their form independently of the aspect ratio and then we can determine 

them in the large aspect ratio limit. It is easy to write down the equations (19.7) in this limit: 
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By introducing these expressions into (19.2) we obtain the current density in the large aspect ratio 

limit 

   
.

8
ln

44 0

2

2
1

22

 



x

s
s

E

x

pcR
R

Fc
x

ER

D
xdxp

x

dx

E

sa

R

c
j







     (19.11) 

Comparing this expression with (16.3) one gets 
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We express (19.10a) in terms of D0 : 
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Comparing this expression with the expression (16.10) obtained from the minimum plasma energy 
principle we observe that k1 and k2 must be constant. Moreover, by equating the coefficients of the 

first two terms in the right hand of (16.10) and (19.13) one obtains 
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and by equating the last terms  
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We conclude that the functions F   and p   are determined by the two separate equations (19.9a) 

and (19.9b) that depend on the four constants D, p s, F 2 
s
 and k1  k2  const. 

The toroidal equilibrium of the SME state is described by the Grad-Shafranov equation (19.1) 

supplemented by the two conditions (19.9). 

 

CHAPTER 6: Comparisons between theory and experiment 

 

Summary: In this chapter the theoretical profiles of the SME states in tokamaks are compared with 

the observations. 

The first comparisons were performed with the data of ohmic discharges in TCV [19]. The location 
of the q 1 surface (identified with the inversion radius) and the ratio of the average temperature to the 

temperature on the magnetic axis is controlled in this machine by the parameter  j  / j0q0 ( j  is 

the cross-sectionally averaged current density, j0, qo  are values on the magnetic axis). In the entire 

range of quasi-stationary ohmic conditions the observed dependencies on this parameter in the 

confinement region were found in excellent agreement with the theoretical predictions provided that 
sa 1. The observed electron pressure profiles are consistent with those derived from the minimum 

plasma energy principle and characterized by the convexity parameter K 1. 

Comparisons of the temperature and pressure profiles, as well as of the thermal conductivity given 

by eqs.(7.6) and (7.7), were performed in ECR discharges  in FTU. Successively the validity of the 

theory has been scrutinized in a number of shots in JET and TS under different conditions of plasma 

regime and heating methods, taking into account the possible existence of non-inductive currents. 

The whole of these comparisons confirms the robustness of the SME profiles in the absence of 

strong non-inductive currents or of the effects of rapid ramps-up of the current. 
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20. Comparisons with the experiment; case of ohmically relaxed currents 

 

20.1-Current density, temperature and pressure profiles 

 

The next two sections are devoted to the comparison of the predictions of the SME theory with the 

observations. The presentation is a summary of the results contained in previous papers on 

comparisons in TCV [19], in FTU [20], in JET and in TS [21]. We refer the reader to these papers for 

the details. 

The first evidence on the reliability of the theory has been collected by Weisen [19] on ohmic quasi-
stationary discharges in TCV ( BT 1.5T,R0  0.88m,a  0.25m). The discharges concerned limited and 

diverted shots with elongations in the range 0.5  0.72  and plasma currents in the range 0.11.0MA . 

In the entire range of quasi-stationary ohmic conditions it was observed that the sawtooth inversion 

radius and the electron temperature in the confinement region depend solely on the parameter 
 j  / j0q0  where  j   is the cross-sectionally averaged current density and 

q0 j0  cB0 /4R0  ke
2 1 /ke . Here ke  is the elongation and the subscript denotes quantities on the 

magnetic axis. In cylindrical geometry the solution to equation (7.4) (with pE  0 and the boundary 

conditions     0,ˆ  ajjaj  ) are expressed in term of the Bessel functions 

          ,
ˆ

0000 rJaYrYaJ
D

j
rj           (20.1) 

where        .0000 rJaYrYaJD           (20.2) 

Here and henceforth caps denote quantities on the q 1 surface (the inversion radius is identified 
with the q 1 surface). In the sawtooth region r  a  the safety factor q r  is modeled as in section 9. 

The solution (20.1) entails the following relation for the experimentally relevant parameter 
 j  / j0q0: 
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where        .1010 aJaYaYaJ           (20.4) 

The diamagnetic and paramagnetic corrections to the toroidal field are small [18] and are neglected.  
In fig. 2 the relation (20.3) is compared with the experimental data for q0 in the range 0.8 1.0 

Agreement is found for a 1 as expected from the theoretical considerations of section 17, and the 

results become practically indistinguishable for a  0 . One concludes that the poloidal magnetic 

configuration is essentially determined by   or, alternatively. by  j  / j0q0. 

In a stationary ohmically relaxed discharge the current density profile is related to the temperature, 

pressure and density profiles by the Ohm law. When only Spitzer conductivity is considered one has 

the relations 
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The effect of neoclassical corrections has been discussed [19] and found to be small. In fig. 3 the 

theoretical temperature, pressure and temperature experimental profiles are presented together with the 

theoretical profiles (neoclassical corrections are taken into account). Note that in the figures the 
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quantities on the q 1 surface are referred to by the subscript 1, whereas in the text the diacritical mark 

^ has been used. 

 

Figure 2. Sawtooth inversion radii from X ray tomography in TCV (symbols) and 
theoretical predictions for the q=1 surface (bold curves) for three assumed values of q0 

(from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-130) (with permission). 

 

 
 

Figure 3. Example of experimental electron pressure (plus sign), temperature (crosses) and 

density (circles) profiles from Thomson scattering in TCV, together with theoretical 

profiles. The solid curves are obtained using neoclassical Ohm’s low and the dashed curves 

using Spitzer resistivity alone (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-

130) (with permission). 
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Figure 4. Widths of clipped electron temperature profiles: diamonds, experiment; dots, 

theory with neoclassical Ohm’s law (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 

113-130) (with permission). 

 

 
 

Figure 5. Experimental pressure profile convexity parameter K for different elongations 
a (from Minardi E.; Weisen H. Nucl. Fusion 2001, 41, 113-130) (with permission). 

 

 
 

During the sawtooth cycle, core plasma temperatures rise and flatten periodically, while 

temperatures at and beyond the inversion radius experience only small variations. This effect 

introduces a significant amount of scatter in the data [22-23]. Only the confinement region may be 

considered as ohmically relaxed and close to steady state. In order to take into account this effect in the 
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comparison with the theoretical model “clipped” profile widths were introduced in the data of fig. 4 

such as  T e /Te  where TTe
ˆ  for r  a  and T e  T  for r  a .  

Another significant subject of experimental investigation is the value of the convexity parameter K  

introduced in section 16, which should be lower than one in order that the plasma thermal energy is at 
a minimum. The experimentally measured widths  ee pp ˆ/ , which are strongly correlated to 

 j  / j0q0, are associated with the values of K  as shown in fig. 5. With few exceptions, attributable to 

experimental uncertainties, the experimental values of K  do indeed lie in the interval 0  K 1, as 

predicted at the end of section 16. 

Once the parameter K  is known, the pressure profile is determined by (16.14) and (16.17) and the 

density profile follows from the ohmic relaxation (20.5). 

Alternatively, canonical density profiles are also provided by turbulent equipartition (TEP) theories 
according to the relation  qnn ˆ  where 0  1 [24]. For a comparison between the two approaches 

in the ohmic case see a paper by Weisen and Minardi [25]. It turns out that the relation above for the 

density is also often verified in discharges with auxiliary heating and in the absence of ohmic 

relaxation.  

 

20.2-Thermal conductivity 

 

In cylindrical geometry the expression (7.3) for the heat flux in the relaxed region sa  r  sa  

takes on the form 

qhS  
Eext

2

dj

dr


C

r







,           (20.6) 

where S  4 2rR  and C  is a constant. Thus, recalling (7.2), the power balance of the electrons 

becomes 
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Sq 


       (20.7) 

where C  is determined by continuity of the heat flux across the surface 1ˆ q  (we note that this implies 

at the same time the continuity of the poloidal magnetic field which is proportional to jr dr ). 

Modelling the magnetic configuration in the region r  sa  according to the expression 
q x   q0  1 q0  r / 2  for the safety factor, one obtains   2

0000
2

00
ˆ,2/,ˆ qjjRqcBjsaqjI    

respectively for the total current along the cylinder with radius r  sa, for the current density on axis 
and on the surface 1ˆ q . Then C  j0q0  where 
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Here     saddjcR  //4ˆ 2 . 

Putting 

h r 1
j0q0

rcdj /dr
,           (20.9) 

the effective thermal conductivity (7.7) becomes 
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neeff  
qh

dT /dr
 Eext

dj /dr

dT /dr

h r 
2

.         (20.10) 

In the case of the ohmically relaxed current, i.e. j  EextT
3 / 2A Zeff   with Spitzer resistivity 

( A Zeff 1.9745 1031 in CGS units, corresponding to ln 17) and Zeff  uniform, one has 

 
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jErh
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ext
effe          (20.11) 

where h r /2 is independent of 2. 

The form (20.11) of the diffusivity has been tested in ECR discharges in FTU (see Table II for the 

main parameters of the discharges). In shot 18290 the whole EC power is absorbed at r /a  0.45, 

whereas in shot 18281 the absorbed power is shared in two separate layers ( r /a  0.3 and r /a  0.63) 

using poloidal steering of beams (see fig.6). The very localized power deposition induces a step-like 
behavior of eff  if and only if the T r  profile is locally stiff. Now T r   j r 2 / 3

 where j  is a solution 

of the SME equation, which is insensitive to the power deposition for sa  sufficiently small 
(sa  0.20 , see Table III). The step-like behavior of  eff  in comparison with the experimental one is 

shown in fig.7. This behavior follows from a critical balance between the two terms of the function 
h r . Expressing h r  as function of the temperature gradient R /Le , where Le

1   1/T dT /dr , one 

finds a step-like behavior (fig.8) at a critical gradient associated with a location of the ECR power 
deposition. When the heat flux is expressed in terms of the parameter sh /q, as in (7.6), one finds that 

sh /q    at this location, where   0 depends only on the magnetic configuration according to (20.8) 
and determines the term of h r  associated with the inward part of the heat flux. 

 

Figure 6. Net power density on electrons, without ohmic component, calculated with 

EVITA power balance code. FTU18290 in ECH phase (red dashes) and in ohmic one 

(black dashes); FTU18281 in ECH phase (black solid) (from Minardi E.;Lazzaro E.; Sozzi 

C.; Cirant S. Nucl. Fusion 2003, 43, 369-384) (with permission). 

 

 
 

The current density and pressure profiles of shot 18290 predicted by the SME equations (7.4) and 

(16.14) (with the conditions at the boundaries taken from experiment) are compared in figs.9a and 9b 

with the profile reconstruction based on the experimental data.  
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Figure 7. Symbols ‘+” and “”: from EVITA interpretative power balance code; lines: 

from theory. B  5.7T  for FTU18281 and B  5.8T  for FTU18290; 
ne line   0.8 101020 m3,Ip  0.4MA  for both shots (from Minardi E.,;Lazzaro E.; Sozzi C.; 

Cirant S. Nucl. Fusion 2003, 43, 369-384) (with permission). 

 

 
 

 
Figure 8. The h r   function (see eqs.(20.8) and (20.9)) against normalized electron 

temperature gradient length for shot FTU18290 (symbols: experiment; line: theory (from 

Minardi E.; Lazzaro E.; Sozzi C.; Cirant S. Nucl. Fusion 2003, 43, 369-384) (with 

permission). 
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Figure 9. Experimental (symbols) and theoretical (line) current density (a) and normalized 

pressure profiles (b) in FTU 1890 discharge measured at 1.1s (from Minardi E.,; Sozzi C.; 

Mantica P. Nucl. Fusion 2008, 48, 045001) (with permission). 

 

 
 

21. L- and H- discharges and the effect of non-inductive currents  

 

The reliability of the SME predictions has been analyzed in a variety of tokamak discharges whose 

characteristic parameters are listed in Table II. The experimental current density profiles of JET are 

obtained solving the MHD equilibrium with EFIT, either using only magnetic measurements or when 

available the MSE measurements.  This method implies that the (discrete) experimental measurements 

are given as constraints to the equilibrium solver, which then yields smooth current density profiles as 

the solution of the equilibrium equations that best fits the given experimental constraints. The form of 
pE  in eq.(7.4) and of its components (auxiliary power, radiation losses, electron-ion energy transfer) as 

well as the profiles of the non inductive components of the current density are obtained by 

interpretative transport simulations with standard transport codes . In FTU and TS the profiles of the 

safety factor (which determines the current density, see eq. (7.5)) and of the pressure are obtained 

consistently with the transport simulations (JETTO, ASTRA, CRONOS, EVITA). This process 

produces the radial profile of the current density and of the pressure to be compared with those 

predicted by the SME equations (7.4) and (16.14). 

The SME equations are solved in a relaxed zone sa  r  sa using for E  the experimental value 
obtained from the loop voltage and taking from experiment the values of j  and p at the boundaries. 

The input pE  to (7.4), which gives the net non-ohmic power on electrons, is supplied by the 

interpretative transport codes.  

