
Entropy 2009, 11, 713-747; doi:10.3390/e11040713 

 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Review 

The Maximum Entropy Formalism and the Prediction of Liquid 

Spray Drop-Size Distribution 

Christophe Dumouchel 

CNRS UMR 6614–CORIA, Université et INSA de Rouen, Avenue de l’Université, B.P. 12, 76801 

Saint-Etienne du Rouvray, France; E-Mail: Christophe.Dumouchel@coria.fr 

 

Received: 27 August 2009 / Accepted: 26 October 2009 / Published: 2 November 2009 

 

Abstract: The efficiency of any application involving a liquid spray is known to be highly 

dependent on the spray characteristics, and mainly, on the drop-diameter distribution. There 

is therefore a crucial need of models allowing the prediction of this distribution. However, 

atomization processes are partially known and so far a universal model is not available. For 

almost thirty years, models based on the Maximum Entropy Formalism have been proposed 

to fulfill this task. This paper presents a review of these models emphasizing their similarities 

and differences, and discusses expectations of the use of this formalism to model spray 

drop-size distribution.  

Keywords: maximum entropy formalism; liquid sprays; drop-size distribution;  
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1. Introduction  

A liquid spray is defined as a flow of individual droplets evolving in a surrounding gaseous medium. 

Each droplet has its own diameter and velocity. Many industrial processes or domestic applications 

involve liquids as sprays rather than as continuous flows (field treatment in agriculture, drug delivery in 

medical therapy, mixture preparation for combustion purposes, coating processes, fire extinction, 

atmosphere cleaning, powder fabrication…[1,2]). Whatever the process or the application involving a 

liquid spray, its efficiency depends on the spray characteristics, among which droplet-size distribution 

and velocity distribution are the most important ones. Therefore, models to predict these characteristics 
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are very much required in order to control the spray production and improve the efficiency of 

applications involving a spray.  

The common process to produce liquid sprays consists in ejecting a liquid flow into a gaseous 

environment that can be at rest or in motion. As soon as the liquid flow issues from the nozzle, 

deformations appear on the liquid interface. These deformations grow in space and time until the liquid 

flow cannot sustain them anymore and disintegrates into a cloud of droplets. This flow deformation and 

disintegration is designated as the atomization process. Two major factors control atomization 

processes, namely, the presence of initial disturbances on the liquid-gas interface and mechanisms that 

allow some of these disturbances to grow. The characteristics of the resulting spray depend on both 

factors. Theoretical analyses have been carried out on the initial distortion and disintegration of liquid 

streams [3,4]. These approaches are based on the determination of unstable waves that grow on the 

liquid-gas interface and therefore dominate its breakup. Coupled with a breakup scheme, a theoretical 

mean drop-diameter can be deduced from the characteristics of the dominant wave. Despite these 

approaches have reported important information in many situations, they can predict a limited number 

of spray characteristics and are applicable in a restricted domain. For instance, high-energy atomization 

processes are still untouched by theoretical approaches. On the other hand, experimental investigations 

conducted on liquid atomization processes reveal the complexity of this phenomenon that involves 

liquid and gas turbulence, interfacial instability, liquid cavitation, gas and liquid interaction… [5]. Thus, 

liquid atomization processes are still partially understood which explains the absence of a universal 

model that would allow the prediction of liquid spray characteristics.  

Babinski and Sojka [6] classify the models to predict spray drop-size distributions in three groups, 

i.e., the empirical method, the discrete probability method and the maximum entropy method. The 

empirical method consists of determining a mathematical form that fits the experimental data collected 

for a wide range of operating conditions. This technique has produced many empirical mathematical 

spray drop-size distributions. Among others, we can quote the log-normal, upper-limit, root-normal, 

Rosin-Rammler, Nukiyama-Tanasawa and log-hyperbolic distributions [1,6-8]. A priori, it is not 

possible to know which of these distributions will be better to reproduce a given situation. Of course, 

their ability to fit spray drop-size distributions is directly a function of the number of parameters these 

distributions contain. This number varies from two to four and can reach eight for empirical joint  

diameter-velocity distributions (see [8] for instance). 

The discrete probability method postulates that polydispersion in liquid sprays is due to initial 

condition fluctuations [6]. A deterministic model as those mentioned above [3,4] is used to predict a 

specific diameter for a given set of initial conditions. The polydispersion of the drop-size is obtained by 

describing the fluctuating initial conditions by a continuous probability density function (input pdf). The 

dispersion methods essentially define a transform from this input pdf to the drop-size distribution pdf 

using the breakup model as a transform function. This approach is very attractive but it remains difficult 

to apply as the problem of the determination of the drop-diameter distribution is replaced by the one of 

the determination of the initial condition fluctuation distribution. Furthermore, for many atomization 

processes and particularly those involving high energy, it is believed that the origin of polydispersion is 

not solely related to fluctuations of initial conditions. 



Entropy 2009, 11            

 

 

715 

For almost thirty years, models based on the Maximum Entropy Formalism (MEF) have been 

developed to predict liquid spray drop-diameter and velocity distributions. MEF is a method of 

inference allowing the determination of a probability density function from a limited amount of 

information. This information specifies properties that the distribution must satisfy and comes from a 

partial knowledge of the distribution sought. Among the distributions that satisfy the available 

information, the MEF states that the most likely or least biased solution is the one whose statistical 

entropy is a maximum. MEF is often identified with statistical thermodynamics but that identification is 

too limiting. It has found numerous applications in engineering and sciences. Two points motivate the 

application of this formalism to formulate liquid spray drop-diameter and velocity distribution models. 

First, liquid atomization is a non deterministic process and may not be modeled by conventional 

deterministic methods. Second, liquid spray drop-diameter and velocity distributions are mathematically 

represented by probability distributions. Application of MEF to determine liquid spray characteristics 

can address two questions, namely, can we predict drop-size and velocity distributions if partial 

information (obtained either from a model or from an experiment) is available, and, what is the 

minimum information required and what is its form to predict a relevant drop-size and  

velocity distributions? 

This paper present a review of the models based on the MEF to predict drop-size distributions. 

Section 2 recalls some mathematical definitions associated to liquid spray drop-size distributions. 

Section 3 summarizes the MEF as it is used in the formulation of drop-size distribution models. The 

main section of this paper (Section 4) describes the different approaches based on the application of the 

MEF and the paper ends with a summary and conclusions.  

2. Mathematical Representation of Spray Drop-Size Distribution 

Paloposki [9] provided an accurate and complete mathematical definition of spray drop-size 

distribution differencing the temporal and spatial descriptions. As a first approach, the introduction of 

mathematical concepts to describe spray drop-size distribution does not require this differentiation. On 

the other hand, it becomes essential when dealing with diagnostics dedicated to the measurement of this 

spray characteristic. The definitions presented in this section are commonly encountered in the  

literature [1,2]. 

Several types of drop-size distribution can be defined [10]. Among them, the number-based and 

volume-based drop-diameter distributions are those that are commonly used in the literature. Let us 

consider a spray containing NT droplets. Each droplet is assumed spherical and therefore fully 

characterized by a diameter D. (The assumption of sphericity is maintained throughout the paper except 

otherwise mentioned.) The droplet diameter ranges in the interval [Dmin; Dmax] where Dmin and Dmax are 

the minimum and maximum drop diameter, respectively. This interval is divided into nc classes  

[Di – Di/2; Di + Di/2] where Di and Di are the median diameter and the width of class i, 

respectively. The droplets are distributed in this class series according to their diameters and it is 

assumed that all droplets belonging to a given class i have the same diameter equal to the class median 

diameter Di. This assumption is reasonable provided that Di << Di, which is usually the case. By 

introducing Ni, the number of droplets in class i, it becomes: 
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Similarly, the total volume of liquid VT contained in the spray and the liquid volume Vi contained in 

each class are introduced. The following equation can be written: 
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 (2)  

The spray drop-size distribution is characterized by the number-fraction distribution Pni and the 

volume-fraction distribution Pvi defined by: 
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Considering that the drop diameter is a continuous variable, continuous number-based drop-size 

distribution fn(D) and volume-based drop-size distribution fv(D) are introduced: 
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 (4)  

Equations 1 to 3 indicate that the sums Pni and Pvi for i varying from 1 to nc are both equal to 1. 

Consequently, according to Equation 4, the distributions fn and fv are both normalized. However, it is 

important to mention here that, despite the fact that the distributions Pni and Pvi show similar 

mathematical properties, only the distribution Pni is a probability distribution (it expresses the probability 

of finding a drop of a given diameter). By no means Pvi can be associated to a probability: it expresses a 

volume-fraction. In consequence, strictly speaking, only fn is a probability density function. To illustrate 

the difference between the number-fraction and the volume-fraction distributions, one can estimate the 

change produced by adding one supplementary droplet with diameter Dk (class k) in the set of NT 

droplets. Now the total number of droplets is NT + 1, and, for i ≠ k, Pni = Ni/(NT + 1) and 

Pvi = Vi/(VT + Dk
3
/6). We see that the modification of the number-fraction distribution is independent 

of any characteristic of the added droplet whereas the modification of the volume-based distribution 

depends on the diameter of this droplet. In the number-based representation, each droplet is considered 

as an event and has the same weight whereas in the volume-based representation, the contribution of 

each droplet is not equivalent but is weighted by its volume. 

A mean drop-diameter series Dkl standardized by Mugele and Evans [11] is commonly used to 

characterize liquid spray drop-size distributions. This series is defined by: 
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From a mathematical point of view, the indexes k and l can take any real values. The most 

encountered mean diameters are listed in Table 1. As pointed out by Sowa [10], the mean diameter D10 

corresponds to the arithmetic mean of the number-based distribution fn and D43 to the arithmetic mean 

of the volume-based distribution fv. Often encountered in the literature, the Sauter mean diameter D32 

corresponds to the diameter of the drop that has the same volume to surface area ratio as the  

entire spray.  

A given spray can be indifferently described by the number-based or by the volume-based drop-size 

distribution. Therefore, these two distributions must be related to each other. Making use of Equation 5, 

it can be demonstrated that: 
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Table 1. Commonly encountered mean drop-diameters. 

k l Designation Relation 

1 0 Number mean-diameter 
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The distributions defined in this section can be generalized. Using the characteristic length (the 

diameter D) or surface (D
2
) of each drop, the definitions of the length-based and surface-based 

distributions are straightforward [10]. These distributions are rarely used in the literature. Furthermore, 

as we will see in section 4, liquid spray drops might be also described by a joint size-velocity 

distribution, each droplet of a spray having their own velocity. In this case, the droplets are distributed 

in a two dimensional space according to their diameter Di and velocity Uj and a two-dimensional 

probability distribution Pij expressing the probability of finding a droplet with diameter Di and velocity 

Uj, is introduced. This probability distribution satisfies: 



Entropy 2009, 11            

 

 

718 

1
i j

ijP  
(7)  

and is associated to a normalized continuous distribution f(D,U). 

