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Abstract: The concept of effective complexity of an object as the minimal description

length of its regularities has been initiated by Gell-Mann and Lloyd. The regularities are

modeled by means of ensembles, which is the probability distributions on finite binary

strings. In our previous paper [1] we propose a definition of effective complexity in precise

terms of algorithmic information theory. Here we investigate the effective complexity of

binary strings generated by stationary, in general not computable, processes. We show that

under not too strong conditions long typical process realizations are effectively simple. Our

results become most transparent in the context of coarse effective complexity which is a

modification of the original notion of effective complexity that needs less parameters in its

definition. A similar modification of the related concept of sophistication has been suggested

by Antunes and Fortnow.

Keywords: effective complexity; Kolmogorov complexity; Shannon entropy; computable

stationary processes; coarse effective complexity
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1. Introduction

The concept of effective complexity has been initiated by Gell-Mann and Lloyd in [2], see also [3].

The main motivation was to define a complexity measure that distinguishes between regular and random

aspects of a given object typically encoded as a binary string. This is in contrast to Kolmogorov

complexity which is not sensitive to the source of incompressibility and in this sense fails to capture

what is meant by complexity in the common language.

The main idea underlying the concept has been considered at different places in the literature,

see [4–10]. It may be summarized as follows. One considers programs computing a given binary string

as consisting of two parts: the implementation of an algorithm and a valid input for that algorithm. Then

the corresponding measures of complexity refer to the algorithm part.

In [2] the algorithm part has been motivated as a description of a physical theory-represented by a

probability distribution on finite binary strings, while the second part has been used to distinguish one

among all possible objects contained in the (typical) support of the distribution. Effective complexity

is equal to the length of the algorithm/theory part which is minimized over the set of programs that

compute the string and that are almost minimal, i.e., their length is close to the Kolmogorov complexity

of the string.

In [1] we have proposed a definition of effective complexity in precise terms of algorithmic

information theory. Our formalization allows to include the concept into the context of algorithmic

statistics, which also deals with two-part codings of binary strings [5]. Instances of corresponding

measures of complexity are Kolmogorov minimal sufficient statistics and sophistication [5,10]. Roughly

speaking, while Kolmogorov minimal sufficient statistics of a binary string x is the minimal algorithmic

statistic of x from the model class of finite sets, and sophistication refers to the model class of total

programs, effective complexity mainly coincides with the length of algorithmic statistics of x minimized

over computable probability distributions.

More precisely, the minimization domain of effective complexity consists of computable probability

distributions with total information which is approximately equal to the Kolmogorov complexity of the

string: the tolerance level being specified by a parameter Δ. Total information has been defined by

Gell-Mann and Lloyd in [2,3] as the sum of Kolmogorov complexity and Shannon entropy of a given

computable ensemble. It is worth mentioning that it is equivalent to the concept of physical entropy

introduced by Zurek for large physical systems such as thermodynamic engines [8].

Restricting the minimization domain of effective complexity by intersecting with subsets

corresponding to pre-knowledge about the object, which is subjective to the observer, one ends up with

a version of effective complexity with constraints. As far as we know, there is no literature other than

the papers by Gell-Mann and Lloyd [2], where the idea to incorporate subjective pre-knowledge into the

measure of complexity has been considered explicitly.

Compared to the effective complexity without constraints, which we will refer to as plain effective

complexity or simply effective complexity, this gives a larger value and is the reason why Gell-Mann and

Lloyd suggest to use the constrained version instead of the plain one: “If we impose no other conditions,

every entity would come out simple!”, see [2], (p. 392). This statement has to be contrasted with the fact

that there exist strings with large plain effective complexity, cf. Theorem 13 of our previous work [1]. See
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also corresponding results in the context of algorithmic statistics and sophistication, Theorem 2.2 in [5]

and Theorem 6.5 in [6], respectively. Hence, the above conviction can be substantiated only in a weaker

version referring to some typical behaviour. In the present contribution, we find a framework to this

end in the form of almost sure statements in terms of probability theory. The focus is on mathematical

foundations for the concept of effective complexity. In particular, we extend the analysis of [1] to the

context of asymptotic behaviour.