A geometrical correction for noncircular geometry, even though approximate, is applied to the 

calculation of all integral quantities (total current, total power, magnetic poloidal flux, safety factor and 
so on) by expressing the cross-sectional area with the cylindrical coordinates x  rcos, y  rke r sin , 

Here ke  is the elongation given by the expression ke r  ke1  ke 0 r /a  ke0  (see Table II for the 

values of ke0  and ke1 and the quoted paper [20] for further details). 
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Table II. Main parameters of the discharges analyzed in the paper: I MA , total current; 

ne0 , central electron density in m3; B0 T , external toroidal field; ke0 and ke1, elongation 

parameters (see text); Pa MW , auxiliary power (from Minardi E.; Sozzi C.; Mantica P. 

Nucl. Fusion 2008, 48, 045001) (with permission). 

 

Mac 

R/a 

Shot Regime Main 

Heating 

I(MA) ne010-20 

 

B0(T) ke0 ke1 Pa(MW) 

FTU 

0.97/0.30 

18290 L ECRH 0.40 1.13 5.70 1.03 1.02 0.85 

FTU 18281 L ECRH 0.40 1.28 5.80 1.03 1.02 0.85 

FTU 23053 L OHMIC 1.10 1.35 7.20 1.03 1.02 0.0 

FTU 23179 L OHMIC 1.40 2.60 7.20 1.03 1.02 0.0 

TS 

2.42/0.75 

31165oh L OHMIC 1 .0 0.30 3.865  1.0 1.05 0.0 

TS 31165ec L ECRH 1.0 0.30 3.85 1.0 1.05 0.80 

JET 

3/1 

44013 H NBI 2.60 0.68 2.70 1.40 1.75 15 

JET 55805 L NBI + 

ICRH 

1.60 0.23 3.36 1.25 1.60 6.1 

JET 55809 L NBI + 

ICRH 

1.60 0.26 3.25 1.30 1.60 12 

JET 53298 H NBI 2.60 0.78 2.60 1.35 1.73 15 

JET 50630 H NBI+ 

ICRH 

2.80 0.71 2.76 1.40 1.70 12.5 

JET 58148 H NBI+ 

ICRH 

1.80 0.29 3.40 1.40 1.75 18 

JET 59397 ITB NBI+ 

ICRH 

2.80 0.33 3.45 1.63 1.75 17 

JET 56083 H NBI+ 

ICRH 

2.50 1.15 2.70 1.34 1.85 15 

JET 62789 Hyb NBI+ 

ICRH 

2.60 0.32 3.20 1.30 1.63 20 

JET 59211 H NBI 1.80 0.53 2.80 1.25 1.50 12 

JET 53506 e-ITB ICRH+ 

LH 

2.40 0.16 3.40 1.35 1.63 6.0 

JET 53822 L ICRH 1.90 0.35 3.40 1.30 1.60 6.0 

JET 55802 L NBI+ 

ICRH 

1.60 0.29 3.25 1.27 1.60 6.0 

JET 53299 H NBI 2.50 0.12 2.70 1.35 1.73 15.5 

JET 50628 H NBI+ 

ICRH 

2.80 0.60 2.77 1.37 1.70 12.6 
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Table III. Meaning of symbols: a, minor radius; sa  and sa , outer and inner border of 
the relaxed region respectively; sa , indicative value below which the profiles are 
independent of sa; U V , loop voltage in Volt; q , range of safety factor in the relaxed 

region; erj and erp. mean square deviations of the current density and pressure with respect 

to the experimental profiles (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 

045001) (with permission). 

 

Mac Shot sa U(V) s  q  errj errp 

FTU 18290 0.20  1.0 0.73 0.17 1-3.94 0.042 0.022 

FTU 18281 0.03 1.0 0.75 0.15 1-3.93 0.071 0.035 

FTU 23053 0.15 1.73 0.80 0.55 1-2.15 0.086 0.023 

FTU 23179 0.03 2.60 0.80 0.62 1-1.72 0.033 0.034 

TS 31165oh  0.01 0.80 0.93 0.20 1-4.13 0.068 0.011 

TS 31165ec 0.10 0.55 0.93 0.22 1-4.09 0.070 0.043 

JET 44013 0.30 0.20 0.75 0.44 1-2.15 0.031 0.027 

JET 55805 0.05 0.33 0.90 0.12 1-5.88 0.039 0.086 

JET 55809 0.01 0.40 0.75 0.13 1-3.92 0.076 0.063 

JET 53298 0.01 0.15 0.80 0.40 1-2.20  0.058 0.020 

JET 50630 1.70  0.35 0.90 0.16 1.03-2.78 0.079 0.040 

JET 58148 0.10 0.20 0.90 0.40 2.17-5.36 0.035 0.040 

JET 59397 0.65 0.60 0.95 0.44 1.71-4.33 0.039 0.026 

JET 56083 0.25 0.25 0.80 0.51 1-2.11 0.021 0.036 

JET 62789 0.25 0.70 0.70 0.35 1.02-2.60 0.075 0.036 

JET 59211 0.10 0.20 0.80 0.19 1.25-3.93 0.026 0.024 

JET 53506 0.10 0.20 0.90 0.44 1.76-4.20 0.043 0.043 

JET 53822 0.05 0.40 0.70 0.23 1-3.48 0.077 0.039 

JET 55802 0.40 0.30 0.75 0.15 1-3.55 0.030 0.060 

JET 53299 0.05 0.20 0.80 0.45 1-2.21 0.042 0.044 

JET 50628 0.10 0.35 0.95 0.20 1.03-3.24 0.115 0.025 

 

Table III shows the parameters involved in the solution of (7.4) and (16.14) and the quantities 

erj 
jSME ri  jexp ri  2

i


jexp ri  2

i


,  erp 

pSME ri  pexp ri  2
i


pexp ri  2

i


   (21.1) 

which are a measure of the adherence of the theoretical current density and pressure profiles to the 

experimental ones in the region sa  r  sa . The loop voltage U(V )  is not critical for the 

determination of the profiles because a change of U  can be compensated to some extent by a change of 
 as is clear by inspecting equation (7.4). The values sa 1 indicated in the table are those below 

which the profiles become insensitive to the value of sa . 

 



Entropy 2009, 11                            

 

 

177

Figure 10. The mean square deviation of the theoretical current density profile with 
respect to the experimental profile when jSME  and jexp are normalized on inner boundary 

surfaces displaced by q  q 1 (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 

48, 045001) (with permission). 

 

 
 

Figure 11. Dependence of the normalized current density on   /2s2a2  (where   is 
the experimental poloidal flux with  a  0, measured in T-m2) in the range from q 1 to 

r  0.85m , according to equilibrium reconstruction (a) L-states; (b) H-states (from 

Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001) (with permission). 

 

 
 

The value of s should correspond to the upper limit of the confinement region. A good fit is 

generally obtained for 0.75  s  0.95 with a mean square deviation (21.1) lower (often much lower, 

see Table III) than 10%. It is worthwhile to note that the values of s  listed in the Table are not critical. 
For instance, taking s  0.80 for all shots one obtains erj  0.061 and erp  0.035  after averaging over 
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the shots, to be compared with the averages erj  0.055  and erp  0.037 of the optimal values listed in 

Table II. For s  0.90, one obtains erj  0.085  and erp  0.037 , which indicates the worsening of the 

theory when approaching the edge. It is also noted that, in the average, the agreement with the 

observations is better for the pressure than for the current density. 

In the presence of sawteeth the inner boundary sa  should be fixed in the neighborhood of the 
surface q 1. The criticality of sa  is illustrated in fig.10. The mean square deviation is calculated 

from (21.1) where the theoretical current density is normalized at the experimental value on the inner 
boundary surface q 1 and the experimental current density is normalized to its value at a displaced 

surface q  1 q . The mean square deviation is plotted as function of the position of this surface, 

labeled by q , and one sees that it remains significantly below 10%, and practically insensitive to q 

for q 1. At the contrary, in many cases, the deviation increases rapidly when q decreases below one, 

denoting a worsening of the adherence between the theoretical and the experimental current density 

profiles in the region dominated by the sawteeth. 

It is worthwhile to point out a difference in the dependence of the current density on the poloidal 

flux in the L and H discharges, which fact could be useful for the understanding of the L-H transition. 
As shown by some examples in fig.11, the j  r   curve (where the entire radial dependence of j , 

reconstructed from the experimental data, is expressed through  r  with  a  0 ) is concave in the 

case of the L shots (fig.11a) and is approximately linear in the case of the H shots (fig.11b) up to 
r  0.85a. This can be associated with the fact, known from section 5 (see also eq.(8.4) where   can 

be neglected), that in an isolated system, the current density tends to be a linear function of   (or of 

the vector potential), provided that the transition is sufficiently rapid for considering the system as 

isolated from the external world during the transition time. However the observation above needs 

further confirmations. 

Typical situations extracted from the list of Table II were illustrated in detail (see [21]) by plotting 

the experimental and theoretical current density and normalized pressure profiles, as well as the 
experimental non-ohmic net power deposition pE  on electrons, which is a mark of the discharge. 

One should distinguish between shots with q0 1  or q0 1 . One finds invariably that the SME 

profiles agree with the experimental ones outside the sawtooth region or in a region where the induced 

current is not strongly modified by external interventions as non-inductive currents and ramps-up in 
order to obtain qo 1 and generate an internal transport barrier (for further evidence on the profile 

consistency of the pressure and on the effects of transport barriers see refs.[26-27]). 
In the cases with q0 1 (shots JET 53298, 58148, 59397, 59211, 53506; see tables II and II) the 

SME equation is solved in the whole interval 0  r  sa  taking dj / dr  0  at r  0  and the 

experimental value at r  sa . In these cases one finds that the SME profiles disagree in the centre but 

rejoin the experimental one out of the region where the current density has a hole and non-inductive 
effects are important. Indeed it is not possible to find discharges that have q0 1 (no sawteeth) in 

stationary conditions without having significant non-inductive current components. In figs.12 and 13 
we present two typical cases with q0 1 and q0 1 extracted from the set of figures discussed in the 

quoted paper (see [21]). Fig.12 shows the good adherence to the experimental profiles of shot JET 

55809 (NBI+ICR heated L state with ~ 0.27MA of non-inductive current) taken at 49s in the region 

outside the sawteeth. Fig.13 shows the case of an intense non-inductive current in the central region 

(JET 58148NBI+ICR heated H-state at 47s) and shows how the theoretical profile of the current  
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Figure 12. JET55809 NBI+ICR heated L-state; experimental (symbols) and theoretical 
(line) profiles of the current density (a) and of the pressure (b) normalized on the q 1 

surface (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001) (with 

permission). 

 

 
 

Figure 13. JET58148 NBI+ICR heated H-state with intense non-inductive current in the 
central region ( qmin 1.6); (a) total theoretical (line) and experimental (circles) current 

density and the non-inductive part (full squares); (b) theoretical (line) and experimental 

(circles) profiles of the current density and of its non-inductive part (full squares) in the 
outside zone 2.17  q  5.36 with r(m)  0.36; (c) experimental and theoretical normalized 

pressure in the outside zone (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 

045001) (with permission 

 

 
 

density rejoins the experimental one outside the region of large non-inductive current (fig13(a)). We 
then solve the SME equations in the outside region i.e. 0.36  r m  0.90, taking the experimental 

values of j  and p at the inner and outer borders. With this additional information the theoretical and 
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experimental profiles of the current density and of the pressure agree in the region above, as shown in 
the figs.13(b) and 13(c). The other shots with q0 1 listed in Table II are treated with the same 

procedure as above: first one solves the SME equation in the whole interval from r  0 to r  sa in 

order to determine the region of adherence between theory and experiment which turns out to be just 

outside the zone where non inductive currents are important. Then the SME equation is solved again in 

this region with the appropriate boundary conditions. 

Fig. 14 is an example (JET 50630) of a H discharge with significant non-inductive current 
( 0.35MA ) in a high density plasma ( ne0  0.711020 m3 ). The non-inductive current density is 

localized in the central region and around the q  1 surface ( jnind  0.15MA / m2 ). The anomalous high 

value of sa  (sa  1.70) is due to the effect of the non-inductive current density on the boundary 

condition at q  1 for the inductive part of the current density described by the SME equation. By 
solving the SME equation in the region r m  0.30, q 1.10 where the non-inductive current becomes 

much smaller ( jnind  0,05MAm2 ), one finds essentially the same values of erj and erp as in table III, 

independent of sa  for sa  0.50 . 

 
Figure 14. JET50630 NBI+ICR heated H-state with high density ( ne 0 1020  0.70) ; 

theoretical (line) and experimental (symbols) profiles of the total current density (a), 

including 0.22MA  of non-inductive current and of the pressure (b) in the range 
1.03  q  2.78  (from Minardi E.; Sozzi C.; Mantica P. Nucl. Fusion 2008, 48, 045001) 

(with permission). 