3. The Maximum Entropy Formalism (MEF) 

The objective of this section is to present the mathematical aspect of the MEF as used in the 

literature for the prediction of the spray drop-size and velocity distributions. This presentation is derived 

from Sellens and Brzustowski [12]. For more information concerning the origin of this formalism and its 

applications, refer to Kapur [13] where an extensive list of references is available.  

MEF is a tool of statistical inference that allows the determination of a probability distribution from a 

limited amount of information. This formalism states that the most likely (or least biased) probability 

distribution Pi that satisfies a set of constraints that expresses known characteristics of the distribution 

sought is the one whose Shannon’s entropy S is maximum. This entropy is defined by: 

 
i

ii PlnPkS  
(8)  

where k is a constant. The constraints, expressing the available information concerning the distribution 

sought, can be given the following form: 

m,...,rggP ri,r

i

i 1  
(9)  

where the quantities rg  are known moments of the distribution and constitute the available 

information. An additional constraint arises from the normalization of the probability distribution, i.e.,:  

1
i

iP  
(10)  

There are numerous probability distributions that satisfy a given set of constraints  

(Equations 9 and 10), but there is only one whose entropy S is maximum. Using the method of 

Lagrangian multipliers, it can be demonstrated that this probability distribution is given by: 
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where the Lagrangian multipliers 0, 1,…, r must be determined. The normalization constraint 

(Equation 10) relates the multipliers as follows: 
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and the other constraints (Equation 9) gives the following m relationships: 
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The resolution of Equations 12 and 13 allows the Lagrangian multipliers to be determined as a 

function of the information, i.e., the m moments rg . By assuming a uniform discretization of the 

solution space, an equivalent continuous formulation can be derived. Let’s introduce , the solution 

space that contains all the permissible states, a probability density function f is defined by: 
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  (14)  

The set of constraints (9) and (10) is now replaced by: 
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 (15)  

and the statistical entropy of the probability density function is: 

 



dflnfkS  
(16)  

The PDF that maximizes S (Equation 16) subject to the set of constraints (Equation 15) is: 
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Note that if no information is introduced in the formalism, i.e., system of Equation 15 reduces to the 

normalization constraint, Equation 17 returns a constant distribution (f = exp(–0)). This solution 

illustrates that when nothing is known about the reachable states, the most reasonable suggestion 

consists in attributing the same probability of occurrence to each state.  

4. Application of MEF to Determine Liquid Spray Drop-Size Distribution 

The first attempt to predict the liquid spray drop-size distribution on the basis of the MEF is due to 

Sellens and Brzustowski [12,14]. They considered the breakup of a liquid sheet (thickness t,  

velocity Us) in the vicinity of the breakup region. The constraints expressed conservation laws that are 

expected to be satisfied in any physical process, namely, conservation of mass, momentum and energy. 

These constraints required to account for the size and the velocity of each drop. Thus, the solution is 

defined by drop diameter D and velocity U so that an element of the solution space is d = dDdU. The 

parameters are non-dimensionalized by the spray mass mean-diameter D30 and the liquid sheet velocity 

Us. (Non-dimensionalized parameters are noted  = D/D30 for the diameter,  = t/D30 for the sheet 

thickness and u = U/Us for the velocity. These notations will be kept throughout the paper otherwise 

mentioned.) As far as the energy constraint is concerned, Sellens and Brzustowski pointed out the 

necessity of writing two separate constraints for the kinetic energy and the surface energy in order to 

account for irreversibility of certain energy transformations. Indeed, in an atomization process, kinetic 

energy is readily transformed into surface energy but the reverse transformation is not possible. Sellens 

and Brzustowski based their formalism on the following list of constraints: 
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- Normalization: 

1


dufd  
(18)  

- Mass conservation: 

mSdudf  13



  
(19)  

- Momentum conservation: 

mvSduudf  13



  
(20)  

- Kinetic energy conservation: 

keSduduf  123



  
(21)  

- Surface energy conservation: 

sSdudf  



3

12  (22)  

where the source terms Sm, Smv, Ske and Ss allow accounting for losses of mass, momentum, kinetic 

energy or surface energy during the breakup process, respectively. For instance, a high evaporation rate 

would be represented by a negative mass source term whereas condensation of the vapor in the ambient 

medium would be taken into account with a positive mass source term. It must be noted that in their 

development, Sellens and Brzustowski related the initial total liquid mass M and the total number of 

droplets NT by M = NTLD30
3
/6 (where L is the liquid density) which implicitly imposes Sm = 0. This 

small inconsistency was corrected in their next publications. Following Equation 17, the joint diameter-

velocity distribution derived by Sellens and Brzustowski has the form: 
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By integrating this function over the velocity space, i.e., from u = 0 to a maximum permitted velocity 

um, Sellens and Brzustowski derived the following number-based drop-diameter distribution fn(): 
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 (24)  

Considering a loss-free atomization process (all term sources equal to 0), Sellens and  

Brzustowski [12] demonstrated that the number-based drop-diameter distribution given by  

Equation 24 is very similar in shape to the Rosin-Rammler distribution which is a two-parameter 

empirical drop-diameter distribution extensively used to represent spray drop-size distributions [2,9]. 

However, the number-based maximum entropy distribution reveals a drawback: the probability 

associated with the smaller drop sizes is much larger than is expected, i.e., it doesn’t decrease towards 0 

when D = 0. Then, the left tail of the distribution contradicts almost all experimental observations 
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reported in the literature. As far as the drop-velocity distribution is concerned, Sellens and  

Brzustowski [14] pointed out the necessity of a non-zero momentum source term in order to produce 

an initial velocity distribution. The assumption of a uniform velocity in the liquid sheet would lead to a 

uniform velocity in the droplets if Smv = 0. With Smv ≠ 0, each drop category reports a Gaussian velocity 

distribution. Coupling the initial droplet velocity distribution with a simple air drag model Sellens and 

Brzustowski investigated the downstream velocity distribution behavior [14]. For all drop categories, 

the velocity variance rapidly decreases towards 0 whatever the initial velocity distribution. Therefore, in 

real sprays, a mean velocity should be sufficient to characterize any drop category. Furthermore, this 

shows that spray drop-velocity distribution is strongly dependent on the nature of the gaseous 

environment rather than on the initial velocity distribution.  

Parallel to Sellens and Brzustowski investigation, Li and Tankin [15,16] developed their own 

approach. This approach has been extensively used as we will see in the following. In their first 

contribution, Li and Tankin [15] derived a drop-diameter distribution on the basis of a single constraint 

expressing the conservation of mass. Contrary to Sellens and Brzustowski [12,14], the parameter of the 

solution space was the volume V of the drop instead of the diameter D, i.e., d = dV. The probability 

distribution Pi of finding a droplet with a volume Vi they obtained is: 

 ii VexpP 10    (25)  

Then, by performing a change of variable from V to D with V = D
3
/6 and noting that: 

    

i

n

i

ni dDDfdVVfP

 class class

 
(26)  

they obtained the following number-based drop-diameter distribution: 

 323 DexpD)D(fn    (27)  

where the parameter  is a function of the parameters introduced in the mass conservation law, i.e., the 

liquid density, the liquid mass flow rate and the number of drops produced per unit time. This parameter 

can be related to any mean drop diameter, in particular: 

3

32
3

5

1























D

 

(28)  

where  is the Gamma function. The enthusiastic aspect of the diameter distribution given by  

Equation 27 is that it is a form of the Nukiyama-Tanasawa distribution which is another well-known 

empirical drop-diameter distribution [1,9,17]. Li and Tankin [15] compared their solution under the 

volume-based form (using Equation 6) with experimental drop-size distributions drawn from the 

literature. The parameter  was calculated from Equation 28 where the mean diameter D32 was the one 

reported by the experiment, i.e., the mathematical distribution was forced to have the same Sauter mean 

diameter as the one of the measured distribution. The authors pointed out a satisfactory agreement 

(good prediction of the peak diameter and slight underestimation of the distribution width). 

Furthermore, contrary to Sellens and Brzustowski’s solution (Equation 24), Li and Tankin’s solution 

shows the expected trend at small drop-diameter and reaches 0 when D = 0. This particular behavior of 
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Li and Tankin’s solution is appreciable and comes from the change of variable described above and that 

imposes fn(D)  D
2
. However, as it will be discussed later in this paper, this change of variable violates 

the MEF.  

In their second contribution, Li and Tankin [16] extended the previous work to derive a joint drop 

diameter-velocity distribution. They wrote a set of constraints on the basis of the conservation of mass, 

momentum and energy during the process. The control volume in their formulation extended from the 

nozzle exit of the injector down to the plane where the droplets are formed. Therefore, the constraints 

they used express that the mass, momentum and energy of the droplets just downstream of their 

formation are the same respectively as those of the continuous liquid bulk at the nozzle exit plus any 

source terms which exist in the region between the nozzle exit and the plane of the droplet formation. 