In more detail, we investigate discrete-time stochastic processes with binary state space in the context

of effective complexity as it has been defined in [1]. In addition to proving that typical strings are

simple with respect to the plain effective complexity, our results also allow a deeper understanding

of the dependence of effective complexity on the parameter Δ. Recall that this parameter determines

the minimization domain consisting of computable ensembles with a total information that is Δ-close

to the Kolmogorov complexity of the string. A corresponding parameter also appears in the context

of sophistication and, more generally, algorithmic sufficient statistics [5,10]. Conceptually, it also

corresponds to the significance level of Bennett’s logical depth defined in [11]. The relation between

effective complexity and logical depth has been elaborated in [1].

In [10] Antunes and Fortnow suggested a modification of sophistication called coarse sophistication.

In an analogous way, we introduce coarse effective complexity. It modifies the original concept of plain

effective complexity by, roughly speaking, incorporating Δ into the definition as a further minimization

argument. As a consequence, the definition becomes independent of the choice of this parameter. Our

main results on effective complexity have direct implications on the asymptotic behaviour of coarse

effective complexity. In particular, for an arbitrary stationary process the value of coarse effective

complexity of a typical finite string is asymptotically upper bounded by any linear function of a

string’s length.

After fixing notations and the mathematical framework in Section 2, we formulate and prove our main

result, Theorem 1, in Section 3. It states that sufficiently long typical strings generated by a stationary

process are effectively simple. The proof relies on the observation that the total information of uniform

distributions on universally typical subsets is upper bounded by a value that exceeds the Kolmogorov

complexity of a typical string by any linear growing amount in the string’s length. In Section 4 we

introduce the concept of coarse effective complexity. We show that strings of moderate value of coarse

effective complexity exist, see Theorem 3, and derive from our main theorem an upper bound on coarse

effective complexity of long typical realizations of a stationary process, see Theorem 4. Finally, Section 5

contains some conclusions and an outlook for further analysis of effective complexity in its constrained

version.

2. Notations and Preliminaries

We denote by {0, 1}∗ the set of finite binary strings, i.e., {0, 1}∗ = {λ}∪⋃
n∈N{0, 1}n, where λ is the

empty string, while the set of doubly infinite sequences (. . . , x−1, x0, x1, . . .) with xi ∈ {0, 1}, i ∈ Z, is

denoted by {0, 1}∞. We write �(x) for the length of x ∈ {0, 1}∗. Finite blocks xn
m = (xm, xm+1, . . . , xn),

m ≤ n, of x ∈ {0, 1}∞ are elements of {0, 1}∗ of length �(xn
m) = n−m+1. We may identify them with

cylinder sets [xn
m] : = {y ∈ {0, 1}∞ : yi = xi,m ≤ i ≤ n}. In a similar fashion, strings x ∈ {0, 1}∗

are associated to cylinder sets of the form [x] : = {y ∈ {0, 1}∞ : yi = xi, 1 ≤ i ≤ �(x)}. The
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σ-algebra on {0, 1}∞ generated by the cylinder sets [xn
m], m,n ∈ Z, m ≤ n, is denoted by Σ. We write

T ({0, 1}∞) for the convex set of probability measures on ({0, 1}∞,Σ), which are invariant with respect

to the left-shift T on {0, 1}∞. The subset of ergodic T -invariant probability measures, i.e., the extremal

points in T ({0, 1}∞), is denoted by E({0, 1}∞).

Let P ∈ T ({0, 1}∞). The random variables Xi, i ∈ Z, given by the coordinate projections

Xi(x) : = xi, x ∈ {0, 1}∞, respectively, represent a stationary process with values in {0, 1}. Typical

outcomes of such stochastic processes are the main focus in the present paper. The goal is to estimate

their effective complexity. We will refer to elements of T ({0, 1}∞) as stationary probability measures

and stationary stochastic processes interchangeably.

Adopting the setup of [1] as far as possible, we refer to probability distributions on {0, 1}∗
as ensembles.