 

 
 

CHAPTER 7: Connexion between magnetic entropy and Lagrangian description of the particle 

motion 

 

Summary: In this chapter the relation between the magnetic entropy and the Lagrangian motion of 

the underlying system of particles is investigated. We consider the motion of independent groups of 
N j  particles, each group being identified by the volume element V j  in which the guiding centers of 
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the N j  particles were contained at the initial instant of time. Radiation effects are neglected and the 

magnetic field is treated as a given, albeit “a priori”, unspecified function of space. 

The Lagrangian motion is constrained by the condition that the system of particles contributes to an 

organized (macroscopic) motion such that the total interaction energy of the system of particles with 

the macroscopic vector potential is fixed. This macroscopic constraint is the counterpart of the 
constraint (2.3), which is at the base of the introduction of the interaction energy int  in chapter 1. 

This condition, together with the coarse-graining involved by the partition of the total volume into 
volume elements V j  allows for establishing a correspondence between the Lagrangian description of 

the motion and the properties of the magnetic entropy. 

It is a characteristic feature of the formalism, which results from the macroscopic constraint above, 

that the Lagrange equations of motion imply simultaneously the equations describing the motion at the 

single particle level and the equation describing the macroscopic motion under stationary conditions. 

The Lagrangian L  averaged, at a given instant of time, applying a Maxwellian distribution to the 
single particle velocities, is related to the magnetic entropy Sp  by the equality L U  TSp  where U  is 

the thermal energy 3/2  nT dV . 

It will be shown that the present thermodynamic description holds at scale lengths much larger than 

the screening length le  mc 2 /4nq2 1/ 2
 arising in the system of electromagnetically interacting 

particles [1], [29]. 

The quantities introduced in chapter 1, for instance the generalized temperature  , will find their 

physical interpretation through the process of average. 

The Lagrangian L  can be split in a part pL
~

 that describes the motion at the single particle level and 

in a part LX , related to the macroscopic configuration. This separation allows for treating the collective 

part independently of any assumption on the velocity distribution at the single particle level. The 

collective part is averaged applying the coarse-grained canonical distribution (3.5). It is shown that the 
vanishing of the averaged variation LX  with respect to suitably defined variations of the equilibrium 

implies Sp  0,int  0 and that the vector potential must satisfy the equation 
  


A p  

2

A p  0 

in an isolated system and in the limit le 2 1.  

When one assumes that, in the same limit, the canonical average of the variation L  of 

pX LLL
~  is equal to its time average, one finds an equivalence relation between the Hamilton’s 

action principle and the vanishing of the first variation of the magnetic entropy. 

 

22. Lagrangian motion of the particles with macroscopic constraints 

 
We start from the Lagrangian of a system of Np  independent particles with mass m  and charge q  

moving with velocity 

V n  d


x n / dt  in a magnetic field described by the vector potential 





x ,t : 


L t  m

2


V n

2

n1

N p

 
q

c


V n 


A 

x n , t 

n1

N p

 ,         (22.1) 

where  





A 

x n,t 
t

 cE

x n,t .           (22.2) 
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For comparison with the point of view of the magnetic entropy concept, we must see how the 

coarse-graining of the magnetic configuration and the constraint (2.3) implied basically by this concept, 

can be taken into account in the Lagrangian formulation of the motion. 
We consider the Lagrangian at a given instant of time t0  and divide the particles into groups whose 

guiding centers are contained at this time into volume elements V . 
The average velocity of the particles present with their guiding centers in the element Vj  at to  is 

then given by the expression 




u j t0  1

N j


V n t0 

n1

N j

 
1

N j

d

x n
dtn1

N j

 ,         (22.3) 

where Nj  1 is the number of such particles at that instant.  

We now look at the equation of motion of the group of Nj  particles, thus identified at t  t0 , as is 

described for t  t0  by the action principle involving the Lagrangian (22.1). The variation of the action 

will be calculated under the condition that the motion is associated with a prescribed value of the 

quantity 



q

2c
n j


u j 


A 

X j , t 

j1

N

 V j ,          (22.4) 

where nj  Nj /Vj  is the density and 




X j t  1/N j  

x n
n1

N j

 t , 



u j t  d


X j /dt 

1

N j


V n t 

n1

N j

 .      (22.5) 

The constraint (22.4) expresses the fact that the magnetic interaction energy of the system of 

particles with the macroscopic part of the vector potential is fixed. The value of (22.4) will be 

determined in the next section where (22.4) will be compared with the similar constraint (2.3) 

introduced in section 2 for the derivation of the magnetic entropy. 

Introducing the Lagrangian multiplier  , the Lagrangian of the constrained motion is expressed as 

     
 
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,
2


       (22.6) 

Let us single out the k-td particle belonging to the j-td group of Nj  particles. The equation of 

motion is given by 

.0 LL
dt

d
kk

xV
            (22.7) 

We have 

       
 

 t

tXA
tXAVtXA

dt

d
tXAV

dt

d j
N

n
jxnjj

N

j

N

n
nV

j

n

j

k 
 ,

,,,
11




  

       
.

,
,

,
,

1

1 t

tXA
tXAu

t

tXA
tXAV

N
j

jXj

N

n

j
jXn

j
j

j

j 











  
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    (22.8) 

(Note that 

 

x n


X j  1/N j  

X j
). The first transition in (22.8) is a consequence of the fact that only the 

k -td particle among the N j  particles contributes to the derivation; the subsequent equalities follow 

from the relations (22.5). The contribution of the   term to the equation of motion is then 

  





  

 

N

j

N

n
jnxV

j

kk
tXAV

dt

d

c

q

1 1

,
2





 



Entropy 2009, 11                            

 

 

183
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tXBtutXEc
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q
jjj
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
         (22.9) 

and the equation of motion takes on the form 

          .,,
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





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
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tVd
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k
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

    (22.10) 

Let us sum both members of (22.10) over the group of N j  particles at the time t  t0 when all N j  

particles are in V j . After dividing by N j  one has 
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      (22.11) 

where we have supposed that 

B  is practically uniform in V j  so that 




B 

x k, t0  B


X j , t0 . We shall see 

in the next section that   is very close to –2 but it cannot be identical to it. This means that 
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0
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//1/
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dtVdNdtud
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


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



 


 is very close to 0 and that the macroscopic system tends to be 

stationary, even though not exactly stationary. If we want to eliminate any arbitrariness or indefinites 

in our conclusions about the behavior of the system, while remaining consistent with the result above, 

we are forced to admit that the two members of eq.(22.11) must vanish independently. So we obtain 

the equations 
 

0
0










tt

j

dt

tud


,      .0,,
1

00  tXEtXBu
c jjj


     (22.12) 

Since this reasoning can be repeated for any group of N j  particles in any V j  and at any time 

t  t0 , we conclude that, under our assumptions (in particular eq.(22.4)), the motion at the collective 

level should be always stationary everywhere and described by the equations (22.12) at any time. 

Taking into account (22.12), eq. (22.10) gives 
      .,,

1






  txEtxBV

c
q

dt

tVd
m kkk

k 


        (22.13) 

This equation describes the motion at the level of the individual particles. Thus the introduction of 

the constraint (22.4) has made possible a unified Lagrangian description of the motion at the two levels. 

The macroscopic equation of motion can be completed with the introduction of the effects of the 

pressure tensor 

P  and of the dissipative forces 


R . This can be done in a phenomenological way, 

according to a standard procedure of classical mechanics [28], by defining 
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    (22.14) 

where  

   .1
RP

n
XF j


           (22.14) 

By following the same lines as above we arrive at an equation of the form (22.11) involving the 
term F(


X j )  so that the macroscopic equation of motion becomes 
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       .0
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,,  RP
n

tXEtXBu
c

q
jjj
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       (22.15) 

 

23. The relation between the magnetic entropy and the Maxwellian average of the Lagrangian 

 

In this paragraph we assume that the velocity distribution of the particles are Maxwellians with 
local temperature 

T j

 in each V j  and centered at an average velocity consistent with the macroscopic 

description of our model. We wish to see what form the Lagrangian (22.6) will take when the single 
particle velocities are averaged, at a given instant t0 , with the Maxwellian distribution. This will enable 

us to see a relation between the Lagrangian description of the motion of the system of particles and the 

description of the macroscopic system based on the magnetic entropy and to gain a better physical 
insight of the latter. For this purpose we shall express S  Sp  Sb  in terms of the velocities rather than 

in terms of the current density.  
To simplify the discussion, we shall take the density 


n

X   as uniform and fixed. That is, we assume 

that the number of particles Nj  at t  t0  is fixed and equal for all Vj . In fact the fluctuations of 




J j  qN j


u j /V j  ( q is the electron charge) arising from the Poisson’s fluctuations of Nj  in V (with 

Nj  1) are negligible with respect to the fluctuations arising from the random velocity nv
~ . 

We suppose that an organized or macroscopic velocity distribution 


v 


X   is present in the system 

superimposed on a random velocity nv
~ . That is to say, the particle velocity 


V n  measured at any given 

time t0  is composed of a random part nv
~  and of a collective part 



v 

X j , considered as a given function 

of 



X j  and supposed as essentially uniform in each Vj  so that 




v 

x n  v 


X j  for any 



x n  V j . 

Thus, 

  njn vXvV
 ~   for     ., 00 jjn VtXtx 


        (23.1) 

The average velocity (22.3) is then 

  ,
~

jjj VXvu


            (23.2) 

where 



jN

n
n

j
j v

N
V

1

~1~ 
   for   .0 jn Vtx 


        (23.3) 

Correspondingly the current density is divided in a collective part 



j X j  and in a fluctuating part 

jj
~

 according to the expression 

  .
~

jjjj VnqXvqnuqnJ


  

Here 



J j  and 




j 

X j  are the same quantities introduced in chapter 1; in particular 2222 ~~

Vqnj   

satisfies the relation (4.9). 

In accordance with the constraint (2.3) of the statistical model, the velocity jV
~

 is not vanishing in 

general but it results from the effect of the collective field on the fluctuating background described by 
the interaction energy  int . In absence of this interaction the collective system and the background are 

isolated and the average 

V j  vanishes (see (17.3) and (3.7b), where jj Vnqj

 ~~  ).  
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We consider a plasma magnetic state in the absence of electric field, so that the collective vector 
potential 




A p


X j  does not depend explicitly on time. Then, taking into account (23.2), the condition 

(22.4) becomes (see (2.5) and (2.6)) 
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where 
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When the organized velocity 



v 

X j  is subtracted from the velocity (23.2) averaged in V j , still 

remains the average contribution jV
~

 of the fluctuations nv
~  in V j , due to the non-vanishing 

interaction int . Consistently with (3.7a), this average velocity for the group of N j  particles in V j  at 

t  t0 is given by      jpjj XAnqcXvV


 4/
~ 2 . We then consider that the distribution of the 


v n  

velocities of the N j  particles in V j  is a Maxwellian centered in jV
~

 and with temperature Tj , namely 

we put 
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By averaging (23.3) with the distribution (23.6) one obtains 
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Then the average of (23.5) is intint
~   where int  is the same as (3.7b) or (5.5). 

Using (23.1), the Lagrangian (22.6) at the time t0 takes on the form 
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The first term can be expressed with the Maxwellian temperature after performing the average with 

a Maxwellian distribution of the single particle velocities nv
~ . One obtains   mTvN j

N

n
nj

j

/3~/1
1

2 



 (we 

assume   2/1/2
~

mTV  ), so that the term becomes equal to the plasma thermal energy 
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       (23.10) 

Let us calculate the average of the third term applying the distribution (23.6): 
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where the relations (4.3) and (5.1) have been used. 

We now consider the fourth term 
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Here we take into account the fact that the positions 

x n of the particles grouped in Vj  at the time t0  

cannot be distinguished due to the coarse-graining of the configuration at the scale of V . Thus 




A p


x n  can be identified with 
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X j  for any 


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x n Vj . With this in mind and recalling (23.2) and 

(23.3) one has 
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This term combines with the last term of (23.9) to give   2   int  after taking into account 

the Maxwellian average of (23.4) where 


u j  is defined by (23.2). We are now in position to write the 

average of (23.9): 
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   (23.14) 

The relation above contains the Lagrange multiplier  , which should be determined by the 
constraint (22.4) after prescribing int . However, as is customary in statistical mechanics, one can 

reverse the procedure and consider instead the Lagrange multiplier   as the primary quantity. This is 

the way followed in ordinary statistical mechanics for introducing the temperature and indeed we shall 

see presently that even in the present case   is related to the generalized temperature  . 

