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Abstract: This paper presents a taxonomy and overview of approaches to the measurement
of graph and network complexity. The taxonomy distinguishes between deterministic
(e.g., Kolmogorov complexity) and probabilistic approaches with a view to placing
entropy-based probabilistic measurement in context. Entropy-based measurement is the
main focus of the paper. Relationships between the different entropy functions used to
measure complexity are examined; and intrinsic (e.g., classical measures) and extrinsic
(e.g., Körner entropy) variants of entropy-based models are discussed in some detail.
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1. Introduction

Entropy applied to graphs is one of two major approaches to measuring the complexity of these
protean mathematical structures. The aim of this paper is to classify and contextualize the various
entropy-based measures that have been proposed since Rashevsky introduced the concept of topological
information content in the mid-1950s [1]. Contemplating the complexity of graphs conjures up
the parable of the blind men and the elephant. The approach taken depends on the objective and
experience of the observer. Since the advent and spectacular growth of the Internet, networks have
become a lightening rod for scientific investigation [2,3]. Efforts to assess and measure the complexity
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of networks are part of this gathering wave of interest. However, studies of graph complexity have
a longer history and have proven important in a number of fields ranging from chemistry [4,5] to
sociology [6,7]. Information-theoretic measures have been used to analyze ecological networks such as
food webs [8,9]. Related measures have been applied to labeled chemical structures possessing bond
types and hetero-atoms [10]. In this application a measure is used together with special weighting
schemes allowing for efficient classification of chemical structures with the aid of support vector
machines. The same type of measure can be applied to an arbitrary weighted graph [10].

The wide applicability of graphs and the absence of a complete set of invariants apart from the
definition pose a great challenge to crafting useful measures of complexity. Nevertheless, such measures
have been defined, applied and found useful [7,11–15]. Note that there has also been considerable effort
in applying various kinds of graph entropies in network physics. For related work, see [16–19]. In this
paper we present a systematic interpretation of entropy based measures of graph complexity.

To understand the significance and the limitations of the entropy approach we must first situate it in
the broader context of efforts to characterize the complexity of graphs. Thus we begin by describing
a general taxonomy and identifying the major threads of research in each area. Then we turn our
attention to a detailed analysis of the different sub-branches of the taxonomy that rely on the use of
the entropy concept.

2. Taxonomy

Two very different approaches to measuring the complexity of graphs have been developed. One may
be termed deterministic, the other probabilistic.

1. The deterministic category encompasses the encoding, substructure count and generative
approaches. Dominant in the encoding approach is Kolmogorov complexity. The second includes
measures which count the number of substructures of a specified kind [20]. Generative approaches
consist of measures based on operations required to generate a graph [21].

2. The probabilistic category includes measures that apply an entropy function to a probability
distribution associated with a graph. This category is subdivided into intrinsic and extrinsic
subcategories. Intrinsic measures use structural features of a graph to partition the graph
(usually the set of vertices or edges) and thereby determine a probability distribution over the
components of the partition. Extrinsic measures impose an arbitrary probability distribution on
graph elements [22]. Both of these categories employ the probability distribution to compute an
entropy value. Shannon’s entropy function is most commonly used, but several different families
of entropy functions have been considered [23]. In the next section, we provide a brief overview
of the main subcategories of the deterministic class of complexity measures. The probabilistic
category is our main concern and will be examined in more detail in subsequent sections.

Table 1 summarizes the taxonomy described above.
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Table 1. Taxonomy of graph complexity measures.