For each n ∈ N we identify the joint distribution (alternatively called n-block distribution) P (n) of n

successive outcomes (X1, X2, . . . , Xn) of a stationary process with an ensembles En on {0, 1}∗ through

the relation: En(x) = P (n)(x) if �(x) = n and En(x) = 0 otherwise.

Recall the definition of prefix Kolmogorov complexity K(x) of a binary string x ∈ {0, 1}∗:

K(x) : = min{�(p) : U(p) = x}

where U is an arbitrary but fixed universal prefix computer. For details concerning the basics as well as

deeper results on Kolmogorov complexity theory we refer to the book by Li and Vitányi [12].

We call an ensemble computable if there exists a program for the universal computer U that, given

x ∈ {0, 1}∗ and m ∈ N as inputs, computes an approximation of the probability E(x) with accuracy of

at least 2−m.

In [1] we have introduced an extension of the notion of Kolmogorov complexity to the case of

computable ensembles E with computable and finite entropies H(E). Here we mean by entropy H(E)

the Shannon entropy of the probability distribution E defined by −∑
x∈{0,1}∗ E(x) logE(x). Note that

a computable ensemble does not necessarily have a computable entropy, such that the corresponding

requirement is a restriction, see [1] for details. In what follows a distinction only between general

ensembles and computable ones with computable and finite entropies is drawn. We will refer to the

latter ones as computable for short.

The Kolmogorov complexity K(E) of a computable ensemble E is defined as the length of the shortest

computer program that, given x ∈ {0, 1}∗ and m ∈ N as inputs, outputs both E(x) and H(E) with an

accuracy of at least 2−m.

Additionally, we need to define computability of stochastic processes. The following definition is a

reformulation of the notion of a “computable measure” in [12].

A stationary process P is called computable if there exists a program p ∈ {0, 1}∗ for a universal

computer U that, given x ∈ {0, 1}∗ and m ∈ N as inputs, computes the probability P ([x]) up to

accuracy 2−m.
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3. Effective Complexity of Stationary Processes

The goal is to show that under not too strong conditions long typical samples of stationary processes

are effectively simple. Before we make rigorous statements we need a number of definitions. The first

ones we adopt from our previous paper [1].

Let δ ≥ 0. We say that an ensemble E is δ-typical for a string x ∈ {0, 1}∗, or alternatively, we call x

δ-typical for E, if the Shannon entropy H(E) of E is finite and

− logE(x) ≤ H(E)(1 + δ)

In particular, the special case of an equidistributed ensemble is δ-typical for all strings in the support

and any δ ≥ 0 The total information Σ(E) of a computable ensemble E is defined by

Σ(E) : = H(E) +K(E)

For a motivation of the two definitions above, see [1].

Let δ ≥ 0 and Δ > 0. Effective complexity Eδ,Δ(x) of a finite string x ∈ {0, 1}∗ is defined by

Eδ,Δ(x) : = min{K(E) : E ∈ Pδ,Δ(x)}

where Pδ,Δ(x) denotes the minimization domain associated to x:

Pδ,Δ(x) : = {E : E computable ensemble,E δ-typical for x, Σ(E) ≤ K(x) + Δ} (1)

We refer to elements of Pδ,Δ(x) as effective ensembles for x.

Taking the point of view of [2], which was reviewed in [1], effective ensembles represent theories that

are judged to be good explanations for the appearance of x.

The more general notion of effective complexity with constraints has been suggested in [2] mainly to

circumvent problems of plain effective complexity. We have discussed them shortly in the Introduction.

The main idea is that the constraints reflect some pre-knowledge about the possible theory for x. In [1]

we have proposed a formalization of the constrained version in the following manner:

Eδ,Δ(x| C) : = min{K(E) : E ∈ Pδ,Δ(x),E ∈ C}

where C is a subset of P({0, 1}∗). Note that with C = P({0, 1}∗) we have Eδ,Δ(x) = Eδ,Δ(x|C), for all

x ∈ {0, 1}∗.
In what follows other essential concepts are that of typical and/or universally typical subsets.

