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Abstract: In this study, we present a multi-objective approach based on a mean-variance-

skewness-entropy portfolio selection model (MVSEM). In this approach, an entropy 

measure is added to the mean-variance-skewness model (MVSM) to generate a 

well-diversified portfolio. Through a variety of empirical data sets, we evaluate the 

performance of the MVSEM in terms of several portfolio performance measures. The 

obtained results show that the MVSEM performs well out-of sample relative to traditional 

portfolio selection models. 

Keywords: portfolio selection; entropy; skewness; portfolio performance measures;  

out-of-sample performance 

 

1. Introduction  

Markowitz’s mean-variance model (MVM), which is based on the assumption that returns of assets 

follow a normal distribution, has been accepted as a pioneer portfolio selection model [1]. It is known 

that the MVM depends on only the first and second moments corresponding to the expected return and 

the variance-covariance matrix of return. However, these moments are generally inadequate to explain 

portfolios in the case of non-normal return distribution [2–4]. Therefore, many studies have discussed 

the issue of whether higher moments should be accounted for the portfolio selection problem [2–10]. 

In particular, Chunhachinda et al. [2], Arditti [5] and Arditti and Levy [6] assert that higher moments 

cannot be neglected, unless there is a reason to believe that the asset returns are distributed normally or 
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that higher moments are irrelevant to the investor’s decision. Prakash et al. [4], Harvey et al. [8] and 

Ibbotson [10] discuss existence of the higher moments in an asset allocation system if the returns do 

not follow a symmetrical probability distribution. Moreover, they show that when skewness is 

included in the decision process, an investor can get a higher return. Due to these facts, the MVM has 

been extended to include the skewness of return in portfolio selection. This model is called as mean-

variance-skewness model (MVSM) [2,4].  

The MVM and MVSM have recently become widely-used approaches in solving portfolio 

diversification problems. On the other hand, some studies indicate that [2,4,11] that the portfolio 

weights obtained from the MVM and the MVSM can often focus on a few assets or extreme positions, 

although an important objective of asset allocation is diversification [11,12]. In portfolio theory, it is 

well-known that the diversification reduces unsystematic risk in portfolios. In the other words, the 

more diversified portfolio weights (probabilities) there are, the more reduced risk there is in the 

portfolio selection [13,14]. Diversified portfolios also have lower idiosyncratic volatility than the 

individual assets [12]. Moreover, the portfolio variance decreases as the diversification in 

portfolio increases. 

In order to measure the diversification, entropy is a widely accepted measure of diversity [15–23]. 

It is known that the greater the value of the entropy measure for portfolio weights, the higher the 

portfolio diversification is. In the literature, the first attempts to use entropy as an objective function in 

multi-objective model portfolio selection are seen in [19–23]. Furthermore, Bera and Park [11,19] 

present asset allocation models based on entropy and cross entropy measures in order to generate a 

well diversified portfolio. If entropy is used as an objective function to determine portfolio weights, 

the obtained weights become automatically non-negative. This means that a model with entropy 

naturally yields no short-selling, which is occasionally a preferable situation in portfolio selection due 

to theoretical and practical reasons [24–26].  

On the other hand, the relationship between diversification and skewness has also been researched in 

the literature [27–30]. Several studies show that the positive skewness can lead to anti-diversification as 

investors attempt to capture the greatest amount of positive skewness [28]. For instance, Simkowitz 

and Beedles [27] examine the behavior of skewness of portfolio returns as the degree of diversification 

increases, and report that increasing the diversification results in a progressive loss of portfolio 

skewness. Besides, the results of [30] show that while the diversification reduces portfolio variance, at 

the same time it also reduces skewness. For this reasons, the skewness and diversification are two 

competing and conflicting objectives in portfolio selection. 

In this study, we study multi-objective portfolio selection model in which investor tries to maximize 

the skewness of portfolio and entropy of portfolio weights, while simultaneously attempting to 

minimize the portfolio variance. Based on three different empirical datasets, we evaluate the  

out-of-sample performance of MVSEM relative to well-known portfolio models such as the equally 

weighted model (EWM), minimum variance model (MinVM), MVM and MVSM. The performances 

of the MVSEM are assessed in terms of the following portfolio performance measures [31–38]: the 

Sharpe ratio (SR), adjusted for skewness Sharpe ratio (ASR), mean absolute deviation ratio (MADR) 

Sortino-Satchell ratio (SSR), Farinelli–Tibiletti ratio (FTR), generalized Rachev ratio (GRR) and 

portfolio turnover (PT). We also compute Jobson and Korkie’ zJK test statistic to evaluate the statistical 

significance for the difference in Sharpe ratios among the considered model in this study. 
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Considering all these issues, this study is organized as follows: traditional portfolio selection 

models are presented briefly in Section 2. A multi-objective portfolio selection model is introduced in 

Section 3. The portfolio performance measures and rolling window procedure are provided in  

Section 4. Next, an empirical study is conducted to evaluate the performance of MVSEM in Section 5. 