This aspect constitutes a fundamental difference with Sellens and Brzustowski [12,14] approach that 

focuses on the breakup region only. A second important difference in Li and Tankin [16] formulation 

concerns the writing of the energy constraint: instead of writing two separate constraints for the kinetic 

energy and the surface energy they proposed a total energy constraint expressing the conservation of 

the sum of the directed kinetic energy and surface energy. Conducting their development in the  

volume-velocity solution space (d = dVdU), and using the mean drop volume Vm (= D30
3
/6) and the 

mean velocity U0 of the liquid flow issuing from the nozzle to define the dimensionless parameters v 

(= V/Vm) and u (= U/U0), their combined total energy constraint had the form:  

  eSdvduKv'Bvuf  12



 
(29)  

where B’ = 2/LU0
2
,  is the liquid-gas surface tension coefficient and K is the drop surface area to 

volume ratio. The mass and momentum conservation constraints they used are similar to those of 

Sellens and Brzustowski (Equations 19 and 20), which, as noticed above, implicitly supposes that 

Sm = 0. Following the same mathematical manipulation as in their first approach, Li and Tankin [16] 

obtained the following joint drop diameter-velocity distribution: 

  223
3

3
2

3
10

23  Buuexpf   (30)  

where:  



 30
2

012 DU
We

We
B L  (31)  

We is a liquid Weber number, dimensionless number often encountered in liquid atomization. It can 

be demonstrated that Equation 30 converges to the previous solution (Equation 27) when We→∞. The 

distributions obtained by Sellens and Brzustowski (Equation 23) and by Li and Tankin (Equation 30) 

show two differences: 1 – Li and Tankin’s distribution (Equation 30) is proportional to 2
: as mentioned 

above this is the signature of the solution space modification during the mathematical development,  

2 – Li and Tankin’s distribution (Equation 30) is explicitly a function of the liquid-gas surface tension 

through the Weber number: this is presented by the authors as an advantage as surface tension is an 

important parameter in liquid atomization processes. Furthermore, Li and Tankin [16] claimed that their 

solution did not require any non-zero momentum source term to predict velocity distribution but such 

evidence was not shown in their paper. Li et al. [18] reported numerical applications of the joint drop 
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diameter-velocity distribution given by Equation 30 investigating the influence of the source terms Se 

and Smv. For each drop category, the velocity distribution was a truncated Gaussian distribution. 

Furthermore, these calculations revealed an important and complicated influence of the source terms 

and of the Weber number on the resulting distribution characteristics. This clearly indicates that the 

prior determination of the source terms required for these approaches to be fully predicting constitutes a 

tricky and crucial step. 

The question of whether the drop-diameter distributions obtained from the application of the MEF 

show a better ability to represent real spray drop-size distribution has been addressed by Bhatia and 

Durst [19]. They first compared the number-based diameter distribution due to Li and Tankin [15] 

(Equation 27) with the Rosin-Rammler, log-normal and log-hyperbolic distributions. These three 

empirical distributions depend on 2, 2 and 4 parameters, respectively. These distributions were 

compared with the experimental distributions used by Li and Tankin [15] as well as local distributions of 

water sprays produced by a solid-cone nozzle and measured with a Phase Doppler technique (PDT). A 

description of working of this instrument is available in [20]. This diagnostic performs a local 

measurement (being delimited by the intersection of two laser beams the measuring volume is far less 

than the volume of the entire spray) and reports the diameter and velocity of the drops that pass at the 

location of measurement. The PDT is a temporal sampling instrument: such as single-particle counters, 

it registers signals proportional to temporal frequency (count/s). Contrary to Li and Tankin [15], Bhatia 

and Durst compared the number-based drop-diameter distributions. Whereas, for all situations, the  

log-normal and log-hyperbolic distributions showed a good agreement with the measured distributions, 

they noticed a poor ability of the Li and Tankin’s solution (Equation 27) and of the Rosin-Rammler 

distribution to represent number-based drop-size distribution. It must be noted here that Li and Tankin’s 

solution tested in this work (Equation 27) is a one parameter distribution and therefore has less ability 

to fit drop-size distribution. Furthermore, one should mention that the empirical Rosin-Rammler 

distribution has been derived to fit volume-based drop-size distribution and that the use of the 

corresponding number-based distribution is not recommended.  

Bhatia and Durst [19] also performed a similar work on joint diameter-velocity distributions 

comparing Sellens and Brzustowski’s distribution (Equation 23), Li and Tankin’s distribution  

(Equation 30) and the empirical two-dimensional hyperbolic-distribution. For each case, the parameters 

of the distributions were numerically determined in order to provide the best fit. These comparisons 

showed a much better ability of the hyperbolic-distribution to represent the measured distributions than 

the two maximum entropy distributions. In particular, the maximum entropy number-based diameter 

distributions fn() obtained by integrating the two-dimensional distributions over the velocity space, 

were in strong disagreement with the experimental observations. Bhatia and Durst [19] concluded that 

the two-dimensional coupled distributions due to Sellens and Brzustowski [12,14] or to Li and  

Tankin [16] are not appropriate to approximate drop-size distributions in sprays. One should note here 

that the two-dimensional hyperbolic distribution depends on eight parameters and has therefore a better 

fitting capability than the tested maximum entropy distributions that depend on four parameters only. 

Furthermore, one should emphasize that the lack of agreement between Sellens and Brzustowski’s 

number-based drop-diameter distribution (Equation 24) and measurements was amplified by the  

non-physical behavior of the mathematical distribution at the space origin: as mentioned earlier, this 
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distribution doesn’t reach zero when D = 0. Sellens eliminated this drawback in the  

following investigation. 

Sellens [21] completed the approach he developed with Brzustowski by including a better 

description of the liquid sheet before the breakup stage and by reconsidering the set of constraints. As 

reported by many experimental observations, flat liquid sheets are subject to a growing undulation 

before breaking up. This undulation is a Kelvin-Helmholtz instability resulting from the interaction 

between the liquid and gas and is often modeled as a sinusoid with a given wavelength and a growing 

amplitude (see [4]). Since Sellens focused the MEF application in the breakup region, the description of 

the initial state had to account for the undulated nature of the liquid sheet. To achieve this, Sellens 

introduced two components of velocity in his formulation; one along the mean motion of the liquid 

sheet Ux, and one perpendicular to the sheet Uy. Thus, the solution space had three dimensions and 

d = dDdUxdUy. Basing the parameter non-dimensionalization on the mean streamwise sheet velocity 

Us and the mass mean diameter D30, the set of constraints required by the problem was the following: 

- Normalization: 

1


 yxdudufd  
(32)  

- Mass conservation: 

13 


 yxdududf  
(33)  

- x Momentum conservation: 

xmvxsyxx Sudududuf 


 3  
(34)  

- y Momentum conservation: 

ymvysyxy Sudududuf 


 3  
(35)  

- Kinetic energy conservation: 

  keysxsyxyx Suudududuuf 
22223



  
(36)  

- Surface energy conservation: 

32
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2 1

3

1









 syx Sdududf  (37)  

where the index s indicates a liquid sheet characteristic. Note that two momentum constraints, one for 

each direction, were written. Contrary to the previous formulation (Equation 19) we see that the mass 

source term does not appear explicitly in the mass constraint (Equation 33). This is because the 

reference mass used for the non-dimensionalization process, i.e., LD30
3
/6, is a characteristic of the 

droplets (the final stage) not of the liquid sheet (the initial stage). The right hand side of Equation 33 is 

actually 30
3
 = 1. This new formulation is more appropriate than the previous one. Note also that, as for 
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the mass conservation, the surface energy conservation (Equation 37) might be expressed as a function 

of a mean drop-diameter of the spray. 

Sellens pointed out the necessity of adding a supplementary constraint because of the low 

contribution of the small drop diameter to the moments expressed by Equations 32–37. Indeed, the 

lowest order moment of drop size is the second order (Equation 37) and the set of constraints has very 

little effect on the nature of the distribution of small drops. Therefore, the resulting probability 

associated with the smaller drop sizes is much larger than is generally observed, i.e., when D = 0, fn(D) 

is not equal to zero. To solve this problem, Sellens introduced a supplementary constraint that limits the 

liquid surface area to volume ratio of the entire spray. This new constraint, called the partition 

constraint, is given by: 

pyx Kdududf 




 1  
(38)  

where Kp expresses the strength of the partition constraint. In agreement with Equation 17, the set of 

constraints Equations 32–38 led to the following solution: 
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  yxyx uuuuexpf  (39)  

This solution involves two supplementary parameters compared to Equation 23 which correspond to 

the number of supplementary constraints added in the new formulation. The difficulty in applying this 

model lies in the prior determination of the right hand sides of the constraints. As a first approach 

Sellens proposed evaluating these quantities from experiments. The experimental work considered 

water sprays produced by swirl atomizers. Swirl atomizer produces a thin conical liquid sheet whose 

disintegration is structured by the development of a sinusoidal Kelvin-Helmholtz instability. Analyzing 

liquid sheet visualizations allowed the velocity components usx and usy to be determined. The sprays 

were analyzed with a PDT. The measurements were performed at some distance from the breakup plane 

and at one location only for each operation condition. The application of the model for comparison 

purpose made use of the mean diameters D30 and D32 reported by the measurements. The parameter Ske 

and Kp were determined in order to fit the experimental data and the two momentum source terms (Smx 

and Smy in Equations 34 and 35) were taken equal to 0. Thus, enough information was introduced in the 

formulation to allow the 6 parameters in Equation 39 to be determined. As far as the drop-size 

distributions fn() were concerned, the agreements were acceptable: the right tails were well 

reproduced, the peak diameters were slightly underestimated and the calculated left tail slightly stiffer. 

Agreements were also observed for the droplet mean velocity and velocity variance except for the small 

drops for which both the mean and the variance were overestimated by the model. This was explained 

by the fact that, at the measurement location, small droplets had been significantly influenced by drag 

forces. The model doesn’t take this behavior into account. The agreement reported for the  

drop-diameter distribution might be surprising since measurements were local and did not considered 

the all spray produced by the liquid sheet as described by the model. This could be due to a perfect 

spatial homogeneity of the drop-size distribution, but, as reported by many experimental works 

performed on swirl atomizer sprays, we know that this is not the case. The agreement reported by 

Sellens is likely to be due to the fact that most of the information required by the model was derived 

from experiments. In other words, the maximum entropy distribution was forced to have identical 
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characteristics as the measured distribution. To the least, this demonstrates that the maximum entropy 

distribution obtained by Sellens [21] has a good propensity to represent spray drop-size distributions. 

Finally, Sellens [21] investigated the influence of some source terms on the maximum entropy 

distribution. He first noted that the introduction of a more realistic undulating sheet model avoided to 

impose arbitrary non-zero momentum source term to obtain realistic velocity distributions as it was the 

case for Sellens and Brzutowski’s formulation. Second, he found that the kinetic energy source term 

mainly affects the droplet mean velocity and has a negligible influence on the drop-diameter distribution 

and that the mean diameter 32 (surface energy source term) and the partition coefficient influence 

mainly the drop-diameter distribution with a negligible impact on the mean velocity. This indicates that 

each constraint has a targeted influence on one component of the solution space contrary to what  

Li et al. [18] reported concerning Li and Tankin’s solution (Equation 30). This aspect of Sellens’ 

solution will be exploited later by the author.  

Li et al. [22] and Li and Tankin [23] compared their maximum entropy two-dimensional distribution 

(Equation 30) with measured distributions. Water sprays were produced by a swirl atomizer. 