We start by observing that if   is chosen in such a way as to satisfy the relation 
q

mc

2c 2m

2nq2
   2
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  or ,

4
2

2

22

nq

mc


         (23.15) 

the average of the Lagrangian can be expressed as a linear function of the magnetic entropy and of the 

plasma thermal energy only. Indeed, applying (23.11), L  takes on the form 

  .2
~

3 int
2 


 pSV

Vmn
UL          (23.16) 

Here 2~
V  is defined by (4.2) as  




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j
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/1

~
 where, recalling (23.3), 
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         (23.17) 

Since   2/1/2
~

mTV  , the particle-particle correlation can be neglected, so one has 
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        (23.18) 

where N j  nV  and T  Tj / N
j1

N

 . Thus, the generalized temperature   is related, in accordance with 

(5.3), to the Maxwellian temperature T  by the relation 

.
4

3

~
4

22

2

22

222

T
mc

nq

c

VqVn





 


          (23.19) 

It follows that 

  2  
2c 2m

4nq2


T


           (23.20) 

and the expression (23.15) for L  becomes simply 
L U  T Sp  Sb U  TS.          (23.21) 

In the case of the tokamak the value of   is arbitrarily close but not identical to –2. Indeed, as we 
know (section 17), the value of 2 is arbitrarily close but not identical to 0 (as would be required by 

exact minimization of the poloidal magnetic energy within the family of the SME solutions, see 
section 17). In other cases (the cases considered in section 10 and in chapter 3) 1

 is a characteristic 

length of the magnetic equilibrium. Taking, say   20cm 1
,n 1013cm3  and assuming that the 

current is sustained by electrons, so that q and m  are the electron charge and mass, one finds 
2c 2m

4nq2
104.            (23.22) 

The value of   is then very close to –2; the parameter  , which is negative, becomes infinitely 

negative in the limit   2  and the eq. (23.21) reduces to  
L U  TSp             (23.23) 

The inequality (23.22) has an interesting physical meaning. It means that le 2 1 , where 

le  mc 2 /4nq2 1/ 2
 is the screening length of the vector potential created by a particle in a system of 

electromagnetically interacting particles as was discussed first by Bohm and Pines [1]. For a more 

recent treatment see Essén and Nordmark [29] and references therein (in the theory of the 
superconductors the length le , with the appropriate definition of m  and q, describes the penetration of 

the magnetic field in the superconductor and is called the London penetration length). It follows that 

the characteristic length of the magnetic plasma equilibria described by the present approach must be 

much larger than the length below which the effects due to particle discreteness are important and 

where the particles can be treated as effectively free and the collective effects can be neglected. 
The change of entropy of the background  /intbS  vanishes in the limit   2,   , but 

is otherwise positive (albeit infinitesimal) when int  0 , for instance when energy is reversibly 

supplied from the background to the collective system. The parameter   can then be interpreted 

formally as the temperature of the background consistently with the well-known fact that statistical 

systems with negative temperature are “hotter” than systems with positive temperature, so that their 

entropy increases when heat is released. 
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24. The relation of the first variation of the magnetic entropy to the first variation of the 

canonically averaged Lagrangian and to the action principle 

 
The relation (23.23) suggests that the variation Sp  at constant Maxwellian temperature T  could be 

related to the variation L  of the Maxwellian average of the Lagrangian. In this section we shall 

investigate the form of this relation when no assumption is made on the probability distribution of the 

single particle velocities nv
~ . We shall see that there is a significant implication between this relation 

and the dynamics of the particles. 
We start from the Lagrangian (23.9) taken at a fixed instant of time t  t0. This Lagrangian can be 

split in two parts      000

~
tLtLtL Xp   where, recalling (23.1), (23.2) and (23.3) 
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(24.1b) 

The Lagrangian  tLp

~
 describes the unorganized motion at the single particle level and should be 

ascribed to the background, according to our scheme. The part LX  arises from the collective motion of 
the macroscopic system, that is the motion seen at the coarse-grained level measured by the V j . 

We take the average of LX  at the instant t  t0, applying the canonical distribution (3.5), which in 

terms of the velocity reads 
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where 2~
2/3 V . One has 

        ,4/
~ 2
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Thus LX t0  is given by the equality 
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where the relation (23.20) has been used in the second transition. 
We consider arbitrary primary variations 


x n  of the 


x n t0 . The 


x n  produce a variation of the 




X j t0  given by 
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In turn the 

X j  produce a variation of the 


X j  dependent quantities 
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treated as a given, albeit unspecified function of space) 
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One obtains the following expression for the first variation of LX t0 : 
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(24.7) 

For comparison with the magnetic entropy it is convenient to express the variations in terms of the 
current density 
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Thus, the variation of 

j , as well as of 



A p , can be expressed in the form 
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The two terms in the right hand side of (24.8) are related respectively to the first variation Sp  of 

the magnetic entropy, and of the variation int  of the interaction energy, with respect to arbitrary 
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where 3/
~ 2

jNVm  (   T  in the case of the Maxwellian distribution of the single particle 

velocities, see (23.18)). 

To show (24.10) we consider the equalities 
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We assume that the surface integral is vanishing either because 

 d


S  0  or because, more 

stringently, 
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 0, which implies 
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A p  0 on  , Then we obtain the relation 



Entropy 2009, 11                            

 

 

190




j  


A p d


A p  


j d


j 

A p 


d








        

 (24.13) 

and similarly, the relations 
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The equalities (24.10) follow from these relations and from (24.7). 
Thus LX t0  0  leads to Sp  int  0 . This implies, recalling (24.10), that the plasma is 

incompressible, 
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We shall show that this equality is satisfied only by 
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Recalling the considerations at the end of §22, the first term is negligible (recall eq. (23.22) and its 
physical interpretation) so that 
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As a consequence of this result the two terms (24.9) vanish separately, that is the condition 
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At the same time one has from (24.3) and (23.5) that 0
~

int V


, which is consistent with the fact 

(recalling the meaning of int ) that the unperturbed, as well as the perturbed collective system, are 

isolated. 
Finally let us note the curious coincidence that, if one assumes that the canonical average LX t0  

(where      000

~
tLtLtL Xp  , see (24.1)) is equal to the time average over a long time interval t2  t1, 

LX t0  1

t2  t1
LX t dt

t1

t2

 ,          (24.18) 

one would find that the Hamilton’s action principle   0
2

1

 dttL
t

t

  implies Sp  0  in the limit 

le 2 1. Indeed, from (24.1a) one has (for isothermal variations, that is to say, by keeping fixed the 

sum of the kinetic energies of all the particles) 

  .2
~

int0   tLp            (24.19) 

Combining (24.18) with (24.9) and (24.19) one obtains 

      pppX

t

t

SSLtLdttL
tt

 
  int0

12

2
~1 2

1

     (24.20) 

The term in the left hand side vanishes in view of the action principle and the equations of motion 
(22.12) and (22.13). It follows that in the limit le 2 1 or 2 one has Sp  0. Conversely, 
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applying the more restrictive condition LX t0  0 , one has not only that Sp  0 , but also that 

int  0 as shown above, and then L t dt
t1

t2

  follows according to (24.20). 

The primary variations considered here are the variations 

x n t  (vanishing at the boundaries t1 and 

t2) of the positions of the particles in V j with respect to the positions 

x n t0 . The 


x n t  produce the 

variation 

X j  of the 


X j  according to the (24.5); Sp  and int  are varied as above where the  j  are 

interpreted as the time average of (24.5): 

 



jN

n
n

t

t j
j dttx

Ntt 112

2

1

11 
           (24.21) 

The restriction to isothermal variations requires that   0
11




n

N

n
n xtx

p

  . In view of the extremely 

large value of N p  the arbitrariness in the choice of the 

x n t  is practically unaffected by this condition. 

The result above shows that, under the hypothesis (24.18), one has Sp  0 as a consequence of the 

equations of motion (implicit in L t dt  0
t1

t2

 ) and therefore the entropy is conserved at first order. 

However the same does not hold for the second variation. This reflects the fact that the entropy is 

basically not a dynamical quantity, but an interpretative and predictive tool based on probability and 

information. Nevertheless we have seen in many examples (see chapters 2 and 3) that the negative 

second variation of the entropy is related to the positive second variation of the magnetic energy. This 

can be seen as a minimization of the energy under the optimization condition that the probability of the 

configuration be at a maximum. 

 

CHAPTER 8: Statistical model of electrostatic collisionless equilibria 

 

Summary: The statistical model developed in chapter 1 and applied there to magnetic equilibria is 

extended here to the case of collective electrostatic equilibria. The entropy functional and the other 

thermodynamic quantities are calculated with the procedure of chapter 1, sections 2-5 by operating in 

the information space where the current density   jxjJ j

 ~  is replaced by the charge density 

  jjj x  ~


 and the collective vector potential 



A 


X j  is replaced by the electrostatic potential 





X j . The partition of the plasma volume into volume elements V  is such that the collective effects 

are visible at scale lengths much larger than V , where V 1/ 3  D  (D  is the Debye length). 

One can consider reversible transformations in which electric charges and electrostatic energy are 

exchanged between the collective configuration and the fluctuating medium, which acts as a reservoir 

of electric charges. These transformations correspond to the magnetic transformations considered in 

section 9, with the exchange of electrostatic energy by means of exchange of electric charges, 

replacing the Poynting flux of electromagnetic energy. 

The entropy change of the collective system defined by means of the reversible process above holds 

also when the medium is not considered or the collective system is isolated from the medium and 

undergoes an irreversible transformation with entropy increase.  
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It will be shown that the minimum of the electrostatic entropy corresponds to the instability of the 

collective equilibrium predicted by Vlasov equation. Any distribution function with a single maximum 

is stable and corresponds to the maximum of the entropy. The Maxwellian case is contained 

consistently in the theory. 

The electrostatic interaction energy with the medium can be expressed in a phenomenological way 

in terms of a dielectric constant that describes the reaction of the plasma, considered as a polarizable 

medium, to the presence of a collective charge. The plasma is unstable with respect to the variations of 

the charge density around the marginal point such that the linear dielectric constant becomes negative. 
It will be shown that the total entropy S  Sp  Sb  is at a maximum with respect to variations of the 

bifurcation parameters (e.g. the temperature gradient) around the marginal point. 

 

25. Thermodynamic formalism for electrostatic collisionless equilibria 

 

The entropy pertaining to a collision-less electrostatic equilibrium can be constructed following the 

same procedure of chapter 1 after replacing the current density   jjj jxjJ
 ~ , averaged in the 

volume element V j , with the charge density   jjj x  ~


. The value of V  measures the coarse-

graining through which the electrostatic collective equilibrium is seen: collective effects should be 
visible at the level larger than the coarse-graining described by V . This means that V 1/ 3

 must be 

lower than the Debye length   2/124/ ssssD qnT    of the species s  forming the plasma, and that 

particles in V  can be considered as effective free particles as shown by Pines and Bohm [2]. In 

addition V  must be large enough for containing many particles. 
The collective charge density 




x j  is considered as superimposed on a background or medium of 

independent particles and the fluctuation of the number of uncorrelated particles contained in V j  

gives rise to the charge fluctuation j~ . The electrostatic energy of the collective field is 


 1/2  


x   

x  d

 . We neglect the particle-particle correlation but consider instead the particle-

collective field interaction described by the interaction energy int  between the fluctuations j~  and 

the collective potential 

x  . Just as in the magnetic case int  will prove to be a useful device for 

describing the interaction of the collective system with the external sources of electrostatic energy and 

will acquire a definite physical meaning. 
The probability distribution of the charge density P 1 n;


x 1


x N  is then constrained by the 

condition 

       ,;
2

1
int

1
11 



dVxxxxP jj

N

j
jjNN





       (25.1) 

where (similarly to (1.3) 




1

2


x j 

j1

N

 

x j V j ,          (25.2)  

and 

    .~;
2

1

1
11int  



dVxxxP
N

j
jjjNn





         (25.3)  
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Here d  V N d1d n ; V  N /V  measures the partition of a large volume V  of plasma, 
electrically neutral in the average, surrounding the collective charge distribution 


x   localized in a 

volume   V . 
The vanishing of int  characterizes a ‘purely’ collective equilibrium in the sense that the interaction 

with effects involving particle discreteness are ignored and only collective effects are considered. So, 
the condition int  0 is the very definition of “Vlasov” equilibrium in our phenomenological picture. 

In fact we shall consider variations around the Vlasov equilibrium with int  0 and this will describe 

the exchange of energy between the collective system and the medium associated with exchange of 

electric charges. So, in the presence of this interaction the system is no longer in the “pure Vlasov” 

equilibrium.  
A further constraint arises naturally from the fact that the  j , in view of their fluctuating 

component j~ , are random variables whose values are subject to dispersion. Similarly to eq.(2.7), we 

introduce the constraint 

    .;
1

1

2
121

2  



N

j
jn dxxP

N
 




         (25.4) 

The probability P  is calculated from the requirement that the entropy S   P lnP d  be 

stationary with respect to variations of P  under the constraints (25.1), (25.4) and the normalization 
condition Pd 1 . At this point we follow step by step the calculations of sections 3 and 4 and 

arrive at the relations 

 
 

 

 
 

,
/

~~exp

/

exp

;
2/

1

2

2/

1

2

11 NN

N

j
jj

NN

N

j
jj

NN
VV

xxP

























      (25.5) 

where 

    ,
2

1~
jjjjj Vxx 

 


          (25.6) 

 j
2  j

2


1

2
,           (25.7) 

   


2

1

22 ~11
j

N

j
cj N

x
N

 
, where  .~2

1
j

N

j
jc x

N

 


     (25.8) 

After application of the thermodynamic limit (V ,N ,V  const, /V  0 ) one finds 

 
,~

2

1

int

2

2









dx

V


           (25.90 

2222 ~
2

1 


  jj , where .~1~
1

22 



N

j
jN

       (25.10) 

The entropy S  is divided in a part Sp  pertaining to the collective system and in a part Sb , which 

contains the effects of the medium 
S  Sp  Sb ,            (25.11) 

where 

          ,
~

~2

1~
~2

1
~4

2
2

222 


















  

 

dxx
V

dx
V

dxx
V

N
S cp

 










 (25.12) 
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      .
~

2

1~
2

1 2
2

int

















  

 


dx
V

dxxdSb

 







    (25.13) 

The free energy is given by the same expression (4.8) as 
. pSF             (25.14) 

In the equalities above terms tending to infinity with N  have been neglected. For instance the exact 
form of Sb  would be 

  .
2

~2ln
2/1

2int N
VNSb 








 


        (25.15) 

Indeed, one sees that these terms are independent of the quantities of the collective equilibrium and 

do not contribute to its variations. 