Finally, the conclusions and suggestions are presented in Section 6. 

2. Traditional Portfolio Selection Models 

In portfolio theory, given a set of assets, the portfolio selection problem is to find the optimum way 

of investing a particular amount of money in these assets. Each possible strategy is considered as a 

portfolio selection model. In this section, we present the well-known traditional portfolio selection 

models and also provide definitions and notations required in this study.  
The vector of portfolio weights is 1 2( , ,..., )T

nx x x=x , where ix  is the weight of ith risky asset in the 

portfolio. The portfolio weights satisfy 
1

n

i
i

x
=

= xT 1 = 1, where 1 is a 1n×  vector of ones and T  

denotes the transpose of the vector. Additionally, the portfolio weights are constrained to be [0,1]ix ∈  

1,...,i n= , thus meaning that short selling is not allowed. 

The vector of excess returns is 1 2 1 2( , ,..., ) ( , ,..., )R T T
n f f n fR R R R r R r R r= = − − −   , where iR  

represents the risk premium on the ith risky asset and fr  is the risk-free return. The vector of mean 

excess returns is 1[ ] ( ,..., )T
nE m m= =R M , where ( )i im E R=  and E  denotes the expectation operator. 

Also, the n n×  variance-covariance matrix of excess returns is [ ]2
[ ]E E− =R R V , where V  consists 

of elements of ( [ ])( [ ])ij i i j jE R E R R E Rσ  = − −  , which show the covariance between the returns of 

asset i  and j  for ( , ) [1,..., ]i j n∀ ∈ . The 2n n×  skewness-coskewness matrix of excess return is 

[ ]3
[ ]E E− =R R S , where contains the elements of ( [ ])( [ ])( [ ])ijk i i j j k ks E R E R R E R R E R = − − −  , 

which represents the coskewness between the returns of asset i , j  and k  for ( , , ) [1,..., ]i j k n∀ ∈ . 

Mean, variance and third central moment of the return of portfolio and the entropy of portfolio 

weights (probabilities) are respectively given, as follows: 

1

[ ]
n

T T
p i i

i

E R E x m
=

 = = =  x R x M , (1)

where 
1

n

p i i
i

R x R
=

=  is the return of portfolio. 

2
2

1 1

[ ]
n n

T T T
p i j ij

i j

R E E x xσ σ
= =

  = − = =   x R x R x Vx , (2)

3

3
1 1 1

[ ] ( )
n n n

T T T
p i j k ijk

i j k

S R E E x x x s
= = =

  = − = = ⊗   x R x R x S x x , (3)

where ⊗  denotes for the Kronecker product and also 3( )pS R  provide a measure of skewness of 

portfolio ( 3

3

[ ]
[ ]

[ ]
p

p
p p

S R
Sk R

Rσ
= ). 
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1

( ) ln ( )
n

T
i i

i

H x x
=

= − = −x x lnx , (4)

where lnx  denotes 1(ln ,..., ln )T
nx x . 

( )H x , known as Shannon’s entropy measures [39], is a concave function of the portfolio weights 

1,..., nx x . It has its maximum value ln n , when 1/ix n=  for 1,...,i n= . ( )H x  reaches its minimum 

value 0 , when 1ix =  and 0jx = , i j≠  for 1,...,j n= . Due to these properties of entropy measure, 

( )H x  that provides a good measure of diversity in a probability distribution, can be taken as a measure 

of portfolio diversification [11,15,17]. 

2.1. Equally Weighted Model (EWM) 

EWM considers the portfolio weights to be equal, 1/ix n=  for 1,...,i n= , and does not involve any 

optimization or estimation, besides, it completely ignores the mean and variance of return. This naive 

rule for asset allocation has been extensively used by investors although a number of complicated 

derived models have been developed. Moreover, various studies in the literature such as [11,12,40,41] 

show that the EWM works well for the out-of-sample cases. 

2.2. Minimum Variance Model (MinVM) 

In MinVM, the assets weights are obtained by minimizing only the variance-covariance matrix of 

the return of portfolio. MinVM can be stated as follows: 

Min Tx Vx  (5)

subject to =1Tx 1 , 0≥ix  for ni ,...,1=  (6)

In the literature, there is empirical evidence indicating the MinVM performs better out-of-sample 

than MVM, even when Sharpe ratio or other performance measures, which take into account both the 

mean and variance, are used for the comparison [42,43]. 

2.3. Mean Variance Model (MVM) 

Markowitz’s MVM works by assuming that the higher expected returns can be obtained by taking 

more risk. MVM can be given as follows: 

Min Tx Vx  (7)

subject to T μ=x Μ , =1Tx 1  and 0≥ix  for ni ,...,1=  (8)

where μ  is the pre-determined target expected return for the portfolio.  