Visualizations of the hollow cone were analyzed in order to locate the liquid sheet breakup plane and 

the more appropriate location to perform drop diameter and velocity measurements. The breakup plane 

located at 7.5 mm from the nozzle and the spray characteristics were measured at 10 mm from the 

nozzle, distance at which all droplets were formed. A two-component PDT was used: this equipment 

performs a local measurement of the drop diameter as well as two velocity components. Contrary to 

Bhatia and Durst [19] and Sellens [21], Li et al. performed measurements as a function of the radial 

position of the measuring volume. After having checked the axisymmetry of the mean axial and mean 

tangential velocities and of the Sauter mean diameter, a global integrated joint size-axial velocity 

distribution was constructed from the individual point measurements, weighting each local measurement 

by their time of collection and the ratio of their optical probe area to the ring area represented at that 

location. The set of constraints of Li and Tankin’s model (Equations 18–20, 29) requires some 

information to allow the maximum entropy distribution (Equation 30) to be determined. The liquid sheet 

mean axial velocity at the nozzle exit U0 is determined from the experiment as well as the mass median 

diameter D30. Thus, the number We is determined. The mass source term in Equation 19 is taken equal 

to zero. The surface area increases between the nozzle exit and the drop formation. On the other hand 

the kinetic energy decreases between the nozzle exit and breakup. Thus, Li et al. [22] estimated the 

energy source term Se of the combined energy constraint (Equation 29) to zero. The momentum source 

term Smv was estimated using a drag model where the conical sheet is unfolded into a triangular shape. 

This model yielded a value for Smv of –0.017. The number-based drop-diameter distribution fn() 

obtained from the integration of the joint drop diameter-velocity distribution (Equation 30) over the 

velocity space agreed reasonably well with measurements: the peak diameter was well estimated as well 

as the whole distribution width. However, although the predicted mean velocity was in agreement with 

the measurements for large drop-diameter, it was considerably overestimated for small diameter drops. 

Similar to the results found by Sellens [21], this behavior was due to a lack of a drag model in the 

prediction of the drop-size and velocity distribution. Li et al. [22] completed their MEF model with a 

drag model to incorporate the influence of the air on the droplets between the plane of droplet 

production (7.5 mm) and the plane of measurement (10 mm). This drag model that considered each 
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droplet individualy considerably improved the results. Therefore, contrary to Bhatia and Durst [19], this 

application demonstrated the ability of Li and Tankin’s solution to represent spray drop-diameter and 

velocity distribution. Li and Tankin [23] emphasized that the pejorative results reported by Bhatia and 

Durst [19] as far as their maximum entropy distribution was concerned was due to the use of local 

drop-diameter and velocity distribution measurements and to the absence of any drag model to 

compensate the fact that measurements are never performed were the droplets are produced. 

Chin et al. [24] reconsidered Li and Tankin’s approach [16] to predict the volume and velocity 

distribution (d = dVdU) of the drops produced by a cylindrical liquid jet subject to a Rayleigh breakup 

process. This well-known process has been described in many references (see [1,2] for instance). The 

Rayleigh breakup process is a capillary instability that occurs on a small velocity liquid column. The 

characteristic features of this process are the growth on a sinusoidal perturbation on the liquid column 

and the production of droplets with roughly the same diameter of the order of twice the initial jet 

diameter. According to the velocity of the jet, much smaller droplets (called satellite drops) may be 

produced between two main droplets. Following Li and Tankin [16], the control volume extended from 

the nozzle exit down to a plane where all droplets were formed. However, Chin et al. [24] reconsidered 

the used of a single energy constraint in Li and Tankin’s approach by noting that when a single 

constraint is used no information is provided to how the total energy source is distributed between the 

kinetic energy and the surface energy. Thus, any combination of constant total energy source will result 

in the same probability density function. In consequence, as recommended by Sellens [21],  

Chin et al. [24] used separate constraints for kinetic energy and surface energy. Using the jet velocity 

Ujet at the nozzle exit and the mass mean drop-diameter D30 to calculate the dimensionless parameters, 

the normalization, mass conservation, momentum conservation and kinetic energy conservation 

constraints were similar to Equations 18–21, respectively (without the explicit appearance of the source 

term Sm as in Equation 33) and the surface energy conservation was written as: 

s

jet

S
B

dudfB  



3

22  (40)  

where B is given by Equation 31. Then, following Li and Tankin’s mathematical manipulations [16], the 

final diameter-velocity distribution they obtained was: 
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As in Equations 27 and 30, f  2
 indicates that the change of variable expressed by Equation 26 has 

been performed. This solution is identical to Equation 30 except that 3
u

2
 and B2

 depend on their own 

parameter. Chin et al. [24] derived analytical expressions for each source term included in the 

constraints (except for Sm that was taken equal to zero) assuming that all droplets produced by a 

Rayleigh instability had the same diameter D30. They obtained: 

 
jet

srmsmkemmv

BB
SuuSuS

 3

2
11

32

22
  (42)  

where um and urms are the mean drop velocity and the root mean square droplet velocity fluctuation, 

respectively. Performing PDT measurements and using the measured values for D30, D32, um and ursm as 

input information for the model, the authors qualified the agreement between the estimations and the 
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measurements as reasonably good: they underlined discrepancies between the peak heights of the 

estimated distributions and of the experimental data. They also demonstrated that the use of a combined 

energy constraint, which leads to the solution given by Equation 30, reported a prediction in strong 

disagreement with the number-based drop-size distribution fn(). 

Based on Sellens’observations [21], Ahmadi and Sellens [25] emphasized that the constraints on 

momentum and kinetic energy (Equations 20 and 21) in the spray carry only velocity information, i.e., 

they have a negligible influence on the number-based drop-size distribution fn(). It is therefore possible 

to consider drop size and velocity separately. They developed a simplified MEF model to predict the 

number-based drop-diameter distribution (d = dD) using the normalization, the mass conservation, 

the surface energy conservation and the partition constraints (Equations 18, 19, 22 and 38), which, in 

dimensional form, can be rewritten as: 
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leading to the following number-based drop-diameter distribution: 
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Using the mean diameters D30, D32 and D-10 from the experiments, they reported good agreement 

with experimental distributions of water sprays produced by a swirl atomizer they measured with a PDT 

as well as those provided by Li and Tankin [15] and Bhatia and Durst [19]. In each situation the peak 

diameter and distribution width were well estimated. Ahmadi and Sellens [25] furthermore observed 

that the agreement obtained with this three-parameter distributions (Equation 44) is as good as the one 

obtained with the four-parameter log-hyperbolic distribution. They concluded that three moments are 

required as input information to predict a spray drop-diameter distribution, namely, D-10, D30 and D32 

and that the advantage of this model compared to empirical distributions such as log-hyperbolic 

distribution for instance, is that the parameters in the MEF distribution are directly linked to a physical 

model. Finally, since Ahmadi and Sellens [25] succeeded in representing experimental data—and in 

particular those published by Bhatia and Durst [19]—with their maximum entropy distribution as well 

as with the one due to Li and Tankin [16], they concluded that Bhatia and Durst misapplied the 

distribution function.  

The investigations due to Sellens’ group [12,14,21,25] and to Li and Tankin’s group [15,16,24] have 

motivated developments and applications of models based on the MEF to predict liquid spray  

drop-diameter distributions. Van der Geld and Vermeer [26] proposed a model to predict the diameter 

distribution of satellite droplets produced during the breakup of a cylindrical liquid column, the main 
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droplets being distributed according to a Gaussian distribution. This model is based on three constraints, 

namely, the normalization, the surface energy conservation and the mass conservation constraints and 

reports quite realistic results with the prediction of bi-modal diameter distributions as often reported in 

the literature. However, in this approach the MEF was used to account for a part of the atomization 

process only—the satellite formation—and requires the prior knowledge of the main-drop distribution. 

Bi-modal drop-diameter distributions were also obtained by Chin et al. [27] who generalized  

Chin et al. [24] formulation by accounting for the three components of drop velocity, i.e., 

d = dVdUxdUydUz. Following Sellens’ approach [21], three momentum conservation constraints were 

written, one for each component (see Equations 34 and 35), leading to a solution similar to Equation 41 

but introducing seven parameters. Comparisons between this new solution and PDT measurements 

performed over the whole spray and reorganized as a global distribution following Li et al.’s  

procedure [22] reported an acceptable fit on the number-based drop-diameter distribution of a spray 

produced by a swirl atomizer. To apply their model, Chin et al. [27] used as much experimental 

information as necessary to estimate the source terms. They demonstrated that increasing the number of 

velocity components in the model considerably improved the agreement (especially along the right 

distribution tail) and that the use of the generalized three velocity-component model predicted a  

bi-modal distribution, the enhancement of bimodality being controlled by the azimuthal momentum 

source term. 

Chin et al. [28] proposed another extension of Chin et al.’s approach [24] to model the production 

of main and satellite drops produced by a cylindrical liquid jet subject to a Rayleigh instability. The 

formulation was conducted in the volume-velocity space (d = dVdU) taking one component of 

velocity into account but introducing two supplementary constraints, one related to the surface area to 

volume ratio of small drops and the other related to the non-sphericity of main droplets. These two 

constraints were respectively written as: 
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and led to the following 7-parameter diameter-velocity distribution: 

  6
1

5
2

4
23

3
3

2
3

10
23  Buuexpf  (46)  

It is interesting to note here that one of the two constraints (first equation in Equation 45) is identical 

to Sellens’ partition constraint (Equation 38) and is therefore appropriate to limit the small drop 

production. The second additional constraint is actually identical to the definition of the D10  

mean-diameter. This new formulation allowed bi-modal distributions to be obtained. Considering this 

approach and the one due to Chin et al. [27], it seems that a minimum of seven parameters is required if 

one has to represent bi-modal drop-size distribution. Chin et al. [28] performed an experiment where 

droplets produced by a liquid column were visualized by a high-speed camera (1,500 images/s). The 

analysis of the images allowed the measurement of an equivalent diameter (based on the volume 

conservation) and of the velocity of each drop. They investigated a jet at a flow rate appropriate to 

enhance the satellite drop production. The bi-modal drop-diameter distribution they measured was 
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satisfactorily represented by the maximum entropy distribution given by Equation 46 (both peak 

diameters and the width of each distribution mode were well estimated). Note that in this application, as 

in the one presented by Chin et al. [27], the information required to determine the seven parameters 

were deduced from the experiments. Thus, these applications did demonstrate the ability of the 

mathematical solution to fit experimental drop-diameter distribution but did not fully validate the model. 