Deterministic Measures Probabilistic Measures
Encoding Intrinsic (probability distribution derived from structural features)

Substructure Count Extrinsic (probability distribution externally imposed)
Generative

3. Deterministic Complexity Measures

First, we examine the encoding variety of deterministic measures of graph complexity. The principal
encoding-based measure is Kolmogorov complexity which applies to any object that can be represented
mathematically. For a given encoding scheme, the Kolmogorov measure assigns an object a complexity
value equal to the length of the word (i.e., the number of characters taken from the code alphabet)
needed to encode that object [24]. The length of a code word for an object is independent of the coding
scheme in the sense that the length differs by a constant from one alphabet to another [24]. Kolmogorov
complexity can be applied to graphs in a straightforward way, see, e.g., [21,25]. A graph may be defined
by an adjacency list. In particular an undirected graph with n vertices is completely described by a
binary string of length C(n, 2) where each bit in the string indicates whether or not a particular pair of
vertices is adjacent. Thus the Kolmogorov complexity of an n-vertex undirected graph with respect to a
binary encoding scheme is at most C(n, 2). This figure can be treated as an upper bound since additional
information about a graph (such as the symmetry structure) could be used to reduce the length of an
adjacency list encoding [21].

An alternative encoding scheme for an n-vertex undirected graph could be obtained by labeling the
vertices with the numbers 1 to n, and assigning a code word to each vertex whose length equals the
size needed to encode the number n. The encoding for the entire graph would be the code word for
n concatenated with the code word pairs corresponding to the edges in the graph. For example, the
4-vertex graph with five edges shown in Figure 1 could be assigned the following code word consisting
of 33 = 3 + 5 · (2 · 3) binary digits: 100001010001011001100010011011100. In general, the length of
such a code for an n-vertex graph is given by (2|E| + 1) · C(n) where |E| is the number of edges and
C(n) is the length of the code word for the number n. If there are relatively few edges in the graph this
scheme might give a smaller code word length than the former code. Note, however, that the code word
length for both schemes is fully determined by the number of vertices and edges.

A number of substructure measures to determine graph complexity have been proposed [12,26,27].
These measures are based on the substructure count of a given type in the graph. One such measure
counts the number of distinct induced subgraphs. For example, the cycle C4 has four distinct induced
subgraphs and so does the complete graph K4. Both of these graphs therefore have complexity 4
according to this measure. In general, it has been claimed that the more complex a graph is, the more
subgraphs the graph contains [26,27]. Constantine [20] defined the complexity of a graph to be the
number of its spanning trees. In addition, Bonchev [27] defined the subgraph count SC for determining
graph complexity as

SC(G) :=

|E|∑
k=0

kSC (1)
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In particular, 2SC is the known Platt index [28] counting the number of two-edge subgraphs. A similar
concept based on the use of information theory is incorporated in the overall complexity indices [29].
For additional related work, see [29–31].

Generative measures of graph complexity have also been developed. Such a measure specifies (i) a
base set of elementary graph structures, and (ii) a set of operations that allow for combining elements of
the base set to generate a subgraph H of G. The complexity of a graph G is the number of operations
on the elements of the base required to generate H . The boolean functions approach to measuring
complexity in [32] provides an example. Here complexity is defined as the minimum number of union
and intersection operations required to obtain the complete edge set of a network given a set of generator
graphs isomorphic to stars.

Figure 1. Variant Kolmogorov Encoding of a graph.
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4. Probabilistic Measures of Graph Complexity

Probabilistic measures are typically associated with particular structural features of a graph. There
are two different types of such measures, namely, intrinsic and extrinsic, both of which associate a
probability distribution with elements (e.g., vertices or edges) of a graph. The numerical value of these
measures is usually obtained by applying an entropy function to the probability distribution. These two
types of probabilistic complexity measures differ in the way the probability distribution is determined.
For intrinsic measures the distribution is induced by some structural feature of the graph. In the extrinsic
case an arbitrary probability distribution is assigned to elements of the graph.

The entropy function adopted by Shannon [33] to analyze the performance of communication
channels is the one most commonly used to measure the complexity of graphs. This particular function
has been adopted because it satisfies the following three basic requirements of a measure of information
interpreted as uncertainty removal: the amount of uncertainty removed by the receipt of messages from
independent sources is the sum of their respective uncertainty removals; the amount of uncertainty
removed by equiprobable messages increases monotonically with the number of messages; and the
function is ‘well behaved’. More precisely, let H(X) be a function of the random variable X with
probability distribution PX = {p1, · · · , pn}. Suppose H(X) satisfies the following three properties:
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(i) H(X, Y ) = H(X) + H(Y ), if X and Y are independent random variables; (ii) if PX is a uniform
distribution, i.e., pi = 1/n, then H(X) increases monotonically with n; and (iii) H(X) is a continuous
function of PX . These three properties determine a function of the form H(X) = −C