It is known that although Markowitz’s MVM is widely-used portfolio selection model, there are 

still some drawbacks of the MVM. For example, MVM leads to poor out-of-sample performances and 

the solution of MVM can often focus on a few assets or extreme positions as contrary to the notion of 

diversification [11,12]. 
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2.4. Mean Variance Skewness Model (MVSM) 

Within the framework of the MVSM, it is shown that an investor’s preference for the positive 

skewness in the return distribution is consistent with the notion of decreasing absolute risk aversion. 

Also, preferences for positive skewness underline a precautionary saving motive [44]. Prakash et al. 

[4] emphasized that positive skewness is desirable, since increasing skewness decreases the probability 

of large negative values of return. The MVSM discussed in [2,4] is given in the following form: 

Minimize Tx Vx  (9)

Maximize ( )T ⊗x S x x  (10)

subject to T μ=x Μ , =1Tx 1  and 0≥ix  for ni ,...,1=  (11)

In the literature, the empirical evidence related to the performance of MVSM shows that the 

incorporation of skewness into MVM can provide significantly better portfolios the non-normal return 

distributions [2,4].  

3. Multi-Objective Portfolio Selection Model Based on Mean-Variance-Skewness-Entropy Measures 

The first attempts to use entropy as an objective function in portfolio analysis are seen in  

[11,19–23]. Among these studies, Jana et al. [21] add the entropy function to the MVSM to generate 

well diversified portfolios and they thus formulate the mean-variance-skewness-entropy model 

(MVSEM). However, they use absolute deviation instead of variance under the normality condition 

[32] and use a piecewise linear approximation of skewness. They also use the fuzzy programming 

technique to solve the multi-objective model with entropy by ignoring the evaluation of the empirical 

performance of the model or comparison of the model with well-known portfolio models.  

In this study, we introduce the MVSEM and we also evaluate its empirical performances relative to 

the well-known portfolio selection models by using a variety of portfolio performance measures on 

different empirical data sets. The multi-objective model based on mean, variance, skewness and 

entropy can be expressed in the following form: 

Minimize Tx Vx  (12)

Maximize ( )⊗Tx S x x  (13)

Maximize ( )T−x ln x  (14)

subject to T μ=x Μ , =1Tx 1  and 0≥ix  for ni ,...,1=  (15)

To obtain the portfolio weights from MVSEM is the multi-objective optimization problem. In order 

to solve this problem, we use the weighted sum method (scalarization) considering its easy 

implementation [45,46]. If the weighted sum method is applied to the multi-objective optimization 

problem given in Equations (12)–(15), the scalarized optimization problem is obtained as follows:  

Minimize 1 2 3( ) ln( )T T Tλ λ λ− ⊗ +x Vx x S x x x x  (16)

subject to T μ=x Μ , (17)
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Tx 1  = 1 and 1 0ix> ≥  for ni ,...,1=  (18)

By assigning three weighting coefficients 0iλ ≥ , 1,2,3i = , respectively, to each of the objective 

functions x xTV , ( )T ⊗x S x x , ln( )Tx x , the optimal solutions of the multi-objective model can be 

obtained. For the computation of optimal points, the weights are chosen so as to 1 2 3 1λ λ λ+ + = . Thus, 

the various combination of iλ ’s values represent distinct portfolio compositions. For instance, the 

MVSEM is identical to the MVM when 1 1λ =  and 2 3 0λ λ= = . 

iλ  can be interpreted as the risk aversion factor or risk preference of the investor for the variance, 

skewness of portfolio and entropy of weights, respectively. However, it should be noted that the as in 

most of the methods dealing with the multi-objective optimization problem, weighted sum method is 

essentially subjective since a decision marker has to supply the weight coefficients by taking into 

account the importance of each objective function within the context of the problem [47,48].  

4. Portfolio Performance Evaluation 

In this section, we introduce the various portfolio performance measures and rolling window procedure 

to evaluate the performance of the MVSEM relative to the EWM, MinVM and MVM and MVSM. 

4.1. Portfolio Performance Measures 

In order to evaluate the performance of portfolio models, a number of alternative performance 

measures have been proposed in the literature [31–38]. In this study, we consider some of these 

performance measures. As a traditional performance measure, the Sharpe ratio (SR) has been used 

extensively and its formula is given as the following general form: 

2

[ ]
SR

[ ]

p

p

E R

Rσ
= , (19)

where pR  is the return of portfolio. 