 

26. The electrostatic entropy concept 

 

We consider a neutral plasma perturbed by a single collective k  mode 




x ,ki ,  1/ 1/ 2 k exp i


k 

x  it   ( ki  are the components of 


k ) and assume that a mode 

m


x ,km,i , m  exists which is marginally stable with real 


k m ,m  so that a reference frame can be 

found where the mode is time independent. Thus, in this frame the mode describes a static electric 

equilibrium to which one can apply the concepts of canonical ensemble and of canonical P  average 
implied by our statistical procedure. We also assume that the equilibrium m  corresponds to a 

vanishing interaction energy  int  0 , in other words there is no electrostatic interaction of the 

collective system with the fluctuating medium and m  is a pure collective mode in the sense of Vlasov. 

In general one can write m   m


x ,km ,i ,m ,  where   denotes the set of parameters that characterize 

the particular dynamical situation at hand, expressed by the specific form of the ion and density 
perturbations ni ,ne  building up the electric charge density  ei nne   . During the perturbation 

the parameter   is kept fixed to its equilibrium value 

,
~4

2

1
~

2

1
2

22

2

m
mm

m

m k

V

d

d
V






 








         (26.1) 

where km
2m  4m . Then the variation functionals Sp  and Sb  take the form 

,
4~2

1 2
2

2 










  

 

d
k

d
V

S m
p 





        (26.2) 

,~
2

1

42

1 2
int 














 dd

k
S m

b 








       (26.3) 

where  m   and  m   and use has been made of (25.6), (25.7), (25.10) and (26.1). 
It will be shown that Sp  0, provided the total collective charge is conserved in the variation. Indeed, 

let us start from the first variation of Sp : 

  .
4

2
~2

1 2

2 










  d

k
d

V
S mm

m
mp 





       (26.4) 

The application of the Green’s theorem gives 
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 

    


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.
4

1

4

1

4

1

2

2

Sdd

dd

mmm

mm

       (26.5) 

We assume that the boundary surface   is equipotential, thus   0 and m S  const  on  . 

Substitution of (26.5) into (26.4) and use of the Poisson equation for the electric field leads to the 

expression 


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     (26.6) 

and Sp  0 follows from d 0  (we exclude the case S  0, so that the result does not depend 

on the arbitrary choice of the reference potential). One also finds that Sp  Sb  int /m  0 with 

a similar calculation. This means that there is no exchange of electric charges and of entropy between 
the collective subsystem and the medium and that the entropy S  Sp  Sb  of the total system is 

unchanged at first order. In the case d 0  the relation Sp  Sb , still holds with Sp  0, apart 

from the adiabatic variations   4 /km
2   with respect to which Sp  Sb  0 and the variation of 

the collective charge is zero. Indeed one can verify that the first variations of Sp (26.2) and of Sb(26.3) 

with respect to primary variations   4 /k 2   are related as follows: 

.1
2

1 int
2

2



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



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m
mp Sd

k

k
S        (26.7) 

In this case the collective subsystem is not isolated but exchanges entropy and electric charges with 

the medium. We shall return to this point in section 27. 
Let us consider the second variations of Sp  and of Sb , 
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S mm
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These relations hold independently of the value of the total charge variation d . One has 

(summing up (26.2) and (26.3)) 

    .01
~2

1 2

2

2

2

2

22  



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





 d

k

k

V
SSS m

bp 


       (26.9) 

The entropy of the total system is at a maximum (the adiabatic variations apart) and the total system 

is therefore globally stable. The collective subsystem, at the contrary, can be stable or not in its 
interaction with the medium depending on the sign of 2Sp . 

It is essential to note that the entropy change of the collective subsystem holds also in the case 

where a medium is not considered and the collective subsystem is isolated and undergoes an 
irreversible transformation with entropy increase, while the same amount of energy int  (see (26.7)), 

exchanged in an equivalent reversible process with the medium, is transformed and eventually 

dissipated internally to the subsystem. This irreversible process is associated with the same second 
variation of the collective entropy 2Sp  as that given by (26.8). The sign of 2Sp  establishes a 
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direction in the evolution of the collective subsystem, namely the collective system evolves, when 
isolated, only along directions such that 2Sp  0. Therefore 2Sp  0 implies stability and 2Sp  0 

instability.  
One sees from (26.8) that the unstable situations occur for the modes with k 2  km

2 . We shall see in 

the next paragraphs that these thermodynamically unstable modes are associated with reactive (non 

dissipative) instabilities. For example, the reactive (non-resonant) modes predicted unstable by the 

dispersion function of the Vlasov equation associated with symmetric distribution functions in velocity 
space that are the sum of two Maxwellians centered at displaced velocities v0 whose difference is 

sufficiently large and the minimum of the distribution function sufficiently deep. This is the case of the 

two-stream instability.  

Any distribution function with a single maximum is stable according to the Vlasov equation and 
corresponds to km

2  0,2Sp  0 and to a maximum of the electrostatic entropy. Detailed examples of 

stable electrostatic equilibrium and unstable situations associated with k 2  km
2  are discussed e.g. by 

Bernstein et al. [30]. 

For illustration’s sake of the observations above let us consider the simple case of the electrostatic 

equilibrium described by the one-dimensional Vlasov equation, static in the laboratory frame of 

reference 

  ,0
v

f
xE

m

q

x

f
v s

s

ss







          (26.10) 

where .4 dvfq
x

E

s
ss  




          (26.11) 

Combining the two equations above one readily derives an equation for the electric field 
d 2E

dx 2
 km

2 x E  0,           (26.12) 

where    .
4 2

2 dv
vv

f

m

q
xk s

s s

s
m  


         (26.13) 

In the Maxwellian case one has 

.04
2

2  
s s

ss
m T

nq
k            (26.14) 

The entropy Sp  is at a maximum and km
2  is the sum of the inverse square of the Debye lengths of 

all species. In this case the equation (26.12) does not admit oscillatory solutions. 

An oscillatory one-dimensional static solution of the electrostatic Vlasov equation is always associated 
with a non -Maxwellian distribution function and with a positive km

2 . 

The solution of (26.10) must be a function of the energy, namely fs  fs s   where 

s  1/2 msv
2  qs . Thus (26.13) becomes 

km
2  4qs

2

s

 fs

 s

 d3v.           (26.15) 

The condition fs /s  0  in some domain of velocity space for at least one of the species, is 

necessary for km
2  0  and implies thermodynamic instability. 

See the paper by Bernstein, Greene and Kruskal [32] for a nonlinear treatment of the solution of eqs. 

(26.10), (26-11),  
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Recalling (26.1) and (26.14), in the Maxwellian case  is given by the expression 

  .0
/

~

2

2







s
sss Tnq

V            (26.16) 

The mean square deviation in the number VnN ss  ~~
 of independent particles of species s 

contained in V  is given by   VnVnn sss  222 ~~   (where ss nn ~ ) and the variance of the charge 

density of the system of uncorrelated particles with charge qs in V  will be 

  .~~~
2

2222  


s

ss
ss

s
s V

nq
nnq          (26.16) 

Then, 

 
qs

2ns

s


qs

2ns /Ts

s


.           (26.17) 

When all species have the same temperature T ,   is identical with the Maxwellian temperature T . 

The Maxwellian case is then contained consistently in the present approach. 

In the case of an inhomogeneous plasma one can define an electrostatic entropy functional which is 

sensible to the local structure of the equilibrium following step by step the same lines of section 11 for 

the magnetic case. Taking in mind eqs. (11.2), (11.3) one can write the following condition, which is 

sufficient for the minimum of the electrostatic entropy and for the linear thermodynamic instability of 

the one-dimensional Vlasov equilibrium 
  

x

   dx 0,          (26.18) 

where x  is the characteristic length of the equilibrium and , are averages in x . 

The criterion above has been compared with the results of numerical simulations in the case of self-

consistent inhomogeneous gravitational and electrostatic equilibria [32-34]. 

 

27. Physical meaning of the electrostatic interaction energy 

 

The electrostatic interaction energy has a precise physical meaning, which we are going to illustrate. 
The first variation of int (26.3) around the equilibrium m  km

2m /4  with respect to variations 

  4 /k 2   has the form 

.~
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1
1
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int 
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


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
 dd
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k
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m
m         (27.1) 

As noted above (section 26) one has int  mSp  and comparing (27.1) with (26.6) one finds that 

d 0  implies k 2  km
2  and int  0. It follows that the variation of the total collective charge in 

 is accompanied by a perturbation k 2  km
2  away from marginal equilibrium. The value of km

2  will 

depend on the set of parameters  that characterize the physical situation at hand around the marginal 

equilibrium and may depend also on the components km,i  of 

k  as well as on the marginal frequency 

m, supposed to be real. Introducing the definition  

   
,

,,
1,,

2

,
2

,
k

kk
kk mimm

mimm


          (27.2) 
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the first variation of int  becomes 

,
2

1

2

1
int   dd effmmm         (27.3) 

where (see .(27.1)) 

 ~ meff   

is the effective charge which determines the amount of electrostatic energy transferred from the 
collective system to the medium (when int  0 ) or vice versa, in a perturbation that brings the 
system outside the marginal equilibrium. In this way m  acquires the meaning of a dielectric constant 

and  int  0  is the response of the polarizable medium, which reacts when a free charge distribution 



x ,ki, , k  km   is introduced besides the preexisting collective charge distribution 

m  m


x ,km.i,m ,  of the (initially) isolated ( int  0 ) collective equilibrium. One can also say that 

the transition from the state m  with  int  0  to the state 

x ,ki, , k  km   with m  fixed and 

 int  0 , simulates the reaction of the medium to the (reversible) exchange of free charges   between 

the collective system and the external world (feigned by the medium).  
In the absence of interaction one has from (27.3) that m km ,m ,  0, or k 2  km

2 km,im, , which 

is the dispersion relation of the purely collective (Vlasov) mode m . 

This interpretation of the electrostatic interaction energy can also be seen from another point of 

view open to generalizations. The electrostatic equilibrium is characterized by a specific functional 

dependence (in general non-linear, see the examples in chapter 10) of the charge density on the 
potential m  m m , which follows from the solution to the static Vlasov equation, involving the 

potential m through the constants of motion. A generic perturbation  xk


,  of this equilibrium can be 

considered as formed by two parts 
    ,effmmmm            (27.4) 

where the first part is the adiabatic perturbation, which maintains the initial functional dependence 
m  m m  of the zero-order equilibrium, and the second part  eff  describes the effective departure 

from this equilibrium. Let us expand (27.4) in powers of   obtaining up to first order 

.
4

2

eff
m

eff
m

m k

d

d








           (27.5) 

Substitution in (25.3) gives 

int  
1

2
 eff d .           (27.6) 

So int  can be interpreted as the electrostatic energy needed for driving the plasma outside the 
zero order adiabatic equilibrium specified by the function m  m m . 

This interpretation opens the question what effects the higher order terms of the expansion (26.5) 

could have on the reactive process considered above and what could be the plasma response to the 

non-linearity of the dielectric constant that arises from the higher order terms. We shall discuss this 

question in the next sections. 

Let us proceed by considering the role played by the free energy F , defined by equation (25.14), in 

the charge exchange reactive process. The first variation of F  is given by the equality, recalling that 
Sp  Sb  (see section 26): 

F  mSp int   m m 1 d .      (27.7) 



Entropy 2009, 11                            

 

 

199

The quantity  m 1  is the polarization charge density of the medium. The polarizable medium 

is therefore the reserve of free energy in the unstable plasma with m 1km
2  0. 

In the reversible process of charge exchange between the collective field and the medium one can put 
F  L  where L  is the work of the polarization charges in the potential m. 