∑n
i=1 pi log pi,

where the constant C determines the base of the logarithm [34].
Shannon’s entropy function is a special case of Renyi entropy. The latter designates a family of

functions determined by properties (ii) and (iii) only, i.e., by removing the additivity requirement. Renyi
entropy has the form: Hq(X) = 1

1−q
ln
∑n

i=1 p
q
i . The limit of Hq(X) as q → 1 is the Shannon entropy

function [34]. Another generalization of Shannon entropy is Kendall information content, which defines
a family of functions that play a role in statistical analysis. Any of these functions could be used to
measure the complexity of a graph [23]. All of them share a characteristic ability to distinguish between
ensembles of events based on their respective probability distributions. For further discussion, see [6,35].

4.1. Classical Graph Entropies

The first measure of graph complexity to appear in the literature was an intrinsic measure based
on the symmetries of a graph [1,15]. This measure of complexity equated “information content” with
the Shannon entropy of a finite probability scheme associated with the graph. In general, such classical
measures are defined in the following way. If X is an arbitrary graph invariant, τ an equivalence criterion
for inducing equivalence classes Xi, the resulting graph entropy is

I(G, τ) := −
k∑

i=1

|Xi|
|X|

log

(
|Xi|
|X|

)
(2)

The quantity |Xi|
|X| can be interpreted as a probability value for Xi. Mowshowitz [15] formalized the

notion of topological information content introduced by Rashevsky [1] and traced the properties of the
measure. This measure Ia(G) is an index based on the orbits of the automorphism group of a graph.

Ia(G) := −
k∑

i=1

|Vi|
|V |

log

(
|Vi|
|V |

)
(3)

where |Vi| is the cardinality of the i-th orbit of G, and k is the number of different orbits.
Another entropy-based measure, defined relative to the chromatic structure of a graph is called the

chromatic information content [15,36]. This measure is defined as

Ic(G) := min
V̂

{
−

h∑
i=1

ni(V̂ )

|V |
log

(
ni(V̂ )

|V |

)}
(4)

where V̂ = {Vi|1 ≤ i ≤ h}, |Vi| = ni(V̂ ) denotes an arbitrary chromatic decomposition of a graph G,
and h = χ(G) is the chromatic number of G. Using simple graph invariants such as metrical properties
and degrees, various other graph entropies such as the radial centric information measures [5]

Icr(G) :=

ρ∑
i=1

|Nσv
i |

|V |
log

(
|Nσv

i |
|V |

)
(5)

and the vertex degree equality-based information measure [5]

Iδ(G) :=
δ̄∑

i=1

|N δv
i |

|V |
log

(
|N δv

i |
|V |

)
(6)
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have been developed. |Nσv
i | is the number of vertices having the same eccentricity (σ). |N δv

i | is
the number of vertices with degree equal to i and δ̄ := maxv∈V δv. δv is the degree of v ∈ V .
Bonchev [5] offers another alternative using weighted probability schemes based on such characteristics
as distances and degrees resulting in so-called magnitude-based graph entropy measures. The following
is an example.

ID(G) := − 1

|V |
log

(
1

|V |

)
−

ρ(G)∑
i=1

2ki
|V |2

log

(
2ki
|V |2

)
(7)

where ki denotes the number of pairs of vertices at distance i from each other.
Extensions and related work on these measures can be found in [37,38].
The essential defining characteristic of classical entropy based measures is sensitivity to particular

structural features of a graph. These measures differentiate graphs according to the structural feature
(e.g., vertices, edges, degrees) used to partition the elements of the graph. A finite probability scheme
consisting of the orbits of the automorphism group gives rise to a measure (topological information
content) that differentiates graphs with different degrees of symmetry; a scheme based on color classes
produces a measure (chromatic information content) that distinguishes between graphs with different
independence characteristics. The relative character of graph complexity is evident in comparing the
symmetry and color class measures applied to a complete graph on n vertices. The former measure
gives the minimum value of 0 (since the group has but one orbit), while the latter gives the maximum
value of logn (since at least n colors are required). Clearly, these two different structural measures
respond differently to increasing edge density. Topological information content is useful in applications
(e.g., chemistry) [12,16] in which reactivity or complementarity of structures plays a central role.
Chromatic information content is suited to applications in which the identification of independent sets of
elements is the main desideratum.