However, since the SR is based on the mean-variance theory, it is only valid for normally distributed 

returns. Particularly, the SR can lead to misleading conclusions when the return distributions are 

skewed or present heavy tails [36]. Several alternatives to the SR for optimal portfolio selection have 

been proposed in the literature. Some of these alternatives are presented in the following:  

The adjusted for skewness Sharpe ratio (ASR) [31], which takes into accounts the skewness of 

portfolio, is defined as follows: 

[ ]
1

3
pSk R

ASR SR SR= + . (20)

The mean absolute deviation ratio, (MADR) [32], which considers the risk as mean absolute 

deviation, is given as follows: 

[ ]
MADR

[ ]

p

p p

E R

E R E R
=

 − 
. (21)
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The Sortino-Satchell ratio (SSR) and Farinelli and Tibiletti ratio (FTR) [34,35], are performance 

measures based on the partial moments and their formulas are given as follows, respectively: 

2

[ ]
SSR

max( ,0)

p

p

E R

E R
=

 − 
, (22)

where 2max( ,0)pE R −   is the lower partial moment of order 2. 

max( ,0)
FTR( ; ) , , 0

max( ,0)

uu
p

vv
p

E R
u v u v

E R

  = >
 − 

, (23)

where max( ,0)v
pE R −   and max( ,0)u

pE R    are the lower partial moment of order v  and the upper 

partial moment of order u , respectively. The selection of u  and v  are associated to investors’ styles 

or preferences. In the empirical part, we will consider the following cases for u  and v  according to 

[33,34]: 0.5u = , 2v =  for a defensive investor; 1.5u = , 2v =  for a conservative investor; 1u = , 1v =  

for a moderate investor. Additionally, it is known that if 1u = , 1v = , the FTR reduces to the Omega 

ratio [38].  

The generalized Rachev ratio (GRR) [36] is the performance measure based on the quantiles of 

portfolio returns and its formula is presented as follows: 

max( ,0) ( ;1 )
GRR( , ; , ) , , 0, , (0,1)

max( ,0) ( ; )

p p p

p p p

E R R VaR R

E R R VaR R

δ

θ

α
δ γ α β δ θ α β

β

 ≥ − − = > ∈
 − ≤ − 

, (24)

where { }( ; ) inf : ( )p pVaR R y P R yα α= − ≤ >  is the value-at-risk of pR at the α  quantile level 

(0,1)α ∈  and max( ,0) ( ; )p p pE R R VaR Rθ β − ≤ −   is θ th power expected tail loss. In the empirical 

part, we will use , 0.05α β =  as quantile levels and the values of δ  and θ  same as the values of u  and 

v , respectively in the FTR. Also, it is known that when 1δ = , 1θ =  in Equation (24), the GRR gives 

the Rachev ratio (RR) [36]. 

On the other hand, it should be emphasized that although there is no general agreement as to which 

performance measure is the best for portfolio selection in the empirical study, the measures mentioned 

above are all recently proposed as performance measures for assets allocation. 

4.2. Rolling Window Procedure 

In this study, the evaluation of the performance of the MVSEM relies on the rolling window 

procedure as described in [11,12,42,43]. In these procedure, firstly the sample mean, 

variance-covariance and skewness are estimated using an estimation window of W  = 120 or 150 

monthly data. Secondly, we compute the portfolio weights according to each considered portfolio 

model (EWM, MinV and MVM, MVSM and MVSEM) using these sample estimates. Then, we repeat 

this procedure for the next period, by dropping the data for the earliest period and including the new 

data for the next period. We continue applying this procedure until the end of the data is reached. At 

the end of the procedure, we have obtained L W−  portfolio weight vectors for each model, where L  is 
the total number of samples in the data set. Using these portfolio weight vectors x T

t , ,..., 1t W L= − , 
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the out-of-sample return of portfolio in period 1t + , denoted by , 1
ˆ

p tR + , is calculated by , 1 1
ˆ x T

p t t tR r+ += , 

where tr  denotes the return vector in period 1t + . Thus, the outcome of this rolling-window  

procedure is a sequence of L W−  monthly out-of-sample returns generated by each of the considered 

portfolio models.  

Based on this sequence of L W−  monthly out-of-sample returns, the SR, ASR, MADR, SSR, FTR 

and GRR measures mentioned in Section 4.1 are calculated to evaluate the performance of the 

MVSEM relative to EWM, MinV and MVM and MVSM. Furthermore, we consider the portfolio 

turnover (PT) [12,42,43] as a measure of the magnitude of the transaction cost corresponding to 
models and we also use Jobson and Korkie’ test statistic ( JKz ) [49,50] to evaluate the statistical 

significance for the difference in Sharpe ratios among the models considered in this study.  

In line with [12,42,43], the PT is defined as the average absolute change in the weights and its 

formula is given as follows:  
1

, 1 ,
1

1
PT

1

L n

i t i t
t W i

x x
L W

−

+
= =

= −
− −  , (25)

where ,i tx and , 1i tx +  are the portfolio weights in asset i in period t  and 1t + , respectively. 