As mentioned above, the specification of the information required by the constraints, i.e., the 

moments rg  in Equations 9 and 15, constitutes a critical step to the application of the MEF model to 

predict spray drop-diameter and velocity distributions. This point is crucial since, as demonstrated by 

van der Geld and Vermeer [26], inappropriate values of these moments can lead to unrealistic 

distributions. The determination of the moments introduced by the constraints must be based on a 

physical description of the atomization process. In this respect, one should mention Mitra and Li’s 

attempt [29] in developing a deterministic sub-model to derive the Weber number as well as the mass, 

momentum and energy source terms required by Li and Tankin’s solution (Equation 30) to model the 

atomization of a flat liquid sheet. To be applicable, Mitra and Li’s model requires the detailed 

knowledge of the breaking sheet including its thickness, its length, the wavelength of the perturbation 

controlling the disintegration, the initial amplitude of this perturbation, as much as information it is 

usually difficult to know with a sufficient accuracy. Thus, the problem of the determination of the 

moments is shifted but not solved. 

Dobre and Bolle [30] considered also this point in the application of their model. They formulated a 

MEF model to predict drop-diameter distributions of sprays produced by ultrasonic atomizers. These 

atomizers produce a spray by making vibrate the free surface of a liquid film at an ultrasonic frequency. 

Their model was based on the normalization, mass conservation and energy (surface and kinetic) 

conservation constraints. The resulting number-based drop-size distribution suffers from the same 

drawback as Sellens and Brzustowski’s solution and presents an unrealistic behavior at the small  

drop-diameter distribution tail. This aspect was not too penalizing in their work since Dobre and  

Bolle [30] performed measurements with a laser diffraction technique (LDT). Contrary to the PDT, the 

LDT is a line-of-sight measurement technique: the measuring volume is a laser beam and the 

measurement is space integrated. As explained by Dodge et al. [20], this technique is a spatial sampling 

instrument, such as photographic, and registers signals proportional (in one dimension) to spatial 

frequency (counts/m). Thus, the nature of the information provided by LDT is different than the one 

provided by PDT. Furthermore, LDT reports a volume-based drop-size distribution and Dobre and 

Bolle conducted their comparison work on this type of distribution using Equation 6 to calculate the 

volume-based drop-size distribution from the maximum entropy number-based solution. As shown by 

Equation 6, the unrealistic behavior at small drop-diameter doesn’t affect the volume-based distribution 

too much since small droplets have a small contribution to the total liquid volume. For the model 

application, Dobre and Bolle [30] deduced an expression of the moment required by the energy 

constraint. This expression contains information such as the mass mean-diameter and the droplet 

velocity that are not known a priori. They finally determined the missing information from the solution 

that ensured the best fit with their measurements. Despite the fact that the left distribution tail and the 

peak diameter were well estimated, their comparison revealed a low ability of their solution to correctly 

represent the big drop-diameter distribution tail (right part of the distribution).  
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The MEF formulations due to Sellens’ and to Li and Tankin’s groups present another difficulty of 

application for reasons of mathematical and numerical nature. Indeed, the specific mathematical form of 

the distributions provided by these formulations (Equations 23, 30, 39, 41 or 46) requires a numerical 

resolution for the determination of the Lagrangian multipliers i. As demonstrated by van der Geld and 

Vermeer [26], such numerical resolutions are not easy to perform and become more and more difficult 

as the number of constraints, i.e., the number of parameters to be determined increases. These 

observations motivated the development of other MEF formulations.  

The model due to Cousin et al. [31] made use of Ahmadi and Sellens’ conclusions, i.e., 1 – the 

determination of the drop-diameter distribution doesn’t need to go through the calculation of the joint 

size-velocity distribution, 2 – the drop-diameter distribution can be determined from the writing of 

constraints expressing mean drop-diameters. Cousin et al. [31] proposed a formulation to determine the 

drop-diameter distribution only. Furthermore, instead of basing the set of constraints on conservation 

laws as in the previous investigations, they assumed the existence of a single mean drop-diameter Dq0, 

called the constraint diameter, that would carry enough information to predict the drop-size distribution. 

Thus, Cousin et al.’s formulation is based on the following set of constraints: 
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The distribution that satisfies this set of constraints and that maximizes Equation 16 has an analytical 

expression. Indeed, making use of Equations 12, 13 and 17, it can be shown that the number-based 

drop-diameter distribution is given by: 
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where  is the Gamma function. This solution depends on two parameters, namely, the constraint 

diameter Dq0 and its order q. Cousin et al. [31] proposed also a second formulation to determine the 

volume-based drop-diameter distribution. In order to ensure a coherent formulation, i.e., the  

number-based and volume-based drop-diameter distributions satisfy Equation 6, they demonstrated that 

the entropy to be maximized by the volume-based drop-diameter distribution fv(D) should be: 
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where Uv is a volume-based drop-diameter distribution whose corresponding number-based  

drop-diameter distribution is uniform. Therefore, if no information is available, i.e., no constraint is 

specified, the maximization of Equation 16 reports a constant distribution fn(D) and the maximization of 

Equation 49 reports fv(D) = Uv(D). The entropy Sv given by Equation 49, referred in the literature as the 

Bayesian entropy, is a more general expression for the statistical entropy given by Equation 16. It is 
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actually identical to the Kullback-Leibler number (see [13]), which is the measure of the nearness of two 

distributions. The necessity of adapting the statistical entropy to the type of distribution sought is 

another manifestation of the fact that, as mentioned in section 2, from a mathematical point of view, 

only the number-based drop-diameter distribution is a probability density function. Thus, the  

volume-based drop-size distribution solution of Cousin et al.’s formulation [31] is given by: 
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It can be checked that Equations 48 and 50 satisfy Equation 6. The analytical nature of the solution 

provided by this formulation is an advantage compared to the previous formulations since it allows 

calculations to be performed. For instance, it can be demonstrated that the mean drop-diameter series 

introduced by Equation 5 is given by: 
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The volume-based drop-diameter distribution given by Equation 50 succeeded in representing 

measured distributions in many different situations. For instance, Cousin et al. [31] applied it for water 

sprays produced by swirl atomizers used at low injection pressures. The measurements were performed 

with a laser-diffraction technique (LDT). Consequently, the comparisons were conducted on the 

volume-based drop-size distributions. Cousin et al. [31] coupled their MEF model with a linear theory 

that applied to the liquid sheets produced by the swirl atomizers allowed the Sauter mean-diameter D32 

to be calculated. Using this mean diameter, they determined the constraint diameter Dq0 with  

Equation 51 testing several values of the constraint order q. For four different atomizers tested at 

several injection pressures, they obtained a reasonable agreement between the mathematical and the 

measured distributions (good prediction of the peak diameter as well as of the distribution width) for a 

constant value of q, namely, q = 1. Therefore, for their specific domain of investigation, the MEF model 

coupling with the deterministic linear theory provided a fully deterministic model to predict  

volume-based drop-diameter distributions.  

Sindayihebura et al. [32] followed an identical approach to derive a model to predict the  

volume-based drop-diameter distribution of sprays produced by ultrasonic atomizers similar to those 

used by Dobre and Bolle [30]. Several atomizers were used as well as several liquids and the 

measurements were performed with a LDT. A stability analysis of the vibrating liquid free surface was 

used to determine the Sauter mean-diameter. The agreement between the measured and the 

mathematical distributions was acceptable with a constant constraint order, namely, q = 3. And a similar 

behavior was reported by Dumouchel and Boyaval [33] who investigated gasoline sprays produced by 

high-pressure swirl atomizer. For the four injection systems used, the best fit was obtained with a 

constant value of q of the order of 0.54. In their application, Dumouchel and Boyaval used the 
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experimental mean-diameter D43 to calculate the constraint diameter. As noted in Section 2 (Table 1), 

this diameter corresponds to the first moment of the volume-based drop-diameter distribution.  

These results induced the enthusiastic idea that each atomization process could be characterized by a 

specific value of q, giving credit to the information status of this parameter. Dumouchel and  

Boyaval [33] demonstrated that the relative span factor of the volume-based drop-diameter distribution 

given by Equation 50 depends on the parameter q only. The relative span factor measures the relative 

width of the distribution (see [1,2]). Thus, if liquid atomization processes are to be related to a constant 

parameter q, they should be as well characterized by a constant relative distribution width. This point 

has never been clearly established so far.  

Dumouchel and Boyaval [33] reported another result that is worth mentioning here. They proposed 

another MEF formulation to determine volume-based drop-size distribution but based on four 

constraints expressing the four first moments of the distribution, namely, the four mean-diameters D43, 

D53, D63 and D73. The resulting four-diameter distribution could be therefore written under the  

following form: 
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For one water spray produced by a swirl atomizer and measured by a LDT they compared the ability 

of Equations 50 and 52 to represent the experimental distribution. In Equation 50, the parameter q and 

Dq0 were determined on the basis of the relative distribution width and the measured D43, and, the 

application of Equation 52 was achieved by using the four experimental mean-diameters D43, D53, D63 

and D73. It was observed that the two mathematical distributions offer a different fit. The  

four-parameter distribution (Equation 52) showed a better fit for the small drop population whereas the 

two-parameter distribution (Equation 50) provided a better fit from the distribution peak to the large 

drop population. As mentioned by Kapur [13] this result shows that in the MEF application the quality 

of information is more important than the number of information introduced in the procedure. In other 

words, the information provided by the relative distribution width and its arithmetic mean is sufficient to 

predict a volume-based drop-size distribution. This result was used by Boyaval and Dumouchel [34] in a 

subsequent work to predict volume-based drop-diameter distributions in situations where the relative 

distribution width and the mean-diameter D43 could be measured only. This work demonstrated to 

which extend the MEF model can be used to provide a completed spray characterization from partial 

experimental information.  