The energy balance can be written in the form 
.int   L            (27.8) 

Here int  0  is the energy input to the medium associated with the charge exchange with the 

collective system and L  is the work spent by the polarization charges of the medium. The two terms 

are compensated by the variation  of the electrostatic energy of the collective system. 
We end this section by noting a relevant variation property of the total entropy S  Sp  Sb  that 

emerges when S  is expressed in terms of the dielectric constant m : 

.
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V
S m


          (27.9) 

We assume that a critical value  m of the parameters exists which corresponds to a bifurcation 

point of stability, namely 
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where all quantities are real. One sees that S  is at a maximum with respect to arbitrary variations 
 m  around the marginal point m . Indeed the first and the second variations of S  (27.9) are 
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The global entropy S  contains the contribution of the medium and is sensible to the reactive effect 

of the dielectric constant of the plasma as a whole, that is to say, the plasma including, at the 

appropriate scale lengths, the collective electric field and the effective free particles which act as a 
polarizable medium. In fact, the first variations of Sp  and Sb  do not vanish separately with respect to 

non adiabatic variations, while the global system with entropy S  Sp  Sb  can be at the 

thermodynamic equilibrium described by S  0. Therefore one should expect that in a reactive (non-
dissipative) instability, generated by perturbation of  around the marginal point, the plasma would set 

itself at the critical value  m where S  is at a maximum. For instance, in the case of the temperature 

gradient instability, it should set at the critical value of the temperature gradient. 
 

CHAPTER 9: Non-linear effects in reactive instabilities 

 

Summary: In the case of unstable plasmas and of non-Maxwellian velocity distributions the charge 

density cannot be separated in a collective component and in an effective free particle fluctuating 

component. The separation or screening distance described by the Debye length is a concept that holds 

only for thermal plasmas and Maxwellian distributions. We consider a model according to which the 

plasma with a negative dielectric constant on the unstable side of the marginal point reacts as a whole 

to the instability, without distinguishing in the nonlinear domain between collective and free particle 

effects, by providing promptly free electric charges for counteracting the collective instability as soon 

as the marginal point is crossed. In this way the whole plasma acts as a dielectric medium with an 
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effective non-linear dielectric constant, whose non-linear terms are naturally the higher order terms of 
the expansion (26.5), which defines the effective departure eff  from Vlasov equilibrium. 

When second order terms in   are taken into account in the expansion of m m   , a term of 
fourth order appears in the expression of the entropy Sp , appropriate for the description of the 

electrostatic equilibrium in a nonlinearly reactive medium. One finds that for m 1 km /k 2  0 the 

non-linear entropy is minimum for   0 and is at a maximum for a definite value of  2 with respect 
to variations of the charge density. So, for m  0 the homogeneous equilibrium, when considered as 

isolated, is thermodynamically unstable, but the system builds up a neighboring equilibrium with a 
charge density   k 2 /4  that stabilizes non-linearly at a definite value of  2 that will be calculated. 
A further maximization of Sp  determines the most probable value of the wave- number k . 

In a different point of view, one introduces the probability distribution of the amplitude fluctuations 

of   around the marginal point according to the relation 
 pSe  where   is the volume element 

in  -space accessible to the subsystem with entropy Sp  . One has an intrinsic background of 

thermodynamic fluctuations extending from thermal fluctuations of Maxwellian plasmas in the stable 

side of the marginal point to fluctuations at the marginal point of stability and in the linearly unstable 

side of this point. On this side one finds fluctuations whose mean square amplitude are equal to the 

corresponding values associated with the neighboring equilibrium considered above.  

The thermodynamic fluctuations can be the seed for the excitation of collective modes that can 

eventually evolve dynamically and reach a saturated value as a consequence of the dynamic interaction 

between collective modes. These purely collective fluctuations should not be confused with the 

thermodynamic fluctuations considered above. 
 
28. The non-linear dielectric constant 

 

The separation of the plasma charge density in the collective particle component and in the effective 

free-particle fluctuating component (formed by particles moving freely with their comoving clouds 

created by Debye shielding), which is relevant only at distances below the Debye length, has been 

pointed out in the pioneering paper by Pines and Bohm quoted above. In our picture the concept of 

separation has been applied and extended by considering a collective (macroscopic) equilibrium 

(described by a static solution of Vlasov equation) on a space scale separated and screened from the 

fluctuating medium of effective free particles by the Debye length, but susceptible of exchanging 
energy with it. Indeed the introduction of the interaction energy int  of the collective system with the 

fluctuating infinite medium involving particle discreteness, has been proved to be a useful device for 

describing the reversible exchange of electric charges and energy of the collective system with external 

sources and for defining the entropy changes through a reversible process. However, when considering 
unstable collective equilibria (with km

2  0 , see section 26) we are faced with the disturbing fact that 

the screening effect described by the Debye length vanishes in the description based on the Vlasov 

distribution function. Indeed the Debye length follows from the Maxwellian form of the distribution 

function (as we have seen in section 26) while the distribution function in unstable equilibria may be 

very far from the Maxwellian and this is true even in the simple case of a static oscillatory solution of 

the one dimensional Vlasov equation for the electrostatic case (section 26). In contrast, in the 
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Maxwellian plasma, the Debye length characterizes damped solutions of the equation (26.11) and these 

solutions describe the screening by the plasma of an externally applied static electric field. The crucial 

point is that, while the Debye length enters the dispersion relation of unstable plasmas through the 
negligible term k 2D

2 1, it ceases to describe any screening effect. Therefore the separation of 

collective and free particle effects based on a screening characteristic length as the Debye length, 
disappears in the case of the non-Maxwellian equilibrium. In fact the value of 02  mk  which is equal 

to the Debye length in the Maxwellian case and implies damped solutions of eq.(26.11), shielding a 

static external electric field, becomes even negative in the unstable plasma, which implies oscillatory 

solutions throughout the plasma volume. As a consequence we are led to think that collective and 

individual effects not only cannot be separated in certain unstable situations, but that the interaction 

between them could play a basic role on the evolution of the instability. In fact, as we have noted 

above, when the electrostatic potential becomes large, higher order terms in the expansion (27.5) 

cannot be neglected and this could modify greatly the reactive process considered in section 27, 

leading possibly to a saturation of the instability in a state of higher electrostatic entropy. 
In case we pursue this point of view, we have to admit that the interaction energy int  is not merely 

a useful device for simulating charges and energy exchanges with external sources, but that the 
reactive process described by int  has a phenomenological reality in which the plasma itself acts as a 

polarizable medium. That is, electric charges are promptly available in the plasma for reacting to the 

instability of the collective equilibrium as soon as the marginal point is crossed, and possibly for 

quenching it. This is of course a conjecture and the purpose of the next paragraphs is to develop its 

consequences to the point of calculating the thermodynamic fluctuation levels around a state saturated 

according to the mechanism outlined above, so as to reach a basis for comparison with the 

observations.  

Clearly, the conjectured mechanism of saturation is basically different from that usually considered 

in the non-linear treatment of the collective instabilities based on Vlasov equation. In this treatment 

one considers the dynamic interaction between many k-modes that are purely collective. At the 

contrary in the present approach we consider the reaction of the plasma to one single mode and the 

saturation of the mode is due to the (supposed) reactive dielectric properties of the polarizable plasma 

as a whole, that is, to its ability to provide free charges from the reservoir of effective free particles for 

counteracting the instability and reach a stable state of increased electrostatic entropy. In a 

fundamental kinetic approach this would mean that the backlash of the growing collective electric field 

in a reactive (non dissipative) instability, on the hierarchy of the particle-particle correlation terms in 

the exact Liouville equation, cannot be neglected, a fact that invalidates the purely collective 

description of the Vlasov model. 

We proceed according to our phenomenological scheme and start with a single k-mode that we now 

write in the form: 

 .sincos
1

212/1
xkxk




           (28.1) 

The nonlinear dielectric constant nl  follows from a straightforward generalization of (27.5) 
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      (28.2) 
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where km,n
2  4dnm /dm

n , km,1
2  km

2  and  4/2knlnleff  . Thus 

nl 1
1

k 2
km ,n

2

n1



  n

n!
.          (28.3) 

The interaction energy is now written as in (27.6) but with the dielectric constant m  (27.2) replaced 

by nl : 

int  
1

2
nl


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 
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
  dV .      (28.4) 

In the stable case ( km
2  km,1

2  0) int  is finite at first order in   while in the unstable case int  

vanishes at the marginal point (section 27) and the first non-vanishing term is of order  2 . In the 

following we shall study the effects of this term and we shall see that they are considerable. 
It will be useful to observe that the expression above for  int  can be obtained from (25.13) with the 

substitution 

  nl  
1

4
km,n

2

n 2



  n

n!
 dm /dm   eff .       (28.5) 

The observation above gives us the key for constructing the entropy of a nonlinear electrostatic 

equilibrium in a nonlinearly reactive medium in accordance with our statistical model. Indeed the 
statistical formalism outlined in section 25 is unchanged when the collective charge density 


x    is 

replaced by the nonlinear charge density nl


x  . After this choice of the information variable, the 

formalism of section 25 leads directly to the interaction energy (28.4) and to the following expression 

for the part of the entropy pertaining to the collective equilibrium (compare with (25.12) or with 

(26.2)): 
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  (28.6) 

where only terms up to second order in   of the expansion of m m    were retained in the second 

transition (odd powers of   average to zero in the volume integration). In this approximation the part 

Sb  of the entropy involving the interaction with the medium remains the same as in the linear case 
(compare with (25.3) where  , fixed at the quasi-homogeneous unperturbed equilibrium m m , is 

given by (26.1)): 
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    (28.7) 

 

29. The nonlinear neighboring state  

 

In this section we shall investigate the variation properties of the nonlinear entropy (28.6), 

pertaining to the collective configuration. We introduce the mode (28.1) into (28.6) and perform the 

volume integration: 
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We look for the extreme of Sp  with respect to variations of 1,2 : 
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These equations admit the solution 1  2  0, which corresponds to homogeneous plasma, and 

the solution 

  ,
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which exists only for m  0  or k 2  km
2 . 

To see whether the solutions correspond to a minimum or a maximum of Sp  we calculate 

the second order derivatives: 
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The solution 1  2  0 is a maximum of Sp  for m  0  and a minimum form  0 . In the latter 

case an isolated collective equilibrium, although homogeneous, is not expected to be stable. In contrast, 
the inhomogeneous equilibrium described by (29.3) is a maximum of Sp  as can be seen from the sign 

of the second variation: 
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Thus, for m  0 , the homogeneous equilibrium is unstable, but the system builds up a finite charge 

density, which stabilizes nonlinearly at the level (29.3). 
The maximum value of Sp  corresponding to (29.3) is given by the inequality: 

.
~48

1
4

2,

8
2

22max, 



m

mp
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k

V
S 


         (29.6) 

Sp,max  can be maximized further with respect to k : 
Sp,max

k
 4k 3 2k 4  3k 2km

2  km
4  0.         (29.7) 

Besides the trivial solution k  0 one has the two solutions 

k1
2  km

2 , m  0,        k2
2 

km
2

2
, m  1.        (29.8) 

The first solution corresponds to the marginal point and to a minimum of Sp,max k , while the 

second solution is an absolute maximum of Sp  corresponding to a large amplitude mode with a wave 

number k2  away from the marginal point. This mode will be interpreted in section 30 as the 

manifestation on the average of large amplitude fluctuations of the marginal state towards the linearly 

unstable side of the marginal point. 
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30. Probability distribution of charge fluctuations around the marginal equilibrium 

 

The collective configuration can exchange electric charges with the medium and therefore the 

amplitude of the collective quantities is not fixed but fluctuates. In contrast the infinite medium, 

considered as an infinite reservoir of electric charges, remains practically undisturbed by the charge 
exchange (looking at the complete expression for Sb  (25.15), one can see that in the thermodynamic 

limit N  , a finite variation of  int  can be compensated by an infinitesimal variation of 2~ ). We 

wish to study the amplitude fluctuations of the charge density of the collective subsystem with entropy 
Sp 1,2 , (29.1). For this purpose we have to consider only the volume element   in the 1,2  

space that is accessible to the electrostatic configuration of the subsystem with the entropy Sp 1,2 . 
We apply the well-known relation 

 .21 ,pSe            (30.1) 
Then, the probability p  of finding the subsystem with the amplitude in d1d2  at 1,2  is given by 

the expression (here we follow the same line as in ref. [34]): 
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We are interested in the mean square value  2  1/  1
2 2

2  of the potential. Recalling (29.1) 

and performing the change of variables 1  t  z 2 1/ 2
,2  z  with d1 d2  1/2  t  z2 1/ 2

dz dt  one 

has 
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where  
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Applying the equality t t 2   t  /2  2 /4  the integrals in (30.3) can be expressed in 

terms of the error function as 
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where erfc z  2 /1/ 2  exp(z2

z



 ) dz . 

One has three cases: 
1)-m  0,  0; noting that 
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is a very large number because   is large, one can apply the asymptotic representation of the error 

function [36] 
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and obtain (recall (26.15) 
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In the special case of a Maxwellian plasma with the temperature T  for all species one has 
m  11/ k2D

2  where Tnq s
s

sD /4 22    (see (26.13) and 
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This relation is comparable with that derived by Taylor and McNamara [37] for the thermal 

fluctuations of a two dimensional plasma. 
2)-m  0,  0 ; this case concerns the fluctuations at the marginal point m  0. The integrals in (30.5) 

are elementary and one obtains 
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These are Poisson-like fluctuations whose mean square value depends on the inverse of the square 
root of the number of particles Ns  ns . 