In order to evaluate the difference in Sharpe ratios statistically, we use the JKz  test statistic 

proposed by [49] after making the correction suggested by [50]. Let a  and b  be two portfolio 
selection models that generates two Sharpe ratios aSR  and bSR , respectively. The test statistic for 

a bSR SR−  is asymptotically normally distributed with mean zero and variance ϑ : 

2 2 2
, ,

1 1
2 2 ( 2 )

2a b a b a b a bSR SR SR SR
L W

ϑ ρ ρ = − + + − −  
 (26)

where ,a bρ  is the correlation coefficient between portfolio returns obtained from a  and b  models. 

Thus, the JKz  test statistic for difference in Sharpe ratios is calculated as follows: 

( )a b
JK

SR SR
z

ϑ
−=  (27)

In this study, the p-value corresponding to the JKz  test statistic will be calculated for each model 

with respect to the EWM, which is taken as a benchmark due to its easy implementation and 

widespread use. Additionally, in the literature, [11,12,40] show that the EWM outperforms MVM for 

the out-of-sample case.  

5. The Empirical Study  

In this section, we give the descriptions of empirical datasets used in this study and present the 

results of the empirical study  

5.1. Data Description  

Three empirical datasets are considered in the empirical evaluation of the MVSEM. The first 

considered dataset consists of monthly returns on 20 industry portfolios in the United States and they 

are taken from Kenneth French’s web site [51]. The 20 industries considered are Games, Books, 
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Apparel, Chemicals, Construction, Steel, Fabricated Products, Electrical Equipment, Automotive, 

Carry, Telecommunications, Services, Business Equipment, Paper, Transportation, Wholesale, Retail, 

Meals, Finance and others. The period of dataset is from January 1993 to December 2007 (L = 180 

monthly observations). 

The second dataset consists of monthly seven international equity indexes, which are taken from 

Morgan Stanley web site [52], US, UK, Japan, Germany, France, Italy, and Canada (G-7 countries) for 

the period from January 1970 to September 2010 (L = 489 monthly observations).  

Last dataset includes monthly returns of 15 assets, which are traded on the Istanbul Stock Exchange 

(ISE) in Turkey, from different sectors: Financial Institutions, Manufacturing Industry and Technology 

sectors. The dataset are taken from the ISE web site [53]. The dataset period is from January 1994 to 

December 2007 (L = 168 monthly observations). 

It should be emphasized that all these datasets are adjusted for capital splits and stock dividends. The 

summary statistics for these datasets are presented in Table 1, 2 and 3, respectively. 

Table 1. Descriptive statistics and normality test results for industry dataset.  

Portfolio Mean Variance Skewness Kurtosis JB Test 
X1 0.0102 0.0034 −0.5559 1.3831 23.6184 
X2 0.0075 0.0017 0.1444 0.5086 2.5656 
X3 0.0071 0.0033 −0.3311 2.4903 49.8034 
X4 0.0096 0.0023 0.2047 1.6211 20.9661 
X5 0.0096 0.0025 −0.5567 1.1828 19.7904 
X6 0.0121 0.0062 0.1268 1.7839 24.3485 
X7 0.0127 0.0037 −0.3756 1.0758 12.9134 
X8 0.0148 0.0033 −0.2002 0.2437 1.6479 
X9 0.0075 0.0042 −0.2532 0.7203 5.8153 
X10 0.0140 0.0032 −0.7880 2.3812 61.1530 
X11 0.0064 0.0029 −0.0366 1.5864 18.9161 
X12 0.0109 0.0050 −0.1061 0.8156 5.3264 
X13 0.0133 0.0076 −0.4505 1.3098 18.9553 
X14 0.0082 0.0021 0.0259 1.6327 20.0137 
X15 0.0084 0.0023 −0.4984 1.3597 21.3170 
X16 0.0071 0.0019 −0.5083 1.4661 23.8741 
X17 0.0082 0.0025 −0.0993 0.3521 1.2258 
X18 0.0089 0.0023 −0.4481 0.7969 10.7884 
X19 0.0113 0.0022 −0.3932 2.8659 66.2398 
X20 0.0040 0.0026 −0.3992 2.1389 39.0915 

Note: Mean, variance, skewness and kurtosis values of the returns are presented under the title of 
descriptive statistics; JB is value of Jarque-Bera test for normality. JB test statistic has a Chi-square 
distribution with two degrees of freedom. JB test has critical value of 5.99 at 5% level of significant. 
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Table 2. Descriptive statistics and normality test results for international dataset. 

Portfolio Mean Variance Skewness Kurtosis JB Test 
X1 0.007 0.002 −0.664 2.424 155.670 
X2 0.008 0.003 −0.891 3.494 313.363 
X3 0.008 0.004 −0.446 1.571 66.500 
X4 0.007 0.004 −0.635 1.932 108.918 
X5 0.004 0.005 −0.116 0.800 14.146 
X6 0.007 0.004 −0.012 0.573 6.698 
X7 0.008 0.004 0.333 5.537 633.630 

 

Table 3. Descriptive statistics and normality test results of ISE dataset. 