Let P be a T -invariant probability measure on ({0, 1}∞,Σ). We call a sequence of subsets Mn ∈ Σ,

n ∈ N, P -typical if

lim
n→∞

P (Mn) = 1

We call (Mn) strongly P -typical if for P -almost all x there exists an Nx ∈ N such that

x ∈ Mn for every n ≥ Nx

The above notions of typicality apply naturally to sequences Mn ⊆ {0, 1}n, n ∈ N, if we identify

subsets Mn, n ∈ N, with cylinder sets [Mn] ⊆ {0, 1}∞, respectively.
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Let Λ be a set of stationary processes with values in {0, 1}. We call Mn ⊆ {0, 1}n, n ∈ N, universally
typical for Λ if the sequence is P -typical for every P ∈ Λ, i.e., limn→∞ P (n)(Mn) = 1. We call the

sequence universally strongly typical for Λ if it is strongly P -typical for every P ∈ Λ.

For sets Λr ⊆ E({0, 1}∞) consisting of ergodic processes with entropy rate upper bounded by r > 0

there exist universally typical subsets Tr,n ⊆ {0, 1}n with

|Tr,n| ≤ 2rn (2)

for all n ∈ N. Moreover, there are methods to construct such sequences of universally typical subsets

for Λr. We will apply the Lempel-Ziv algorithm in the construction procedure below. This famous

algorithm represents a universal sequential data compression, see [13–15]. The main point is that all

we need to know about an ergodic process P is its entropy rate hP . This allows to prove the following

theorem for stationary, in general not computable processes.

Theorem 1. Let P be a stationary process, δ ≥ 0, ε > 0 and Δn = εn. Then P is effectively

simple in the sense that for P -almost every x,

Eδ,Δn(x
n
1 )

+
< log n+O(log log n) (3)

Proof. Firstly, assume that P is an ergodic process with entropy rate hP . We construct universally typical

subsets Tr,n ⊆ {0, 1}n, n ∈ N, such that for an appropriate choice of the parameter r = r(hP , ε) the

total information of the uniform distributions Er,n on Tr,n ⊆ {0, 1}n, respectively, is upper-bounded by

K(xn
1 )+Δn of P -almost every x ∈ {0, 1}∞ and for n large enough. Hence the Kolmogorov complexity

of Er,n, which is approximately upper bounded by log n, gives an estimate from above on the effective

complexity Eδ,Δn(x
n
1 ) of sufficiently long P -typical strings xn

1 .

First, let r > 0 be arbitrary and define for each n ∈ N the subset Tr,n ⊆ {0, 1}n as the set consisting

of all binary strings xn
1 which are mapped by the Lempel-Ziv (LZ) algorithm to a code word of length

�LZ(x
n
1 ) lower than nr. Then the sequence Tr,n, n ∈ N, is universally typical for the set Λr of ergodic

processes with entropy rates lower than r.

Recall the following remarkable property of the LZ algorithm: For every ergodic process Q with

entropy rate hQ it holds limn→∞ 1
n
�LZ(x

n
1 ) = hQ for Q-almost all x ∈ {0, 1}∞. This implies that indeed

the subsets Tr,n as constructed above are typical for any ergodic Q with hQ < r.

The upper bound (2) on the size |Tr,n| follows from the fact that the LZ algorithm is a faithful coder.

Hence the codeword lengths satisfy the Kraft inequality:

1 ≥
∑

xn
1∈{0,1}n

2−�LZ(xn
1 ) ≥

∑
xn
1∈Tr,n

2−�LZ(xn
1 )

≥
∑

xn
1∈Tr,n

2−nr = |Tr,n|2−nr

Next, we show that if r is chosen to be a positive rational number satisfying 0 < r − hP < ε/4 then

for P -almost every x ∈ {0, 1}∞ there exists an Nx ∈ N such that

Σ(Er,n) ≤ K(xn
1 ) + Δn for every n ≥ Nx (4)
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where again Er,n denotes the uniform distribution on the universally typical subset Tr,n. First note that

for all n ∈ N

H(Er,n) = log |Tr,n| ≤ rn

Secondly, we prove that there is a constant c ∈ N such that for all n ∈ N

K(Er,n) ≤ K(n) +K(r) + c (5)

This is derived from the existence of a program p of length c which expects as inputs n ∈ N, r ∈ Q

and x ∈ {0, 1}∗ and outputs the value 1
|Tr,n| if x ∈ Tr,n ⊆ {0, 1}n and 0 otherwise. Thus for fixed inputs

n and r it gives a description of the uniform distribution Er,n on Tr,n.