4.2. Körner Entropy

Körner [40] introduced the first extrinsic measure of graph complexity, now appropriately called
Körner entropy, which is given by

H(G,P ) := lim
t−→∞

min
U⊆V t,P t(U)>1−ϵ

1

t
log(χ(Gt(U))) (8)

For V ′ ⊆ V (G), the induced subgraph on V ′ is denoted by G(V ′) and χ(G) is the chromatic number [39]
of G, Gt the t-th co-normal power [40] of G and

P t(U) :=
∑
x∈U

P t(x) (9)

Note that this quantity does not express the structural information content of a graph (see previous
section) because it was developed as a solution of a coding problem in information theory. There
exist several definitions of Körner’s entropy which have been proven equivalent [41]. According to the
Körner’s first definition [40], this quantity is related to the stable set problem which in turn is related to
minimum entropy colorings of graphs whose computation is known to be NP-hard, see [42]. This means
that Körner entropy does not offer a practical tool for measuring the complexity of large scale networks.
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Because the sub-additivity inequality holds for this measure, it has several applications such as quantum
sorting, perfect hashing, and obtaining lower bounds for the size of boolean formulas, see [41]. Further
examples and more information-theoretic interpretations of this measure can be found in [40,41].

4.3. Parametric Graph Entropies

Another way to define extrinsic complexity measures for graphs using Shannon’s entropy is associated
with assigning a probability value to each vertex by employing functions which capture structural
information of a graph [14,22,43]. Various information functions have been defined based on metrical
properties and other graph invariants. Typically, such functions are parameterized by weight differences
and characterize structural spread in a graph [22]. Also, the parametrization of the measures allows for
defining optimization problems based on given data sets.

Let G = (V,E) be a graph and let f be an information function representing a positive function
that maps vertices to the positive reals using structural features of a graph. Then, one obtains the
measures [14,22,43]

If (G) := −
|V |∑
i=1

f(vi)∑|V |
j=1 f(vj)

log

(
f(vi)∑|V |
j=1 f(vj)

)
(10)

IλfV
⋆
(G) := λ

(
log(|V |) +

|V |∑
i=1

f(vi)∑|V |
j=1 f(vj)

log

(
f(vi)∑|V |
j=1 f(vj)

))
(11)

representing families of graph entropy measures [14,22,43]. The vertex probabilities are defined by

p(vi) :=
f(vi)∑|V |
j=1 f(vj)

(12)

In order to derive concrete graph entropies, the parametric information functions [14,22,43]

f1(vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+···+cρ(G)|Sρ(G)(vi,G)|

ck > 0, 1 ≤ k ≤ ρ(G), α > 0 (13)

and

f2(vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+ · · ·+ cρ(G)|Sρ(G)(vi, G)|
ck > 0, 1 ≤ k ≤ ρ(G) (14)

have been used. Criteria for selecting the parameters have been examined in [43]. Clearly, the
interpretation of the resulting entropy depends on the information function chosen. When using f1,
Dehmer et al. found that If1 measures a special kind of inner symmetry of the graph under consideration.
This observation is based on the fact that the more the vertices differ with respect to their spherical
neighborhoods, the smaller is the value of the measure and conversely [44].

Parametric entropy based measures rely on information functions to assign probabilities to the vertices
of a graph. These vertex probabilities are then used to construct a finite probability scheme for a graph.
This procedure gives greater scope to the definition of entropy based structural measures. Measures that
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are sensitive to very specific structures in a graph can be designed by choosing an appropriate information
function. For example, the information function f2 in Equation (10) gives rise to a measure If2 that can
discriminate reasonably well between non-isomorphic graphs [43]. In particular, the resulting measure
has low degeneracy [43] for chemical graphs and exhaustively generated graphs up to 10 vertices.