However, the solution of Cousin et al. [31] (Equations 48 and 50) leaves us with a problem: similar 

to the maximum entropy distribution provided by Sellens and Brzustowski [12,14]  

(Equation 24), the probability associated with the smaller drop diameters is much larger than is 

generally observed, i.e., the number-based drop-size distribution doesn’t decrease towards zero when D 

approaches zero. This limitation is not too penalizing when using the volume-based drop-diameter 

distribution since the small drops represent a rather negligible proportion of the liquid volume. This is 

mathematically illustrated in Equation 50 by a distribution proportional to D
3
. However, this unrealistic 

behavior of the number-based distribution prevails applying the volume-based drop-diameter 

distribution to characterize spray with a minimum diameter different than zero. This problem was 

overcome by Dumouchel and Malot [35] who wrote the previous solution (Equation 50) in a new 

coordinate system where the abscissa axis had been shifted of the quantity Dmin corresponding to the 
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minimum drop diameter in the spray. The new volume-based drop-size distribution, expressed in terms 

of D43 instead of Dq0, is given by: 
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 (53)  

which is a three-parameter distribution, i.e., q, D43 and Dmin. This new mathematical distribution 

provided a very good fit of sprays produced by low-velocity cylindrical liquid jet, such sprays being 

characterized by a non-zero minimum diameter [36]: the minimum diameter, the peak diameter and the 

distribution width were well estimated. It allows also the representation of ultrasonic sprays to be 

improved [37]. Furthermore, the most enthusiastic aspect of this new volume-based drop-diameter 

distribution is that the corresponding number-based drop-diameter distribution calculated from  

Equation 6 decreases towards zero when the diameter approaches Dmin and the non-physical behavior at 

small drop diameters is no longer observed. Thus, in agreement with Ahmadi and Sellens [25], the 

authors concluded that the determination of spray drop-size distribution required at least three 

parameters, one of which being related to the small-drop population.  

However, as far as the MEF is concerned, the solution (Equation 53) obtained by shifting of the 

initial volume-based drop-size distribution is not satisfactory. The combination of Equations 6  

and 53 reports a number-based distribution proportional to (D – Dmin)
3
/D

3
 which forces fn(D) to 

decrease towards zero when D approaches Dmin (with D > Dmin). However, in the absence of 

information, i.e., if no constraint is specified, the number-based drop-size distribution fn(D) is not 

constant anymore, which contradicts the formalism. This indicates that this distribution is not the one 

that maximizes the statistical entropy but is a biased solution. Another way of demonstrating this 

consists in calculating the number-based distribution from the shift of the surface-based distribution 

instead of the volume-based distribution. The resulting number-based distribution would be proportional 

to (D – Dmin)
2
/D

2
 instead of (D – Dmin)

3
/D

3
. This is due to the fact that the number, surface and volume 

of droplet are not similarly distributed in the diameter space. In such conditions, the MEF doesn’t 

tolerate variable change as the invariance of the statistical entropy is not ensured.  

As illustrated by the different approaches presented in this review, the behavior of the number-based 

drop-size distribution’s tail at small drop diameter has always been a major point in MEF formulation. 

Sellens [21] explained that the unrealistic behavior of the number-based drop-size distribution he 

obtained with Brzustowski (Equation 23) at small drop diameter was due to the fact that the 

momentum, kinetic energy and surface energy constraints used in their formalism did not carry any 

information on the small drop diameter. To overcome this, problem, Sellens [21] introduced a 

supplementary constraint, the partition constraint (Equation 38) whose effect is to limit the surface 

area/volume ratio of the whole spray. 

Li and Tankin [15,16] circumvented this problem: they formulate their approach in the  

volume-velocity solution space and performed a change of variable to end up in the diameter-velocity 

solution space. This change of variable, described by Equation 26, imposes the distribution to be 

proportional to 3D
2
, which enforces the distribution to report the expected behavior at small  
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drop-diameter. However, such a procedure is inconsistent with the MEF. Indeed, the exact statistical 

entropy of a continuous probability density function f(x) is (see [38]): 

 
 
  








 dx

xm

xf
lnxfkScont  (54)  

where m(x) is a measure of the solution space (Borel-Lebesgue measure). If the reachable states are 

equally distributed in the solution space, i.e., if the density of states is constant over the solution space, 

this measure can be taken equal to 1. Equation 54 becomes then identical to Equation 16. The measure 

m(x) assures the invariance of the entropy under transformations such as variable changes. Therefore, as 

mentioned by van der Geld and Vermeer [26], this measure should have been taken into account by Li 

and Tankin in order to satisfy Jaynes consistency principle that reads ―Two problems with the same 

relevant physical information show the same pdf’s‖. The formulation due to Li and  

Tankin [16] and applied in many other investigations, does not satisfies this principle. To demonstrate 

this, let us imagine writing Li and Tankin’s formulation in the drop surface area-velocity solution space, 

instead of the drop volume-velocity solution space, on the basis of the same conservation laws (mass, 

momentum and energy). The final variable change required to go back in the drop diameter-velocity 

solution space would report a distribution proportional to 2D instead of 3D
2
. We see that, despite using 

the same information, Li and Tankin’s formulation can lead to several solutions according to the initial 

solution space in which the approach is formulated. In consequence, the solution provided by Li and 

Tankin [16] is not the one with the maximum statistical entropy but is a biased solution. This problem is 

equivalent to the one discussed above and concerning the solution provided by Dumouchel and  

Malot [35] (Equation 53) and comes from the fact that the number, surface and volume of a drop don’t 

have identical density in the solution space.  

It is interesting to mention here the formulation due to Kim et al. [39] that proposed a different 

approach to deal with the problem of the small diameter drops. They used the same system of 

constraints as the one formulated by Li and Tankin [16] and determined the distribution that satisfied 

this set of constraint and maximized the Bayesian entropy given by: 
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u,f
lnu,fkSB

0

 (55)  

where f0() is a prior number-based drop-diameter distribution that had to be specified. The solution of 

this formulation is given by: 

      223
3

3
2

3
100  Buuexpfu,f   (56)  

Considering the atomization of a flat liquid sheet, Kim et al. [39] related the prior-distribution to the 

linear growth rate of the unstable waves. This approach imposed a minimum drop diameter much 

greater than the one expected. Kim et al. argued that this problem came from the fact that linear theory 

ignored the satellite drop formation. To overcome this problem, they imposed the prior-distribution 

f0() to evolve as m2
 in the small drop diameter region without giving any physical justification for that. 

This characteristic of the prior-distribution forces the distribution to decrease towards zero when  

tends towards 0, and comparisons between measured and calculated distributions revealed acceptable 

agreement as far as the peak diameter and the distribution width are concerned. We can note that, as for 
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Li and Tankin’s solution (Equation 30), the distribution given by Equation 56 is proportional to 2
. 

Therefore, the solutions given by Equation 30 and Equation 56 are likely to be same if m = 3.  

Dumouchel [40] proposed an extension of Cousin et al.’s formulation [31] addressing the question 

of the small drop diameter distribution. This extension was inspired by Griffith [41] and Lienhard and 

Meyer [42]. The most objective distribution that satisfies the constraint introduced by Cousin et al. 

(Equation 47) is the one that maximizes the statistical entropy (Equation 16). This distribution, given by 

Equation 48, is based upon the implication that a given particle had just as good a chance of being 

produced as any other, regardless of its size. However, as explained by Griffith [41] in the theory on the 

size distribution of particles in a comminuted system, there are a priori reasons to believe that particles 

of certain sizes are more likely to be produced than others. Generally speaking, this means that diameter 

classes should not be, a priori, equivalently reachable. Dumouchel [40] exploited this idea in the 

calculation of liquid spray number-based drop-size distribution. An a priori probability, g(D), was 

introduced to represent the likelihood that a particle class of drop would be reached. This probability 

was expressed by: 

  1 ADDg  (57)  

where A is assumed to be a constant and , a parameter to be determined. Using statistical mechanics, 

Dumouchel [40] demonstrated that the most objective distribution that satisfies the set of constraints 

Equation 47, when the probability of reaching a diameter D is given by g(D) (Equation 57) is the one 

that maximizes the statistical entropy given by: 

 
 
 













0
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Dg

Df
lnDfkS n

n  (58)  

Note that this entropy is similar to the one maximized by Kim et al. [39]. The solution of this 

formulation is given: 
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(59)  

This solution introduces three parameters, i.e., two coefficients q and  that control the shape of the 

distribution, and the constraint diameter Dq0 that positions the distribution in the diameter space. Note 

that for  = 1, i.e., g(D) = Cte, Equation 59 is identical to Cousin et al.’s solution  

(Equation 48). It is referred in the literature as the three-parameter Generalized Gamma function [42]. 

Dumouchel [40] demonstrated that it is identical to the empirical Nukiyama-Tanasawa distribution, 

which is an empirical distribution often used in the literature to represent liquid spray  

drop-diameter distribution. Paloposki [17] identified the permissible range of the parameters q and  of 

the Nukiyama-Tanasawa distribution in order to allow any drop-diameter distribution type  

(number-based, length-based, surface based and volume-based) to be physically representative. This 

permissible range defines two regions in the (q, ) space, namely: 
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 (60)  

In particular, when the parameters q and  satisfy Equation 60, the number-based drop-diameter 

distribution always reports the expected behavior at small diameter drops. Dumouchel [40] pointed out 

the role of each equation introduced in the formalism. When the parameters q and  are positive (first 

case in Equation 60), the constraint expressed by the second equation of Equation 47 ensures the 

existence of a maximum diameter, and Equation 57 ensures the existence of a minimum diameter. In the 

second case (q and  negative), a maximum drop-diameter is imposed by Equation 57 whereas the Dq0 

constraint ensures the existence of a minimum diameter. As for Cousin et al.’s solution, the analytical 

nature of the solution is interesting and allows calculations to be performed. Dumouchel [40] reported 

the expressions of the other drop-diameter distribution types as well as their modal-diameters and the 

mean-diameter series. Furthermore, the fact that this solution is identical to the  

Nukiyama-Tanasawa distribution ensures a good capability of representing liquid spray drop-diameter 

distribution. Indeed, exploring the potentiality of several empirical distributions to represent 

experimental drop-size distributions, Paloposki [9] found that the Nukiyama-Tanasawa distribution is 

one of the best. However, he pointed out a problem of parameter stability that manifests by drastic 

variations of their values for reasonable changes in the initial conditions. This behavior, reported for 

parameters q and , questions the validity of these parameters as far as their physical meaning  

is concerned.  