Indeed, p may be constructed on the base of a program pLZ implementing the Lempel-Ziv (LZ)

algorithm on the given reference universal computer U . For given inputs n and r let p apply pLZ as a

subroutine in order to determine elements of Tr,n. Then for fixed n ∈ N the number |Tr,n| and hence the

probability value 1/|Tr,n| of each x ∈ Tr,n may be calculated easily.

To specify r ∈ Q and n ∈ N a number of K(r) + K(n) bits is sufficient. With c = �(p) the

estimate (5) follows.

Next, fix an N ∈ N such that K(n) +K(r) + c ≤ ε
4
n for all n ≥ N . Then

Σ(Er,n) ≤ nr +K(n) +K(r) + c ≤ n
(
r +

ε

4

)
≤ n

(
h+

ε

2

)
(6)

where the last inequality holds by assumption r−h < ε
4
. According to the theorem by Brudno, see [16],

for P -almost all x there exists an Nx,ε ∈ N such that K(xn
1 ) ≥ n(h− ε

2
) for all n ≥ Nx,ε. It follows for

Δn = εn

K(xn
1 ) + Δn ≥ n

(
h+

ε

2

)
, n ≥ Nx,ε (7)

Relations (6) and (7) together imply (4) for P -almost all x and n ≥ Nx : = max{Nx,ε, N}. It follows

that P -almost surely the effective complexity Eδ,Δn(x
n
1 ) is upper bounded by the Kolmogorov complexity

of Er,n for n ≥ Nx:

Eδ,Δn(x
n
1 ) ≤ K(Er,n) ≤ K(n) +K(r) + c

+
< log n+O(log log n)

Now let P be an arbitrary stationary process. Recall that there is a unique ergodic decomposition of P

P =

∫
E({0,1}∞)

Qdμ(Q)

Moreover, to P -almost every x ∈ {0, 1}∞ we may associate an ergodic component Qx of P such that x

is a typical element of Qx. Then there exists an Nx,ε such that

K(xn
1 ) + Δn ≥ n

(
hx +

ε

2

)
, n ≥ Nx,ε

where hx denotes the entropy rate of Qx. Hence the proof for the stationary case reduces to the ergodic

situation considered in the first part above.
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Finally, we remark that Theorem 1 applies to the large class of stationary processes. This covers,

in particular, the case of independent identically distributed processes, which represent the simplest

and at the same time one of the best studied classes of stochastic processes. Further, our theorem

is valid for stationary Markov chains. These represent another important and rather feasible class of

stationary processes.

4. Coarse Effective Complexity

Our main result becomes most transparent if presented in the context of coarse effective complexity.

This is a modification of plain effective complexity which incorporates the parameter Δ as a penalty

into the original formula. It is inspired by a corresponding modification of sophistication, called coarse

sophistication, which has been introduced by Antunes and Fortnow in [10].

Let δ ≥ 0. The coarse effective complexity Eδ(x) of a finite string x ∈ {0, 1}∗ is defined by

Eδ(x) : = min{K(E) + Σ(E)−K(x) : E is computable ensemble, E is δ − typical for x}
The term Σ(E) − K(x) accounts for the exact value by which the total information of an ensemble

E exceeds the Kolmogorov complexity of x. By definition of total information Σ(E) an equivalent

expression for Eδ(x) reads:

Eδ(x) = min{2K(E) +H(E)−K(x) : E is computable ensemble, E is δ − typical for x}
We derive the basic properties of coarse effective complexity similarly as it has been done in [10] in

the context of coarse sophistication. That is, firstly, in the proposition below, we prove an upper bound

on coarse effective complexity. Secondly, we show existence of strings which are close to saturate

this bound.