3)-m  0,  0; in this case  / 21/ 2  tends to minus infinity and (30.5) becomes 
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This is the same expression (29.3) for the square of the potential of the nonlinear neighboring 
equilibrium associated with a maximum of Sp 1,2 . This equilibrium is now interpreted as the 

average of large fluctuations in the region of negative m  where the system is linearly unstable. 

For the numerical evaluation of the fluctuation amplitude one must now calculate the coefficient 
km,2

2  according to the expansion (28.2). In this connection it is worthwhile to recall that the equilibrium 

relation m m , which is at the base of (28.2), follows from the static solution of the Vlasov equation, 

which involves the potential m  through the constants of motion. We assume that the zero order 

equilibrium is quasi-homogeneous, that is we shall consider the limit m  0. This implies that for 

calculating the constants of motion, the linear approximation is sufficient. However the relation 
m m  is non-linear (see the examples in the next chapter) and the fluctuation   brings the system 

outside the Vlasov-Poisson  equilibrium, from the collective charge density m  to the charge density 
 m m   m m  nl , as we have noted in section 28. So the fluctuation  , which can be 

much larger than m, is not a solution to the Vlasov equation supplemented by Poisson’s equation (the 

system of equations (26.9) and (26.10)). The probability of the fluctuation amplitude   around the 
Vlasov (collective) equilibrium m is given by (30.2) where the entropy Sp  is determined according to 

the non-linear reactive process described above, which is not contained in the Vlasov model. The 

probability distribution of the amplitude fluctuations (30.2) describes an intrinsic background of 

thermodynamic fluctuations near the stable side of the marginal point (thermal fluctuations) or near the 

linearly unstable side of this point. We shall see in section 35 how the electrostatic force arising from 

the fluctuating electric field can be compensated by fluctuations of the pressure. 
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The picture above does not preclude at all the subsequent interactions of the basic fluctuation 

background with collective modes; at the contrary the thermodynamic fluctuations can even be the 

necessary seed for the excitation of collective modes. In a subsequent dynamic process the collective 

modes will eventually reach a saturated fluctuation level as a consequence of non-linear dynamic 

interactions between them. These purely collective fluctuations should not be confused with the 

intrinsic background of thermodynamic fluctuations considered above. 

 

CHAPTER 10: Thermodynamic fluctuation levels: examples 

 

Summary: The scheme outlined above for the calculation of the thermodynamic fluctuations can be 

applied to the large class of the so-called “reactive” instabilities characterized by absence of 

dissipation, algebraic dispersion relations (in the slab approximation) and existence of bifurcation 

points. This class includes unstable modes important for thermonuclear machines, as the ion or 

electron temperature gradient modes (ITG or ETG), the trapped electron modes (TEM), the flutes 

modes as well as instabilities not involving the magnetic field as the two-stream instability. A review 

of the reactive instabilities relevant for magnetic plasma confinement can be found in the book of 

Weiland [38]. 

In this chapter we shall limit ourselves to illustrate the method with two simple examples, namely 

the case of the two-stream instability where the distribution function depends on one constant of 

motion (the energy) and the case of the flute modes where the distribution function depends on two 

constants of motion. In the more physically interesting cases of the thermodynamic fluctuations of 

reactive drift modes one has a third constant related to the motion parallel to the magnetic field. We do 

not consider the drift modes here. 

 

31. Thermodynamic fluctuations in reactive purely electrostatic systems 

 

As observed in section 26, a typical example of reactive electrostatic instability is the two-stream 

instability that arises in the presence of two equal warm electron beams described by the one-

dimensional distribution function, symmetric in velocity space, formed by the sum of two Maxwellians 

centered at the velocities u  respectively. A characteristic feature of this instability is that there is 
practically no dispersion, the linear dielectric constant m is negative in the unstable region and the 

phase velocity of the unstable waves is exactly zero 

In accordance with the procedure of section 28 we start from the Vlasov stationary equilibrium 
characterized by the function m  m m  defined by the equality 

m m  qs fs
s

  s dv ,          (31.1) 

where    msss qvm   22/1  

We assume that the functions fs  can be expanded in powers of m provided that m is sufficiently 
small. So one can also expand the function m m    around a vanishing value of m, obtaining up 

to second order 
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The coefficient km
2  becomes positive for values of 2u  above a critical value 2uc  and the system 

becomes unstable for k 2  km
2 . 

Once the coefficients km
2  and km,2

2  are known one can apply the formulas of section 30 for 

calculating the mean square amplitude of the thermodynamic fluctuations. On the unstable side of the 

marginal point this is given by eq. (29.3) or (30.11): 
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This expression is maximum for k 2  km
2 /2  and also, as shown in section 29 (eq.(29.8)), 

corresponds to an absolute sharp maximum of the entropy. Summing up with respect to the two signs 
of k  one has that the most probable mean square value of   is given by the expression 
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which corresponds to the following mean square value of the electric field: 
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As a curiosity let us compare these results with the solution of the one-dimensional Poisson’s 

equation with the charge density given by (31.2) 
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from which follows the first integral  
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where C  is an integration constant. A second integration leads to the expression 
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We look for a periodic solution, regular everywhere for the real values of x . Then F   should 

admit another zero F 2  0 such that F   0 for 1  2. This occurs when [39] 

  g2
3  27g3

2  0,           (31.9) 

where g2  km
4 /12,g3  km

6 /63  km,2
4 C / 9 16  . 

The condition (31.9) is verified for  
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where the subscript M  indicates the maximum value of d /dx 2
. One has a family of solutions 

depending on C  whose squared electric field has the upper limit (31.10), which is the same as the 

maximum mean square value (31.5) of the electric field of the thermodynamic fluctuations. The 

solutions are expressed in terms of the Weierstrass function (x,g2.g3) as follows: 
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The solution oscillates with a wavelength 2 /km  (see [35]) where   depends on C  and   for 

C  0 (linear limit). When C  increases the wavelength also increases, corresponding to the unstable 
modes k 2  km

2  of the thermodynamic treatment and to the non-linear region. However   oscillates 
between amplitudes 1 and 2 with opposite sign and with 1  2 . The amplitude of the oscillation 

is of the same order of (31.4) for k 2  km
2 /2  but it does not exhibit the sharp maximum of the 

thermodynamic theory predicted by (31.3) for k 2  km
2 /2 . Instead it grows steadily tending to oscillate 

between 2km
2 /km,2

2  and km
2 /km,2

2  while approaching the infinite wavelength for C  4 /3. 

 

32. Thermodynamic fluctuations of flute modes 

 

32.1-The constants of motion 

 
We consider a inhomogeneous plasma, but with uniform temperature Te  Ti  T , situated in a 

constant magnetic field 

B  0, 0, B  and with ions and electrons subject to a gravitational force msgs


e x . 

The constant gs  simulates the effects of curvature of the magnetic field, i.e. gs  vth,s
2 / Rc  where Rc  is 

the radius of curvature, vth ,s  is the thermal velocity of species s  and ge  migi / me . The gravitational 

force gives rise to a drift vDs  gs / s  where s  qs B / msc  is the cyclotron frequency. We consider 

modes   k exp iky  it   and operate in a reference system K  moving with the phase velocity 
 / k  of the wave, so that y  y t /k, v y  v0y  /k  where v0y  is the velocity in the laboratory 

system. 
We recall that the problem of calculating the function m  m m  is a linear Vlasov problem 

because the m,m  are arbitrarily small. Therefore it is sufficient to calculate the equations for the 

orbits in linear approximation. These equations in drift approximation are given by the equalities 

 

   
,cos

B

yE
csvv y

x


          ,sinsin

0
 


 

s

y x
B

v
dsyE

B

c
s

v
x    

  ,sin
k

vsvv Dy

           .coscos y
v

s
k

vs
v

y D 








 


     (32.1) 

Here   is the gyration angle and     vDk . 

It can be verified that the quantity 
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satisfies the equality d / ds  0 and therefore is a constant of the motion described by (32.1). The 

value of   is obtained after introducing (32.1) in (32.2) and putting s  0, 
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We now consider the quantity 
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By introducing the equations of the orbits (32.1) into (32.4) one obtains 
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where vx  v x 0 , vy  v y 0 , x  x 0 , y  y 0 . 
For evaluating the integral we use the well-known relation 
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(32.6) 

After averaging over the rapid oscillations at the cyclotron frequency   only the term l  0 

contributes to the l-summation. It is then easy to show that 
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Thus 
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does not depend on s and is a constant of motion. 
With the help of (32.6) we can evaluate the integral in the expression for the constant of motion   

(32.3). 

As above, only the term l  0 contributes to the integral 
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(The integration involves the limit of exp(is(vD  /k))  for s , which does not exist; 
multiplication of the integrand by the “measure”  sexp , where   is an arbitrarily small positive 

number, resolves the difficulty). In (32.9) the terms with l, l  0 can be neglected, as they will vanish 
after the subsequent integration in velocity space with respect to  . So the expression (32.3) for   

becomes 
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32.2-The form of the distribution function 

 
From the constancy of   and   it follows that any function f  s , s   satisfies the Vlasov 

equation under the same approximations considered above, 
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The functional dependence f  ,  is fixed by the requirement that f  be consistent, at zero order in 

k, with the following expression (in the moving frame of reference K ) 
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where   1/ vth
2  and 1 measures the characteristic length of the density inhomogeneity. Then f  is 

fixed as 
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Thus, recalling (32.8) and (32.10) one has 
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These expressions are substituted in f ,  and the resulting expression is expanded up to second 

order in k. We can put y  0, for simplicity, and   bkvJ
~

1/2
0   where   2/2/1
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one has 
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(32.16) 

Here a term  /k 2
 has been absorbed in the normalization constant N . We can neglect vD  in the 

parenthesis vy  vD 2  because in the subsequent integration in velocity space it gives rise to the 

negligible term kvD /1. Then the argument of the exponential reduces to v
2 . Terms of the form 

/
~
bv y  do not give a contribution to the integration in velocity space and 

vD  /k 1/ 1,vD
2 1 are neglected. We maintain only terms linear in b

~
. 

We recall that, while the function m m  is calculated assuming a linear approximation for the 

equation of the orbits in the procedure for the solution of Vlasov equation in view of m  0, the 

quantity k, which describes a fluctuation outside the Vlasov equilibrium, can be taken also at higher 

orders because it is not required to be a solution of Vlasov equation  (32.11) at second order (see 
sections 28-30). Note also that the function m  m m  is evaluated with m  0 and therefore the 

normalization constant N  must be calculated in this limit. For a generic k , one has up to second order 
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where   22

0

2 2/,exp  



  kbndvvvN . 

 
32.3-The coefficients km

2  and km,2
2  

 
We are now in position to determine the two basic coefficients km

2  4dm /dm  and 
km,2

2  4d2m /dm
2  (see eq. (28.2). The coefficient km

2  determines the marginal equilibrium through 

the relation m 1 km
2 /k 2  0  (see eq. (27.2)) and km,2

2  determines the mean square average of the 

thermodynamic fluctuations according to eqs. (30.10) and (30.11). 

We assume equal temperatures for ions and electrons, thus 
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We assume zero Larmor radius for the electrons, be  0, while b  bi  k 2 /2 ii
2  k 2i

2 /2 where 

i  is the Larmor radius of the ions. 

The charge density of the electrons (be  0,q  e ) at first order is then 
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and that of the ions (b  0,q  e) 
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After some algebra one finds the following expression for the total charge density 1 1e 1i at 

first order 
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It will turn out that vD  /k , so the terms in vD  are negligible. In this limit the linear dielectric 

constant becomes (noting that x /Rc 1 and then 12 gxe  ) 
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where  
mmkkkmk   ,1

2 /4  with m,m  0. One obtains, in the limit k 2D
2 1 implied by the 

second transition in (32.21), the dispersion relation of the flute modes with finite Larmor radius 

correction (see e.g. [38]). 

We now consider the charge density at second order: 
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Neglecting terms vD  /k  the coefficient km,2
2  8 /m

2  2e  2i m
 is written as 
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where km  and m satisfy the dispersion relation (32.21). According to this relation the instability exists 

in the following range of Rc  
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The lower limit arises from consistency with m
2  km

2 vD
2 . The upper limit is the bifurcation point 

determined by m  0, m /m  0: 
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The consistency with i km 2  1  implies that Rc ,m  is very large, i.e. Rc  is precisely near the 

boundary Rc ,m    between favorable and unfavorable curvature where Rc  changes sign trough 

infinity. 

Taking into account the relations above one finds that the first three terms of (32.23) are negligible 
with respect to the last term in view of the inequality vDe  /k . Thus only the last term survives: 
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Insertion into (30.10) gives the fluctuation level for the mode k
m
 at the marginal point m  0: 
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Insertion into (30.11) with m  1  gives the large amplitude of the fluctuating single 

k  km / 2 1/ 2 mode corresponding to the absolute maximum of the entropy in the linearly unstable 

region: 
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where ipi mne /4 22
,   . 