This very point was addressed by Lecompte and Dumouchel [43] who identified a characteristic 

feature of the three-parameter Generalized Gamma function. This distribution is almost insensitive to a 

modification of the parameters q and  (the third parameter Dq0 being kept constant whatever the value 

of q) if these parameters correlate as: 

constant
n

q  (61)  

Thus, if several spray drop-diameter distributions have parameters q and a satisfying Equation 61, 

they can be satisfactorily represented by a unique couple (q; ). Lecompte and Dumouchel [43] applied 

the Generalized Gamma function to represent measured drop-diameter distributions produced by 

ultrasonic atomizer, compound atomizer and a twin-fluid atomizer. In each situation, the set of 

parameters (q, , Dq0) ensuring the best fit was determined. The working conditions are summarized in 

Table 2. This table indicates the measurement technique used for each situation. When LDT is used, the 

comparison procedure was based on the volume-based drop-size distribution. The Scanning Mobility 

Particle Sizer is a particle counter like the PDT. Thus, when these measurement techniques are used, 

comparisons were conducted on the number-based drop-diameter distribution. For all situations, the 

agreement between the measured and the mathematical distributions were of very good quality: the 

minimum, peak and maximum diameters as well as the width and height of the distributions were very 

well estimated. Furthermore, an analysis of the results that took into account the insensitivity of the 

Generalized Gamma distribution if Equation 61 is satisfied reported that in each situation, one or two 

parameters were constant whereas the remaining parameters reported a clear dependency with the 
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working conditions. These results are summarized in Table 2. Note that, as obtained by the application 

of Cousin et al.’s model, the parameter q is found to be representative of the atomizer, i.e., of the liquid 

atomization process. All these results led the authors to conclude that the set of constraints given by 

Equations 47 and 57 contain enough information to correctly predict drop-diameter distribution and 

that the parameters introduced by these constraints are physically representative.  

Table 2. Summary of the different situations analyzed by Lecompte and Dumouchel [43] 

(MT: measuring technique, LDT: laser diffraction technique, PDT: Phase Doppler 

Technique, SMPS: Scanning Mobility Particle Sizer, f: ultrasonic atomizer frequency, : 

surface tension, L: liquid density, Qv: liquid volume flow rate, Pi: injection pressure, Pa: 

air pressure). 

Atomizer and 

Working Conditions 
MT 

Parameters 
q  Dq0 

Ultrasonic atomizer 

 f  [41 kHz; 135 kHz] 

   [31 mN/m; 73 mN/m] 

 L  [900 kg/m3; 1000 kg/m3] 

 Qv  [0.4 l/h; 1 l/h] 

LDT –1 –23.6 

31

2
860
















f
.

L

  

Compound injector 

 Fluid: Ethanol 

 Pi  [0.2 MPa; 0.5 MPa] 

LDT 0.2  Pi
–0.7  Pi

–1.7 

Twin-fluid atomizer (internal 

mixing) 

 Fluid: Normafluid 

 Pa  [1 MPa; 6 MPa] 

 Qv  [0.3 ml/mn; 6 ml/mn] 

SMPS 

PDT 
–0.3 –6.3  Pa

(0.03Qv–0.2) 

 

In agreement with Ahmadi and Sellens’ result (Equation 44), the solution provided by Dumouchel’s 

formulation (Equation 59) indicates that three parameters are sufficient to represent liquid spray drop-

size distributions. However these solutions have a limitation: they are mono-modal distributions. In 

other word, they are not adapted to represent bi-modal distributions. Bi-modal liquid spray drop-

diameter distributions have been reported in the literature (see [26,28] for instance). 

Yongyingsakthavorn et al. [44] also reported bi-modal volume-based drop-diameter distributions for 

sprays produced by high injection pressure gasoline injector. Their measurements, performed with a 

LDT for a wide range of injection pressures, were satisfactorily fitted by a combination of two  

three-parameter Generalized Gamma functions, i.e.: 

       DfDfDf vvv 211    (62)  

This distribution depends on seven parameters: (q1, 1, (Dq0)1) for fv1, (q2, 2, (Dq0)2) for fv2 and the 

blending parameter  that is comprised between 0 and 1. Furthermore, as for the applications reported 
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by Lecompte and Dumouchel [43], the parameters were found to organize very well with the working 

conditions. In particular, for all tested injection pressures, it was found q1 = q2 = –0.13, 1 = 2 = –21.5 

and the three remaining parameters were found dependent of the injection pressure.  

To complete this review, a different approach proposed by Li et al. [45] should be mentioned. 

According to those authors, the MEF, widely used to predict spray drop-size distributions, is, strictly 

speaking, applicable for isolated systems in thermodynamics equilibrium. Therefore, it is not physically 

consistent with real conditions of atomization processes. This motivated the authors to formulate a new 

model for the prediction of the droplet-size distribution based on the thermodynamically consistent 

concept—the maximization of entropy generation (MEG) during the spray formation, which is a  

non-isolated and irreversible process. The approach consists in calculating the entropy generated during 

the atomization, i.e., between the nozzle exit down to a location where the droplets are formed. The 

problem is written in the volume solution space (d = dV) and any length is non-dimensionalized by the 

mass mean-diameter D30. Making the assumption that an atomization process is isothermal and 

therefore, that the liquid internal energy is unchanged during the process, Li et al. [45] obtained the 

following expression for the generated entropy per unit of mass: 

  1
2 a

T
PPlnPs

i

i

i

iigen


    (63)  

where a1 is the surface area per unit mass at the initial stage (nozzle exit), T is the temperature,  is the 

surface tension and ,  and  involve physical characteristics of the problem such as the surface 

tension, the temperature, the specific volume, the isothermal compressibility. The most appropriate 

drop-size distribution at the final stage is the one that satisfies the normalization and the mass 

conservation constraints and that maximizes the generated entropy (Equation 63)]. Performing the same 

variable change as Li and Tankin [15] (Equation 26), Li et al. ended up with the following  

number-based drop-size distribution:  

   3
3

2
210

23   expfn  (64)  

The authors realized that this solution is similar to the one that would be obtained from the MEF 

formulation with the normalization and the three constraints expressing the mean diameters D10, D20 and 

D30. Li et al. [45] tested the ability of this new distribution to represent drop-size distribution of sprays 

produced by an air-blast atomizer and measured with a PDT. Several air and liquid velocities were 

tested. For each case, the experimental mean drop diameters D10, D20, D30 were used to numerically 

calculate the distribution given by Equation 64. The agreement between the measurement and the model 

was average. In some situations, the estimation could not even predict the peak diameter. One must 

note here that, having claimed that the MEF is not appropriate to develop liquid spray production 

model, the authors should not have used their MEG model as a MEF model which is what they did 

when using the experimental mean drop diameters D10, D20, D30. The appropriate information required 

by their model should not be the one carried by these mean-diameters. This might be a reason why the 

comparisons they provided demonstrate the weak ability of Equation 64 to represent  

drop-size distribution.  
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5. Summary and Conclusions 

The MEF as described in Section 2 of this paper allows a probability density function to be 

determined provided that some information related to the distribution sought is known. Thus, the first 

point to be mentioned is that its application to liquid spray characteristics must be restricted to the 

number-based distribution (either mono or bi-dimensional) since, from a mathematical point of view, 

this is the only type of distribution that is a probability density function. As demonstrated by  

Cousin et al. [31], the prediction of any other spray distribution types from the MEF requires the 

statistical Shannon entropy to be replaced by the more general Bayes entropy whose expression must be 

adapted to the distribution sought.  

The success and relevance of a MEF model lies in the writing of the appropriate set of constraints 

that expresses the available information. The initial formulations for spray drop-size and velocity 

distribution prediction due to Sellens and Brzutowski [12,14] and to Li and Tankin [16] based the set of 

constraints on conservation laws that any physical process is expected to satisfy, i.e., the conservation 

of mass, momentum and surface and kinetic energies. Such an approach was questioned by Sirignano 

and Mehring [46] who reminded the importance of viscous dissipation in any atomization process. The 

viscous dissipation, that is associated to change of liquid internal energy or enthalpy, characterizes the 

irreversibility of the formation process. Thus, surface energy and kinetic energy in the final spray cannot 

be directly related to the initial energy values without considering the intermediate thermal processes. 

According to Sirignano and Mehring [46], maximum entropy formulations should be corrected by 

conserving the sum of liquid kinetic energy, surface energy and liquid internal energy or enthalpy. 

Finally they emphasized that entropy as defined in droplet distribution literature is based on information 

theory and not on thermodynamics. Sellens and Brzustowski [12] explained that their approach is not an 

application of thermodynamic principles to atomization in the classical sense but an application of 

statistical inference in which some of the constraints are expressed in terms of thermodynamic variables. 

In other words, they wonder whether some physical conservation laws could carry the appropriate 

amount of information to predict spray drop-size and velocity distributions. 

The drop diameter-one velocity joint distributions obtained by Sellens and Bzustowski [12] and by Li 

and Tankin [16] reveal a similarity: both are dependent on four parameters (four Lagrangian multipliers 

for Sellens and Brzustowki’s solution and three Lagrangian multipliers and a liquid Weber number 

based on the mass mean-diameter for Li and Tankin’s solution). However, these two formulations show 

three differences that it is instructive to list. 

First, Sellens and Brzustowski’s formulation applies right in the breakup region whereas Li and 

Tankin’s approach applies on a control volume that extends from the atomizer nozzle exit down to a 

plane where droplets are formed. Thus, Sellens and Brzustowski’s model must incorporate the liquid 

system deformation prior to the breakup. For instance, applied to an atomizing liquid sheet, this requires 

at least two velocity components to be taken into account [21]. This aspect is not required by Li and 

Tankin’s model. This difference also indicates that the source terms introduced in the constraints to 

account for energy losses during the process are not equivalent in each approach. For instance, whereas 

the liquid-gas interface surface area is globally increased during an atomization process, it is reduced by 

surface tension forces when the bulk liquid flow experiencing its maximum deformation breaks up  

into drops.  
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Second, the energy constraints are differently written. Sellens and Brzutowski [12] wrote two 

separate constraints for the directed kinetic energy and the surface energy whereas Li and Tankin 

combined these two energies in a single equation. This point has been largely debated in the different 

papers. Sellens and Brzustowski [12] and Ahmadi and Sellens [25] emphasized that the irreversibility of 

the process where kinetic energy is readily transformed into surface energy but the reverse 

transformation is not possible imposes conserving these two energies separately. On the other hand, 

Mitra and Li [29] explained that liquid kinetic energy is largely responsible for liquid atomization in 

practical sprays and atomization increases the surface area and hence the surface energy of the liquid. 