Portfolio Mean Variance Skewness Kurtosis JB Test 
X1 0.043 0.027 0.262 1.143 11.059 
X2 0.031 0.060 0.227 1.365 14.482 
X3 0.037 0.035 −0.455 2.855 62.845 
X4 0.041 0.042 −0.077 0.928 6.191 
X5 0.040 0.043 0.354 2.233 38.410 
X6 0.035 0.041 0.261 1.307 13.875 
X7 0.036 0.035 0.081 1.253 11.181 
X8 0.038 0.044 −0.258 3.476 86.450 
X9 0.040 0.046 −0.367 1.403 17.551 
X10 0.033 0.045 −0.055 1.979 27.492 
X11 0.038 0.034 0.152 2.094 31.333 
X12 0.023 0.039 0.263 1.475 17.156 
X13 0.036 0.041 0.690 2.042 42.549 
X14 0.025 0.045 0.794 3.120 85.785 
X15 0.029 0.036 0.562 1.852 32.857 

 

The statistics in Table 1, 2 and 3 give some insight into the characteristics of the return data. As can 

be seen from these tables, the Jack-Bera test for the most of return distribution of three empirical 

datasets reject the null hypothesis for normality at the 5% significance level.  

5.2. Results of the Empirical Study 

In the empirical study, we choose different values of 1 2 3( , , )λ λ λ  in MVSEM, which can be 

interpreted as risk preference of investors such as (1 2,0,1 2),  (0,1 2,1 2), (2 4,1 4,1 4),  

(1 4, 2 4,1 4) , (1 4,1 4, 2 4) , (1 3,1 3,1 3)  as parallel in the studies [2,4,54]. It is known that the 

results of MVSEM with (1 2,1 2,0)  are equal to that with (1,1,0)  when used with the weighted sum 

method [46,47]. Therefore, in MVSEM, when ( 1 2 3, ,λ λ λ ) are taken as (1 2, 1 2, 0) , the MVSM is 

obtained. In other words, while equal weights are assigned to variance and skewness, entropy is 

weighted at zero. Likewise, the choice of (1 3,1 3,1 3)  indicates that variance, skewness and entropy 

are of equal importance to investors.  

We evaluate empirically the performances of the MVSEM with the chosen 1 2 3( , , )λ λ λ  relative to 

the EWM, MinVM, MVM and MVSM using 20 industry portfolios, 7 international portfolios, 15 ISE 
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portfolios. However, since the qualitative results regarding the MVSEM with (2/4,1/4,1/4),  

(1/4,2/4,1/4), (1/4,1/4,2/4) are quite similar to the MVSEM with (1/3,1/3,1/3), we report the results 

only for the MVSEM with (1/3,1/3,1/3) in this study. The results for the other values of 1 2 3( , , )λ λ λ  are 

available from authors. 

All computations needed in the empirical study are conducted using the MATLAB program. It is 

also emphasized that the average CPU time to obtain portfolios via the MVSEM increases rapidly as 

the sample size and the number of assets increase due to the MVSEM’s computational complexity and 

the long computing time needed. 

For the industry dataset, we present the results for window length W = 120 in Table 4. As seen in 

this table, the all considered the MVSEMs provide best results in terms of all performance measures 

except GRRs, which favor the EWM. Moreover, it should be noted about Table 4 that the MVM, 

MinVM and MVSM show the worst performance with respect to all considered performance 

measures. On the other hand, it is seen that the PT values of portfolios obtained from the MVSEMs are 

less than that of the MVM, MinVM and MVSM. This is a natural result since the resulting portfolios 

from MVSEMs shrink towards the equally-weighted portfolio due to entropy term. Moreover, the  

p -values for the differences in Sharpe ratios show that while the difference for the MVSEMs are not 

statistically significant at 5% level, that for the MVM and MVSM is statistically significant.  

Table 5 presents the results of industry dataset for window length W = 150. It can be observed that 

the MVSEMs performs better than MVM, MinV and MVSM according to all considered performance 

measures except GRR (0.5,2). Taking into consideration the performance of the EWM, the EWM works 

better than MVSEMs according to only the SSR and GRRs. In terms of the PT, it is seen from Table 5 

that the values of PT of all MVSEMs are smaller than the MVM, MinVM and MVSM. 

In Tables 6 and 7, we present the results of international dataset for W = 120 and 150, respectively. 

Taking into account the results of Table 6 and 7 together, it is seen that the MVSEMs outperform the 

considered other models in terms of the most of the performance measures. Comparing the PT for the 

models, we observe that the values of PT for the MVSEMs are substantially less than that for the 

others. On the other hand, the p-values for the differences in Sharpe ratios show that none of the 

models yield significantly different the SR with respect to the EWM.  