The example above serves as illustration of the method for calculating the amplitude of the 

thermodynamic fluctuations of the charge density in reactive electrostatic systems. In practice the 

simple situation considered above is modified by a number of important effects, in particular by the 
presence of magnetic shear, by effects related to the propagation parallel to the magnetic field ( k||  0, 

drift modes, electromagnetic interchange modes) and by the finite toroidal geometry of practical 

devices (see e.g. [38]). 
 

CHAPTER 11: Connexion between the electrostatic entropy and the Lagrangian description of 

the particle motion 

 

Summary: In this chapter the relation between the electrostatic entropy and the Lagrangian 

description of motion of the high temperature system of Coulomb interacting particles is investigated. 

The global system is considered as isolated and the motion is constrained by the macroscopic 

condition that the total electrostatic energy U  of the interacting particles belonging to different volume 
elements V j  is fixed. The quantity U  is the mutual electrostatic energy of the system of particles 
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when the charges of the particles are “smeared out” in V j . Thus the Lagrangian contains the term U  

multiplied by a Lagrangian multiplier  . 

Proceeding as in the magnetic case treated in chapter 7, we look first for a linear relation between 

the canonical average of the Lagrangian and the electrostatic entropy, as well as between their 

variations. 

The canonical average involves the consideration of a coarse-grained system partitioned into 
volume elements V j  inside which the positions 


x n and 


x n  of particles n and n  at a given instant of 

time are not distinguishable. The relation with the entropy arises from a term that expresses this fact. 

The Lagrange multiplier   turns out to be related to the degree of coarse-graining. 

As a consequence of the macroscopic constraint imposed on the system by fixing U  and of the 

relation of   with the coarse-graining, the Lagrange equations of motion imply the equations of 

motion at the individual particle level and, at the same time, that the momentum of the global system is 

constant in time and that the system is electrically neutral globally. 

Under the hypothesis that the canonical average of the first variation of the Lagrangian is equal to 

its time average, one finds equivalence between the Hamilton’s action principle and the vanishing of 
the first variation of Sp  with respect to adiabatic variations. 

 

33. Coarse graining of the high temperature system of Coulomb interacting particles 

 
We consider a system of N p  particles interacting through a Coulomb potential 
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Let us introduce a partition of the volume V  of the system of particles into N  volume elements 
V j  each containing, at a given instant of time t  t0, a large number of particles N j . We assume that 

the temperature is so high that the Debye length D  T /4ne2 1/ 2
 is larger than the edge l  V j 1/ 3

, 

in spite of the fact that V j  should be sufficiently large for containing many particles. Thus the 

particles in V j  can be treated as effective free particles and their number, as well as the total electric 

charge can be considered as fluctuating at random. Applying the partition above the expression (33.1) 
at t  t0 takes on the form  
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The coarse-graining consists in the approximation of considering as indistinguishable the positions 
xn  and x n  of particles in the same V j . We express this by taking in the Fourier expansion of 



x n 


x n 

1
 only the wavelengths larger than 2l . The k -summation is then cut-off at kM   / l . The 

positions of the particles in V j  can be identified with any chosen value X j  in V j , for instance with 

the average 
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In particular one can no longer distinguish between n  n  and n  n  in the same V j  because the 

concept of a point particle looses its meaning in the coarse-graining and one has to deal with a 
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“smeared out” charge rather than with point charges. In this point of view W t0  can depend only on 

the 

X j  and on the total charge 



jN

n
ne

1

 in each V j . The Fourier representation of W t0  is then the 

following: 
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It is convenient to separate the terms with j  j  from the terms j  j , 
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where 
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In this expression one has 



X j 


X j  l  and even 




X j 


X j  l for the majority of the terms of the 

j  j  summation. It follows that the cut-off at kM  is ineffective in (33.6) because the contribution of 

terms with k  kM  is sensible only for 



X j 


X j  l , which is not the case of (33.6). So kM  can be 

replaced by  and one obtains 
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 (33.7) 

Let us divide N j  in an average part and in a fluctuating part jjj NNN
~ . Correspondingly the 

charge density can be divided in a collective part and in a fluctuating part 
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Here N j 1 j  N  is a set of numbers whose specification determines 




X j  and the collective 

electrostatic charge density. By substituting (33.8) in (33.5) one obtains 
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where 
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The quantity U  can be expressed in terms of the collective electrostatic energy   and of the 
interaction energy int . Indeed, putting 
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one has, neglecting terms quadratic in ˜ j   

  ,
~

2 int0 tU            (33.11) 

where 
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The quantity U  is interpreted as the mutual electrostatic energy of the system of particles when the 
charges of the particles are “smeared out” in V j . 

 

34. Equivalence of the first variations of the electrostatic entropy and of the canonically averaged 

Lagrangian with respect to adiabatic variations 

 

We shall study the motion of the particles under the constraint that the electrostatic energy U  is 

fixed. In particular the value of U  is fixed to the average int

~
2U  calculated with the canonical 

distribution (25.5). The Lagrangian appropriate for the description of the motion is the following 
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         (34.1)  

where W t  is given by (33.1), U t  by (33.7) (with t0  replaced by t ), the 

x n t  and the 


X j t  are 

time dependent and   is a Lagrange multiplier related to the constraint that U  is fixed. 

The parameter   should be determined from the constraint U U  after solution of the equations of 

the constrained motion, but one can do the reverse and determine U  after a proper choice of  . We 

show presently that, with a proper choice of  , one has a linear simple relation between the canonical 
average of the Lagrangian at a fixed time t  t0 and the electrostatic entropy, a fact that will be relevant 

for connecting the variation of the Lagrangian with that of the entropy. 
The sum of the single particle kinetic energy K  1/2  mnvn

2

n

  is considered as fixed by taking, for 

instance, the average with a Maxwellian distribution with fixed temperature. The collective quantities 

are averaged with the canonical distribution (25.5): 
L t0 K W t0  U t0 ,          (34.2) 

where, recalling (33.8) and (33.11), 
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Recalling (25.10) and (25.12) one has 
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Insertion of (34.4) into (34.3) (replacing the j-summation with the integral) gives 
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We note that the term involving the entropy arises from the term in (34.3) that depends on kM  and 
expresses that the positions of the particles in the same V j  are undistinguishable. 

Let us put 
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1 
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 ,   1 1.          (34.6) 

Then 
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Finally, recalling (25.11) and (26.1), one obtains 

   ,
2 int110  S

N
KtL           (34.8) 

where S  Sp  Sb  and Sb  int / . 

The variation of the collective quantities with   fixed (isothermal variations, see section 26) gives 
   .int10   StL           (34.9) 

The condition L  0 implies S  int  0. In the case of adiabatic variations (in the sense of 

section 9) one has   4 /km
2   around the Vlasov equilibrium m  4 /km

2 m . Then one has 

separately S  0,int  0 (section 26). It follows that L  0 and Sp  Q  0 are equivalent with 

respect to reversible adiabatic variations. The significance of this relation will be clarified in the next 

section. 

To conclude this section let us evaluate the Lagrange multiplier   given by (34.6). In the limit 
V  the expression (34.6) for 1 becomes 

 
,

2
sin

2

1

0 0
2

2

2

2

2

2

1   




MM

M

k
Mmm

k

k

m Vkk
ddk

N

Vk

kN

k 





       (34.10) 

where kM   / l . Introducing the characteristic length of the Vlasov equilibrium    /km  one has the 

inequality 


1 

1

2

l










2

1.           (34.11) 

We see that the parameter 1, although finite, is very small. It follows that   is very close to –1 but 

not identical to it. 
 

35. Particle motion in the electrostatic system with the collective constraint and the relation of 

the first variation of the entropy to the action principle 

 

We now proceed to the derivation of the equations of the constrained motion according to the 

Lagrangian (34.1). The application of the Hamilton’s action principle gives 
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and in view of the arbitrariness of the 

x n t  (vanishing at t1  and t2 ) one obtains the equation of 

motion for the generic s-particle: 
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           (35.2) 

The following equalities will be applied: 
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Indeed, we start by showing the relation 
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where N js
 is the group of particles that contains the s-particle defined by the position 


x s t0  in V js

. 

For simplicity of notation we put js  S,

X js



X S , N js

 NS, V js
 VS . We also put Qj  en

1

N j

 , so 

that the expression (33.7) for U  (where t0 is replaced by t ) becomes 
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One has 
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Applying these relations, the equation of motion (35.2) for the s-particle takes the form 
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For seeing the meaning of this equation let us sum up with respect to all the NS  particles in VS  at 

the initial time t0 
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The following equality holds: 
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Indeed, one can write 
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The first term in the right hand side vanishes in view of the antisymmetry of the term under the sum. 
The last term is formed by summations over groups of particles that are contained at the instant t0 

inside volume elements with j  jS . In the coarse-grained approximation one can replace 

x s and 


x n  

with the averages 
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X S  and 


X j  in VS  and V j  obtaining 
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Recalling from section 33 that 11    one arrives at the relation 



Entropy 2009, 11                            

 

 

218

 .1
1

SS

N

s
ss XEQv

dt

d
m

p  


          (35.12) 

We know from section 34 that 1 is close to 0 but not identical to it and then (35.12) would imply 

that the time derivative of the total momentum of the system is close but not identical to 0. If we want 
to eliminate the unphysical dependence on the coarse-graining described by 1  while remaining 

consistent with the result above, we are forced to admit that the two members of (35.12) must vanish 

separately 

,0
1




pN

s
ss v

dt

d
m


   0SS XEQ


         (35.13) 

It follows that the total momentum is constant in time and that the collective system is globally 

electrically neutral. 
The reasoning above leading to (35.13), can be repeated for any group NS  of particles in any VS  at 

any time t  t0, so we conclude that the collective system is always described by eqs.(35.13). 

Using (35.13) in (35.7) one obtains the equation 

 ,ssss xev
dt

d
m

             (35.14) 

which describes the motion of the s-particle in the field of all other particles. The solution of this 

equation has been treated by Pines and Bohm [2] in the case of an electron gas, assuming that phase 

factors, which depend on the position of the particles, average out to zero, due to the randomness of the 

positions (the so-called random phase approximation). It has been shown by Pines and Bohm, that this 

approximation holds for thermal plasmas. In this way one can derive from (35.14) the plasma 

oscillations at the frequency  p  4ne2 /m 1/ 2
. 

Deviations from electric neutrality arise in the presence of fluctuations of the electric field around 

the global neutral equilibrium. We shall see that the electrostatic force associated with the fluctuation 

of the electric field can be compensated by the fluctuation of the pressure. 

The pressure gradient is introduced through an inhomogeneous term in the action principle, as in 

section 22: 
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where 

n

X j  N j /V j  is uniform in V j . The coefficient 1 in the right hand side has been chosen in 

order that the pressure force be of the same order of the electrostatic force, consistently with (35.12). 

Following the same procedure as above one arrives at the equality 

      ,0 SXSS XPXEX
S


          (35.16) 

where 




X s  1/VS  es

s1

NS

 . Taking P  P0  P , where P0  corresponds to the uniform neutral 

equilibrium and P  is the pressure fluctuation that balances the electrostatic fluctuating force, one has 

  .PX
Ss XXS  


          (35.17) 

In the case of fixed temperature considered above one can write P  Tn  for the Maxwellian 

plasma and from (35.16) one gets (noting that 




X S  is uniform in VS ) 
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         (35.18) 

Introducing the average charge in VS , e  1/NS  es

s1

NS

  one arrives at the relation 

,
S

S

N

N

T

e 
             (35.19) 

which shows that the fluctuation   is related to the fluctuation of the number of particles in VS . 

We finally return to the basic relation (34.9), 

    ,0int10   StL           (35.20) 

and note that, under the hypothesis that the average L t0   is equal to the time average 

1/ t2  t1   L dt
t1

t2

 , (35.20) asserts the equivalence between the Hamilton’s action principle and the 

vanishing of the first variation of Sp  with respect to adiabatic variations (which entail also the 

vanishing of int , see section 26). Indeed the variation of the action  
2

1

0
t

t

dtL , as well as the 

variations Sp  and int  can be considered as produced by the same primary variations  txn

  

(vanishing at t1  and t2 ) when Sp  and int  are generated by variations   and   defined by the 

equalities 

 

 ,     


 , with   km

2 /4 ,       (35.21) 

where in turn 

 is produced by all the 


x n t  averaged in time 
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As in section 24, the 

x n t  are interpreted as variations of the positions of the particles in V j  with 

respect to their positions 

x n t0 . 

It is worthwhile to note that the condition (35.20) holds also in the case of L t0  equal to the 

variation (35.15) of the action provided that the pressure is vanishing at infinity and the displacements 






X j  are incompressible. Indeed one has 
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 (35.23) 

(The fact that the right hand side of (35.15) is vanishing does not interfere with the variation procedure 
which requires the vanishing of the action with respect to each single 


x n t ; also, in spite of the 

condition  

 0 , the 


x n  remain essentially arbitrary in view of the very large value of Np ). 

We have seen, among other things, that the descriptions at the particle level, at the collective level 
and at the coarse-grained level are reduced to the variation properties with respect to the variations 


x n  

of one single mathematical entity, the Lagrangian, which adapts flexibly to the different levels of 

description. 
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