Therefore, separate conservation of liquid kinetic and surface energy violates the physics involved. (In 

fact the literature dedicated to liquid atomization processes (see [5]) demonstrates that the energy 

source largely responsible for atomization is not the directed kinetic energy but the turbulence and 

circulatory kinetic energies.) A decisive argument is due to Chin et al. [24] who noted that the 

shortcoming of considering a combined energy constraint is that no information is provided to how the 

total energy source is distributed between the kinetic energy and the surface energy. Thus, any 

combination of constant total energy source would result in the same probability density function. This 

argument pleads in favor of Sellens and Brzustowski’s formulation.  

Third, Sellens and Brzustowski [12] identified the droplet by their diameter and velocity and Li and 

Tankin [16] formulated their model in the drop volume-velocity space and performed a variable change 

to express their solution in the diameter-velocity space. The enthusiastic aspect of this latter approach is 

that, contrary to Sellens and Brzustowski’s solution, Li and Tankin’s number-based drop-diameter 

distribution decreases towards zero when the drop diameter approaches zero. As discussed by several 

authors [26,40] and as explained in this paper, such a mathematical manipulation must be prohibited 

without taking the appropriate precaution to ensure entropy invariance and to respect Jaynes 

consistency principle. In consequence, the solution provided by Li and Tankin is not a maximum 

entropy distribution but a biased distribution. This comment applies for all formulations that made use 

of this mathematical treatment [18,22-24,27,28,45]. As explained in this paper, it also concerns the 

proposition due to Dumouchel and Malot [35]. To be complete on this point, on should note that  

Kim et al.’s model [39] is not concerned by this criticism since they incorporate in their formulation a  

prior-distribution that can be seen as a supplementary constraint. The similarity of their solution with the 

one due to Li and Tankin comes from the fact that they imposed the prior-distribution in consequence. 

A more appropriate approach would have been to consider this prior-distribution as a supplementary 

parameter. This does not mean that the mathematical distribution derived by Li and Tankin [16] as well 

as those build on an extension of their approach [24,27,28,39] are inappropriate to represent drop 

diameter-velocity distributions. Most of these works reported an acceptable ability of these distributions 

to reproduce measured drop-diameter and velocity distributions. This demonstrates that these solutions 

are mathematically flexible enough to do so, i.e., they contain enough parameters to fit a wide variety  

of distributions.  

The unrealistic behavior of Sellens and Brzustowski’s solution for the left distribution tail (small 

drop-diameter range) indicates that the conservation of mass, momentum, surface energy and kinetic 

energy constitutes an insufficient or inappropriate amount of information to predict spray drop-diameter 

and velocity distributions. As explained by Kapur [13], if the MEF distribution is not correct either 
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more information is needed or information is needed in some other form. Sellens [21] noticed that the 

constraints he used didn’t carry any information on the small drop diameter and concluded to the 

necessity of introducing a supplementary constraint whose role is to limit the surface area to volume 

ratio of the entire spray. This new constraint, called the partition constraint and identical to the 

definition of the mean diameter D-10, introduced a supplementary parameter in the solution and avoided 

the unrealistic behavior at the small drop-diameter distribution tail.  

The investigation due to Ahmadi and Sellens [25] allowed a major turning to be passed in the 

prediction of spray characteristic from MEF. They demonstrated that drop-size and velocity can be 

considered independently and derived a simplified MEF model to predict number-based drop-diameter 

distributions. Their work shows that the conservation of mass and of surface energy and the partition 

constraint contain enough information for that. In other words, number-based drop-diameter 

distributions can be predicted from the three mean-diameters D-10, D30 and D32. These results gave birth 

to the formulation due to Dumouchel’s group. 

First, this formulation is developed for the determination of the drop-diameter distribution only. 

Second, it is not based on the set of constraints expressing physical conservation laws but addresses the 

question of the minimum information required for the determination of a spray drop-size distribution. 

The first approach suggested using a single constraint based on the definition of a mean diameter Dq0, 

the constraint diameter, keeping both Dq0 and q as parameters. The resulting maximum entropy 

distribution was acceptable provided that it was used to represent volume-based drop-diameter 

distributions of sprays whose minimum diameter was sufficiently near zero. But the solution was not 

good to represent number-based distributions as the same drawback as for the solution provided by 

Sellens and Brzustowski was observed. This problem was analyzed as a lack of information introduced 

in the problem. Dumouchel [40] proposed an extension of this approach by including a  

prior-distribution that expresses the fact that each drop has not the same chance of being produced. This 

prior-distribution introduces a supplementary parameter. The solution of this extension was identified as 

a three-parameter Generalized Gamma function. This distribution is analytical. This constitutes an 

advantage compared to the previous maximum entropy distributions since it is easier to manipulate and 

allows calculations to be performed. Furthermore, this distribution is identical to the empirical 

Nukiyama-Tanasawa distribution and therefore its ability to represent spray drop-diameter distributions 

has not to be proved since this has been reported by many investigations over the past fifty years.  

Finally, a different model based on entropy maximization has been suggested by Li et al. [45]. 

Excluding the traditional use of the MEF, these authors used the thermodynamically consistent concept 

of maximization of entropy generation. This approach was developed for the prediction of  

number-based drop-diameter distributions. Despite the fact that the solution reported by this 

formulation fails in representing some measured drop-size distributions, which, as discussed above 

might be a consequence of an inappropriate application, this approach assumes that an atomization 

process is an isothermal process, allowing the change of liquid internal energy to be neglected. As 

demonstrated by Sirignano and Mehring [46] (see comment above) this assumption is simply not 

acceptable for liquid atomization processes.  

The MEF models to determine liquid spray drop-size distributions have been developed and applied 

for sprays produced by several atomizer designs and concepts including low-pressure swirl  
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atomizers [15,16,21-23,25,27,31,39], ultrasonic atomizers [30,32,37,43], low-pressure single 

cylindrical orifice nozzle [24,28,36], low pressure gasoline injector [43] and high pressure gasoline 

injector of different designs [34,44], and twin fluid atomizers with internal [43] or external [45] 

interaction between the liquid and the gas flows. Being based on a limited number of constraints, most 

of these MEF models return a mono-modal distribution. However, models allowing the description of 

more complex distribution shapes (bi-modal) have been developed according to two approaches;  

1 – increase the number of constraints [27,28], 2 – combine two mono-modal MEF solutions [44]. 

These models agree on the fact that seven parameters are required to describe bi-modal spray  

drop-size distributions.  

The validation of the maximum entropy distributions reported by the different models presented in 

this paper is usually discussed by comparing them with measured spray distributions. However, the 

application of the models requires the prior determination of the moments introduced in the constraints 

and that constitute the available information. Therefore these moments must be specified. Here, one 

should note that the determination of the source terms in the constraints based on physical conservation 

laws is a difficulty that has not been solved so far. Furthermore, for other approaches, the parameters 

introduced in the constraints are not even clearly related to physical bases which rends their  

prior-determination more complex. Therefore, several procedures to apply the model have been 

proposed. They can be classified in three groups: 1 – use as much experimental information (such as 

moments of the distribution) as necessary to allow the parameters of the mathematical distribution to be 

calculated; 2 – determine the set of parameters that ensures the best fit with the measured distribution;  

3 – a mixing of the two first procedures. For non-analytical maximum entropy distributions (those 

obtained from physical conservation laws), the final solution had to be determined by numerical 

procedures which appeared to be a tricky task. Indeed, inappropriate values of the moments or/and of 

the integration limits could result in unrealistic solutions. Such a problem was avoided with the 

analytical three-parameter Generalized Gamma function. Despite these numerical difficulties, one should 

underline that, in almost all the situations, comparisons between measured and mathematical 

distributions reported good agreements. For instance, adopting the first procedure, Ahmadi and  

Sellens [25] used the three mean-diameters D-10, D30 and D32 provided by the measurements and 

obtained good representations of the measured number-based drop-size distributions. Thus, if a model 

to predict these three mean-diameters is derived from the analysis of the measurements, the maximum 

entropy model becomes autonomous and predictive. On the other hand, Lecompte and Dumouchel [43] 

and Yongyingsakthavorn et al. [44] adopted the second procedure and determined, for each 

investigated situation, the set of parameters that ensured the best fit with the measured distributions. 

Here again, the agreements were very good. Furthermore, these parameters were correlated to the 

working conditions. Besides the fact that these correlations demonstrate the physical relevance of the 

parameters of the maximum entropy distribution, they allow the whole model to be predictive.  

The good agreements between measured and predicted distributions found in the literature 

demonstrate at least that most of the maximum entropy distributions have a good ability to reproduce 

liquid spray drop-size distribution. Therefore, from a theoretical point of view, the MEF is appropriate 

to derive predictive models for liquid spray drop-size distributions. The problem in the application of 

these models is the prior knowledge of the information—or the constraints—required by the formalism. 
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One must emphasize at this stage that this aspect doesn’t affect the potentiality of the MEF: indeed, the 

MEF is not supposed to determine constraints for a given situation. Therefore, the MEF shifts the 

problem of drop-size distribution model development to the one of appropriate information 

determination. The advantage is that, thanks to the MEF, we know how much information is required 

and we have interesting clues concerning the form to be given to this information. For instance, the 

MEF models agree that three pieces of information are required to determine mono-modal drop-size 

distributions. For the determination of number-based drop-size distributions, this information can be 

provided by three mean diameters (D-10, D30, D32) or by a constraint diameter together with a prior 

probability distribution expressing the diameter-class accessibility. Efforts should be done now to model 

these pieces of information. Beside this, one should add that the MEF can provide a practical help. For 

instance, it can be used to extend the partial information reported by an experimental diagnostic and 

provide the whole drop-size distribution. This was successfully demonstrated and applied for high 

density gasoline sprays [34]. Furthermore, the set of parameters that ensures the best representation can 

appear to be physically relevant characteristics to categorize and investigate the atomization process and 

the spray. This could constitute an interesting starting point for the constraint investigation. 

The application of the MEF to determine spray drop-size distributions rests on information theory 

and not on thermodynamics. As mentioned above, the validity of MEF models requires comparisons 

with measurements to be performed and this comparison procedure often introduces partial 

measurement results in the models. As far as this point is concerned, it is important to bear in mind that 

the diagnostics available so far to measure drop-size distribution are sensitive to different spray 

characteristics and report information that depends on their working principle. Therefore, the validity of 

any model that incorporates an experimental support will be limited by the experimental procedure. In 

other words, the formulation of a universal model based on the MEF or on any other formalism to 

predict liquid spray drop-size distribution would require a universal definition of this characteristic as 

well as an appropriate diagnostic to measure it. 
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