The results for the ISE dataset are showed in Tables 8 and 9 for window length W = 120 and 150, 

respectively. The obtained results for W = 120 show that the MVSEMs are able to provide a good 

performance relative to the EWM, MVM, MinVM and MVSM in terms of most of performance 

measures. Besides, for W = 150, the MVSEMs significantly outperform the other portfolio models 

according to all considered performance measures. Furthermore, the MVSEMs yield the lowest values 

of the PT for W = 120 and 150. 

Overall, we can say that portfolios obtained from the MVSEMs perform better in terms of variety 

portfolio performance measures than the EWM, MinVM, MVM and MVSM. Besides, the MVSEMs 

are able to provide smaller PT when compared to the other models. 
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Table 4. The results of portfolio performance measures for industry dataset and W = 120. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.3776 0.3809 0.4672 1.0923 0.2451 1.4576 2.5817 114.71 9.6396 1.6717 – – 

MinVM 0.3157 0.3160 0.3954 0.8287 0.2015 1.2453 2.2020 108.64 7.5617 1.4303 0.1106 0.0524 

MVM 0.3007 0.3005 0.3808 0.7745 0.1936 1.2026 2.1344 100.06 6.9410 1.3627 0.1798 0.0380 

MVSM 0.2885 0.2883 0.3641 0.7348 0.1887 1.1768 2.0653 99.89 6.8775 1.3541 0.1693 0.0227 

MVSEM(1/2,0,1/2) 0.3820 0.3854 0.4763 1.1032 0.2486 1.4581 2.6123 110.97 9.3111 1.6435 0.0539 0.6877 

MVSEM(0,1/2,1/2) 0.3824 0.3858 0.4768 1.1049 0.2489 1.4590 2.6148 110.73 9.3038 1.6436 0.0541 0.7046 

MVSEM(1/3,1/3,1/3) 0.3822 0.3855 0.4764 1.1031 0.2486 1.4582 2.6122 110.98 9.3115 1.6435 0.0539 0.6873 
Note: The SR, ASR, MADR and SSR denote the Sharpe ratio, adjusted for skewness Sharpe ratio, mean absolute deviation ratio, Sortino-Satchell ratio, 
respectively. FTR(u,v) denotes the generalized Farinelli-Tibiletti ratio with different values of u and v. GRR(δ,γ) denotes the generalized Rachev ratio with 
different values of δ and γ at quantile level α,β = 0.05. The PT denotes portfolio turnover. The p-value gives probability value corresponding to zJK test 
statistics of the difference between the Sharpe ratio of each models from that of the EWM benchmark. The null hypothesis of the test is that the difference 
between Sharpe ratios is zero. 

 

Table 5. The results of portfolio performance measures for industry dataset and W = 150. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.3441 0.3381 0.4234 1.4145 0.0543 1.0790 2.3529 69.8352 3.7987 0.9413 – – 

MinVM 0.2447 0.2416 0.2975 0.9225 0.0418 0.9083 1.8224 67.8758 3.5597 0.9029 0.2370 0.0299 

MVM 0.1819 0.1798 0.2258 0.6328 0.0373 0.7791 1.5633 67.7187 3.3612 0.8654 0.2448 0.0008 

MVSM 0.1715 0.1697 0.2117 0.5948 0.0352 0.7713 1.5259 69.5960 3.4701 0.8816 0.1636 0.0005 

MVSEM(1/2,0,1/2) 0.3448 0.3395 0.4248 1.3693 0.0546 1.0792 2.3610 66.1523 3.5817 0.9237 0.0373 0.2721 

MVSEM(0,1/2,1/2) 0.3452 0.3404 0.4258 1.3737 0.0546 1.0793 2.3618 65.9892 3.5753 0.9231 0.0374 0.3005 

MVSEM(1/3,1/3,1/3) 0.3450 0.3397 0.4251 1.3692 0.0545 1.0790 2.3609 66.1638 3.5822 0.9238 0.0374 0.2718 
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Table 6. The results of portfolio performance measures for international dataset and W = 120. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.1543 0.1505 0.2082 0.1248 1.8625 1.0392 1.5038 18.4701 1.7883 0.7751 – – 

MinVM 0.1691 0.1637 0.2266 0.1357 1.9361 1.0398 1.5588 19.4430 1.6470 0.7289 0.1199 0.6527 

MVM 0.1495 0.1456 0.1997 0.1204 1.8745 1.0318 1.4785 19.4162 1.8105 0.7912 0.1405 0.3722 

MVSM 0.1491 0.1452 0.1995 0.1200 1.8652 1.0296 1.4781 19.3950 1.7964 0.7864 0.1371 0.3692 

MVSEM(1/2,0,1/2) 0.1692 0.1657 0.2278 0.1211 1.8278 1.0407 1.4823 19.5161 1.8915 0.8122 0.0694 0.6601 

MVSEM(0,1/2,1/2) 0.1692 0.1656 0.2275 0.1209 1.8274 1.0407 1.4821 19.5121 1.8919 0.8123 0.0694 0.6577 

MVSEM(1/3,1/3,1/3) 0.1695 0.1659 0.2287 0.1213 1.8279 1.0414 1.4825 19.5166 1.8925 0.8123 0.0691 0.6600 
 

Table 7. The results of portfolio performance measures for international dataset and W = 150. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.1738 0.1688 0.2363 0.1655 1.2311 1.0132 1.5858 19.1082 1.8555 0.7980 – – 