Proposition 2. Let δ ≥ 0. There is a constant c such that for all x ∈ {0, 1}∗ we have

Eδ(x) ≤
n

2
+ log n+ c (8)

where n = �(x).

Proof. Suppose that K(x) ≤ n
2
+ log n. Let Ex denote the ensemble with E(x) = 1 and E(y) = 0 for

y �= x. Note that Ex is trivially δ-typical for x for any δ ≥ 0 and obviously H(Ex) = 0. Moreover, there

is a constant c1 such that it holds K(Ex) ≤ K(x) + c1. This implies the upper bound

Eδ(x) ≤ 2K(Ex) + 0−K(x)

≤ K(x) + 2c1

≤ n

2
+ log n+ 2c1

where the last line holds by assumption.

Now, suppose that K(x) > n
2
+ log n. Let En be the ensemble on {0, 1}∗ given by En(y) =

1
2n

for all

y with �(y) = n and vanishing elsewhere. Then H(En) = n and there exists a constant c2, independent

of n, such that K(En) ≤ log n+ c2. It follows

Eδ(x) ≤ 2 log n+ 2c2 + n−K(x)

≤ n

2
+ log n+ 2c2
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where, again, the second line holds by assumption on K(x). Setting c : = max{2c1, 2c2} completes

the proof.

Theorem 3. Let δ ≥ 0. For every sufficiently large n ∈ N there exists a string x ∈ {0, 1}n with

Eδ(x) ≥ (1− 3δ)
n

2
− (2 + 3δ) log n− 2 log log n+ C (9)

where C is a global constant.

Proof. For x ∈ {0, 1}∗ and Δ ≥ 0 denote by EΔ
x the minimal ensemble associated to Eδ,Δ(x).

Due to Lemma 22 in [1] for every ε > 0 there exists a subset SΔ
x of {0, 1}∗ such that

log |SΔ
x | ≤ H(EΔ

x )(1 + δ) + ε (10)

K(SΔ
x ) ≤ K(EΔ

x ) + c1 (11)

where c1 is a global constant. In [1] we have proven the relation

K(x|SΔ
x , K(SΔ

x )) ≥
log |SΔ

x |
1 + δ

− log n− 2 log log n− ΛΔ (12)

which holds for arbitrary x ∈ {0, 1}n, n ∈ N. The term ΛΔ is constant in x ∈ {0, 1}∗ and monotonically

increasing in Δ, cf. (32) in [1]. Now, let Kn : = max{K(t)| t ∈ {0, 1}n} and define

k : = n− δ(Kn +Δn + ε) + log n+ 2 log log n− ΛΔn − c2

where Δn : = n
2
+ log n+ c is the upper bound on Eδ(x) obtained in the previous proposition, and c2 is a

global constant from Theorem IV.2 in [5], see also Lemma 12 in [1]. If n is large enough then 0 < k < n

holds, and Theorem IV.2 in [5] applies: There is a string xk ∈ {0, 1}n such that

K(xk|S,K(S)) < log |S| − n− k + c2 (13)

for every set S � xk with K(S) < k − c3, where c3 is another global constant. Let Ex denote the

minimizing ensemble associated to coarse effective complexity Eδ(x) and Δx : = K(Ex) + H(Ex) −
K(x) such that Eδ(x) = K(Ex) + Δx. Further, define Sx : = SΔx

x . We have the inequality

−δ(Kn +Δn + ε) ≤ −δ(K(xk) + Δx + ε)

≤ −δ (H(Exk
) + ε)

≤ −δ

(
H(Exk

) +
ε

1 + δ

)

=
−δ

1 + δ
(H(Exk

)(1 + δ) + ε)

≤
(

1

1 + δ
− 1

)
log |Sxk

|
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where the last upper bound holds by (10). Now suppose that K(Sxk
) < k − c1. Then

K(xk|Sxk
, K(Sxk

)) < log |Sxk
| − n+ k + c2

≤ log |Sxk
| − log n− 2 log log n

−ΛΔn − δ(Kn +Δn + ε)