4.4. Non-Parametric Graph Entropies

A novel information function is
f3(vi) := |λi| (15)

leading to the extrinsic graph entropy [45]

If3(G) = −
k∑

i=1

|λi|∑|V |
j=1 |λj|

log

(
|λi|∑|V |
j=1 |λj|

)
(16)

where G is an undirected graph and λ1, λ2, . . . , λk are the non-zero eigenvalues of its characteristic
polynomial. Note that this non-parametric graph complexity measure quantifies the entropy of the
underlying graph topology based on the spectrum of G. Obviously, f3 can also be calculated by
using the eigenvalues of various other graph polynomials such as the distance polynomial and Wiener
polynomial [46,47]. This leads to graph entropies which have yet to be explored. Other than f3, the
information function

f4(vi) := d(vi, v1) + d(vi, v2) + · · ·+ d(vi, v|V |) (17)

is also non-parametric but is based on metrical properties of an underlying graph.
Non-parametric differ from parametric entropy based measures in the way their respective finite

probability schemes are constructed. Schemes in the latter case are directly related to the probabilities
assigned to the vertices of a graph; those in the former case are only indirectly related to the probabilities
assigned to the vertices. As indicated above the function f3(vi), defined in terms of the eigenvalues of
the graph-theoretical matrix of a graph (such as the adjacency and distance matrix), gives rise to a finite
probability scheme consisting of the ratios of individual eigenvalues to the sum of all the eigenvalues.

Interestingly, this measure is also highly effective in distinguishing between non-isomorphic graphs,
especially chemical graphs and exhaustively generated graphs [45]. The existence of cospectral graphs
justifies the general observation that eigenvalue-based graph invariants are not effective in distinguishing
non-isomorphic graphs. However, this result suggests the contrary for several classes of graphs [48,49].

5. Conclusions

Entropy functions have been used successfully to capture different aspects of graph complexity.
Much of the work in this area has been undertaken by those directly concerned with applications in
chemistry, biology and sociology, which accounts in part for the different approaches and entropy
functions found in the literature. In this paper we have discussed the main entropy-based approaches
to graph complexity measurement by introducing a general taxonomy. Coverage of the many different
applications of entropy-based measures was not meant to be exhaustive, so, for example, the overview
did not include applications to weighted graphs. Classical entropy-based measures can handle the
weighted case by modifying the criterion for decomposing graph elements into equivalence classes.
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Elements (e.g., vertices or edges) equivalent by virtue of automorphisms of the underlying unweighted
graph elements can be differentiated by applying numerical criteria. If, for example, edges e and f

are equivalent under an edge automorphism, they might yet be distinguished if the difference in their
respective weights is greater than some given threshold value. Proceeding in this way, a finite probability
scheme could be constructed to which an entropy function is applied.

Formally speaking, intrinsic and extrinsic measures of graph complexity differ in the underlying finite
probability scheme used for applying an entropy function to obtain a quantitative value. Both types of
measures attempt to differentiate graphs according to some structural feature. The classical measures
use global structures such as symmetry or independent sets of graph elements. Topological information
content [1], for example, relies on symmetry to distinguish graphs representing the molecular structure
of chemical compounds. Different structures give rise to different classifications of graphs. Extrinsic
measures extend the possibilities for classifying graphs according to structural features. Parametric
measures make explicit use of probabilities assigned to vertices to construct finite probability schemes.
Non-parametric measures abstract the construction of such schemes by using values only indirectly
related to the probabilities assigned to the vertices. The latter measures extend the possibilities for
crafting “designer” measures that differentiate graphs according to ever more subtle structural features.
All the entropy based measures are linked to particular structural features and are thus limited in their
ability to differentiate graphs. The example given earlier showing the extreme difference in the respective
values assigned to the complete graph by topological information content and chromatic information
content illustrates this assertion. Those wishing to classify graphs using entropy-based measures must
be content with an ordering relative to some particular structural feature of interest.
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