MinVM 0.1786 0.1724 0.2422 0.1677 1.2665 0.9970 1.6000 19.8151 1.7237 0.7517 0.1063 0.6392 

MVM 0.1696 0.1648 0.2269 0.1611 1.2429 1.0123 1.5570 20.1864 1.8797 0.7968 0.1032 0.3820 

MVSM 0.1693 0.1648 0.2263 0.1615 1.2388 1.0180 1.5559 20.9188 1.9436 0.8084 0.1461 0.3729 

MVSEM(1/2,0,1/2) 0.1787 0.1725 0.2428 0.1698 1.2484 1.0368 1.5870 20.9453 1.9941 0.8213 0.0652 0.6456 

MVSEM(0,1/2,1/2) 0.1786 0.1724 0.2428 0.1697 1.2483 1.0369 1.5873 20.9437 1.9945 0.8214 0.0652 0.6449 

MVSEM(1/3,1/3,1/3) 0.1789 0.1726 0.2432 0.1701 1.2486 1.0373 1.5875 20.9460 1.9952 0.8216 0.0650 0.6455 
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Table 8. The results of portfolio performance measures for ISE dataset and W = 120. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.3701 0.3605 0.4461 1.0448 0.1781 1.2098 2.3632 26.8589 3.6586 1.1685 – – 

MinVM 0.3563 0.3472 0.4286 0.9790 0.1779 1.1624 2.2576 31.3438 4.4686 1.2872 0.1704 0.3994 

MVM 0.3892 0.3782 0.4577 1.1198 0.1797 1.2606 2.4595 31.9823 4.3659 1.2691 0.1954 0.6552 

MVSM 0.3759 0.3652 0.4517 1.0613 0.1759 1.2183 2.3907 29.6981 3.8523 1.1747 0.2108 0.5471 

MVSEM(1/2,0,1/2) 0.3910 0.3803 0.4721 1.1310 0.1848 1.2621 2.5055 28.5031 3.7766 1.2962 0.0993 0.8928 

MVSEM(0,1/2,1/2) 0.3897 0.3798 0.4711 1.1293 0.1846 1.2624 2.5019 28.4221 3.7844 1.2993 0.0982 0.8762 

MVSEM(1/3,1/3,1/3) 0.3915 0.3808 0.4727 1.1321 0.1857 1.2625 2.5060 28.5150 3.7781 1.2967 0.0990 0.8829 
 

Table 9. The results of portfolio performance measures for ISE dataset and W = 150. 

Models SR ASR MADR SSR FTR(0.5,2) FTR(1.5,2) FTR(1,1) GRR(0.5,2) GRR(1.5,2) GRR(1,1) PT p-value 

EWM 0.3962 0.3940 0.5038 2.3084 0.0317 1.1254 2.7379 77.8862 8.0211 1.6044 – – 

MinVM 0.3867 0.3710 0.5191 1.9718 0.0300 0.9582 2.5791 24.7371 2.7496 0.9575 0.1761 0.4645 

MVM 0.4740 0.4645 0.6001 2.9144 0.0343 1.3085 3.2330 53.0313 4.9134 1.2229 0.1986 0.8267 

MVSM 0.4183 0.4129 0.5300 2.4419 0.0336 1.1570 2.7795 60.0778 5.4989 1.2898 0.1961 0.6347 

MVSEM(1/2,0,1/2) 0.4807 0.4673 0.6046 2.9134 0.0359 1.3220 3.2437 88.0680 9.5432 1.7751 0.1275 0.8477 

MVSEM(0,1/2,1/2) 0.4785 0.4649 0.6045 2.9239 0.0350 1.3140 3.2396 85.0866 9.2271 1.7431 0.1256 0.8308 

MVSEM(1/3,1/3,1/3) 0.4837 0.4683 0.6054 2.9421 0.0356 1.3316 3.2492 89.1761 9.6398 1.7799 0.1268 0.8466 
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6. Conclusions 

We present a multi-objective model which includes mean, variance, skewness of the portfolio as 

well as the entropy of portfolio weights and compare its performance with traditional models. This 

comparison is made using three different empirical datasets. As a result, we find that the performance 

of the MVSEM is better than the considered other models in terms of a variety of portfolio 

performance measures. Moreover, the MVSEM is able to provide smaller portfolio turnover in 

comparison to the other models, thus, it means that the transaction costs associated with the 

implementation of MVSEM are the lowest. 
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