≤ log |Sxk
|

1 + δ
− log n− 2 log log n

−ΛΔn

≤ log |Sxk
|

1 + δ
− log n− 2 log log n

−ΛΔxk

But the strict inequality is a contradiction to (12). Hence our assumption must be false and we instead

have K(Sxk
) ≥ k−c3. By Eδ(x) = K(Ex)+Δx and using both (11) and the bound Kn ≤ n+2 log n+γ,

where γ is a global constant, we finally obtain

Eδ(xk) = K(Exk
) + Δxk

≥ K(Sxk
)− c1 +Δxk

≥ k − c3 − c1 +Δxk

≥ n− δ

(
3

2
n+ 3 log n+ γ + c+ ε

)
− log n

−2 log log n− n

2
− log n− c− c2 − 1− c3 − c1

= (1− 3δ)
n

2
− (2 + 3δ) log n− 2 log log n+ C

where C : = −δ(γ + ε)− 1− (1 + δ)c− c1 − c2 − c3.

Although, according to the above theorem, for arbitrary large n the existence of strings of length

n with moderate coarse effective complexity is ensured, the coarse effective complexity of sufficiently

long prefixes of a typical stationary process realization becomes small. This is a direct implication of

Theorem 1.

Theorem 4. Let P be a stationary process, δ ≥ 0 and ε > 0. Then for P -almost every x

Eδ(xn
1 ) ≤ εn+ log n+O(log log n) (14)

Proof. By definition of coarse effective complexity, it holds Eδ(x) ≤ Δ+Eδ,Δ(x), for all x ∈ {0, 1}∗ and

Δ > 0. We set Δn = εn. Then the conditions of Theorem 1 are satisfied, and applying (3), we arrive

at (14).

5. Conclusions

In this contribution, we studied the notion of plain effective complexity, which is assigned to a

given string, within the context of an underlying stochastic process as model of the string generating

mechanism. In [1] we have shown that strings which are called “non-stochastic” in the context of

Kolmogorov minimal sufficient statistics have large value of plain effective complexity. The existence of
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such strings has been proven by Gács, Tromp and Vitányi in [5]. Here, our aim was to understand how

properties of the stochastic process such as ergodicity and stationarity influence the effective complexity

of corresponding typical realizations. Is it possible that the prefixes of a typical process realization

represent a sequence of finite strings in increasing length n that eventually have a high or moderate value

of effective complexity? Our main theorem refers to stationary and in general non-computable processes.

It proves that modelling the regularities of strings by computable ensembles with total information that

is allowed to excess the string’s Kolmogorov complexity up to a linearly growing amount εn with an

arbitrary small ε > 0 is sufficient for typically generating non-complex strings.

The value εn plays the role of a parameter in the concept of effective complexity. In order to have a

notion that is independent of this parameter we introduced coarse effective complexity. It corresponds to

coarse sophistication introduced by Antunes and Fortnow in [10] and modifies effective complexity by

incorporating the parameter as a further minimization argument. Our result on effective complexity has

a direct implication on the asymptotic behaviour of coarse effective complexity of typical realizations of

a stationary process. The main statement in this context demonstrates the utility of the linear parameter

scaling which we have considered. Moreover, it allows to analyze the interplay between the complexity

of a stochastic process and the complexity of its typical realizations. In particular, it demonstrates that,

in order to have a notion of effective complexity that also reflects the complexity of a stochastic process,

further modifications of plain effective complexity are necessary, for instance introduction of appropriate

constraints. This possibility is in line with Gell-Mann and Lloyd’s suggestion in [2] which we discussed

in the Introduction.

Finally, we point out that continuing our previous work [1] we have formulated our results for the

concept of effective complexity only. However, in line with the general equivalence statements obtained

in the literature, cf. Section V in [6] or Lemma 20 in [1], it should be possible to reformulate our main

theorem in the more general context of algorithmic statistics. Indeed, our upper bound on effective

complexity of typical process realizations is derived in terms of computable ensembles that are uniform

distributions on finite sets (universally typical subsets). This demonstrates the close relation in particular

to the concept of Kolmogorov minimal sufficient statistics which refers to the model class of finite sets.
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