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Abstract: We review the exact solutions in modified gravity. It is one of the main problems
of mathematical physics for the gravity theory. One can obtain an exact solution if the field
equations reduce to a system of ordinary differential equations. In this paper we consider
a number of exact solutions obtained by the method of separation of variables. Some
applications to Cosmology and BH entropy are briefly mentioned.
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1. Introduction

Gravitational field equations describing the geometry of space-time play a fundamental role in modern
theoretical physics. Their analysis is an extremely difficult task. However, one can find an exact solution
in some cases, imposing certain additional restrictions. There are several ways to impose constraints on
the space-time, for example, the algebraic classification of the Weyl tensor (of Petrov types) and the Ricci
tensor (Plebanski type), the choice of energy-momentum tensor from physical considerations, presence
of the symmetry groups acting on a manifold, etc.

One can get the exact solution by reducing the system of equations to a system of ordinary differential
equations. This can be done using the method of separation of variables. In essence, the separation
of variables is the only currently known method of structural integration of the field equations. The
purpose of the method consists of classification of all the privileged coordinate systems and external
fields, which is a separation of variables. In the classification we refer to the transfer of all relevant
space-time metrics (non-equivalent with respect to admissible coordinate transformations) satisfying the
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requirement of complete separation of variables in the equations of motion of test particles. In flat
space-time classification is carried out completely.

¿From a mathematical point of view, the study of homogeneous spaces and Stäckel metrics is of
special interest. The spaces are united by existence in the space of sets consisting of three geometric
objects (for Stäckel spaces—Killing vector and tensor fields, for homogeneous spaces—Killing vector
fields). For both cases the field equations can be reduced to a system of finite (but sufficiently large)
number of ordinary differential equations. There are many methods in mathematical physics for studying
such systems of equations. For example, one can use methods of additional symmetries of the system
of equations, the Hamiltonian formulation of the theory of dynamical systems, etc. Essentially, all
physically interesting cases (FRW cosmology, BH) belong to Stäckel and homogeneous spaces.

2. Exact Solutions in Stäcke and Homogeneous Spaces

Recall that metric is called the Stäckel one if the Hamilton–Jacobi equation

gαβS,αS,β = m2 α, β = 1, . . . , n (1)

can be integrated by the method of complete separation of variables. In this case the privileged
co-ordinate set uα exists for which complete integral of Equation (1) can be shown in the form

S =
n∑
i=1

φi(u
i, λ) (2)

where λi is the essential parameter.
It appears that the other important equations of motion (Klein–Gordon–Fock, Dirac, Weyl) can

be integrated by complete separation of variables only for the metrics belonging to the class of
Stäckel spaces.

That is why the research of this class of spaces belongs to the one of the important problems of the
mathematical physics.

The metrics of the Stäckel spaces can be used for integrating the field equations of General Relativity
and other theories of Gravity. Note that such famous solutions as Schwarzschild, Kerr, NUT, Friedman
and others belong to the class of Stäckel spaces. Apparently the first papers devoted to the problem
of classification of the Stäckel spaces satisfying the Einstein equations were published by Carter [1].
Later in our paper [2] the complete classification of the special Stäckel electrovacuum spaces has been
found. In other words, all Stäckel spaces satisfying the Einstein–Maxwell equations for the case when
potentials Ai admit complete separation of variables for Hamilton–Jacobi equation have been found. In
our paper [3] the classification problem has been solved for the case when Ai are arbitrary functions and
spaces are null (types N.1). In our paper [4] all electrovacuum spacetimes admitting diagonalization and
complete separation of variables for the Dirac–Fock–Ivanenko equation were found.

One of the complicated problems of the modern mathematical physics is the integration problem of
the Einstein–Dirac equations.

Using spaces for which Equation (1) can be integrated by the complete separation of variables and
separated solutions of the Dirac equation, one can transform Einstein–Dirac equations to the set of
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functional equations. The first papers devoted to the classification problem for the Einstein–Dirac
equations were done by Bagrov, Obukhov, Sakhapov [5]. The Stäckel spaces of type (3.1) for
Einstein–Dirac and Einstein–Weyl equations have been studied. Appropriate solutions have been
obtained. They contain arbitrary functions depending on null variable only.

The problem of classification of Stäckel spaces for other theories of gravity for the first time was
considered in papers [6–9].

We have solved the classification problem for the Einstein–Vaidya equations. Let the stress–energy
tensor have the form

Tαβ = a(x)lαlβ, lαl
α = 0 (3)

The solution of this problems, as well as a detailed overview of the theory of Stäckel spaces, can be
found in [10].

Of high interest are homogeneous spaces, which lie at the heart of modern cosmology [11–14]. The
homogeneous spaces are a base for building the Big Bang model, the initial singularity, as well as
the inflationary model. It is of interest to identify the various mechanisms of isotropization of the
universe [15–20]. Homogeneous spaces are also used in a variety of modern theories of gravity for
the study of general regularities in the picture of the universe [21–24]. One can study effects of the
gravitational field to other fields and matter on the background of homogeneous spaces [25–29].

Let us consider the Einstein–Weyl equations. One can show that for all types of Bianchi classification,
a closed self-consistent system of ordinary integrable differential equations can be constructed [30,31].
For example, consider the first type of classification of Bianchi [32]. This is one of the most simple
cases; to construct a general solution for all types is not possible.

All calculations will be carried out in the Newman–Penrose formalism. Einstein equation takes
the form 

Φ00 = GT000′0′

Φ01 = GT000′1′

Φ02 = GT001′1′

Φ11 = GT010′1′ +
G

4
TAB

′

AB′

Φ12 = GT011′1′

Φ22 = GT111′1′

Λ =
1

6
H − G

12
TAB

′

AB′

(4)

Here H is cosmological constant, G is corresponds to the gravitational constant, Φab are Ricci spinors
and TABA′B′ is energy-momentum tensor,

TAB′CD′ = ik(ξD′∇AB′ξC + ξB∇CD′ξA − ξC∇AB′ξD′ − ξA∇CD′ξB′ − ηD′∇AB′ηC

− ηB∇CD′ηA + ηC∇AB′ηD′ + ηA∇CD′ηB′)
(5)

and ∇AB is spinor derivative.
Ricci spinors are expressed in terms of spin factors as follows

Φ00 = Dρ− δκ− ρ2 − σσ − ρ(ε+ ε) + κτ + κ(3α + β − π),
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Φ01 = Dα− δε− α(ρ+ ε− 2ε)− βσ + βε+ κλ+ κγ − π(ε+ ρ),

Φ02 = Dλ− δπ + λ(3ε− ε− ρ)− µσ − π(π − β + λ) + νκ,

Φ11 =
1

2
[Dγ −∆ε+ δα− δβ − α(τ + π)− β(τ + π) + γ(ε+ ε)

+ ε(γ + γ)− τπ + κν − µρ+ σλ− αα− ββ + 2αβ−
= γ(ρ− ρ)− ε(µ− µ)],

Φ12 = δγ −∆β − γ(τ − α− β)− µτ + σν + εν + β(γ − γ − µ)− αλ,
Φ22 = δν −∆µ− µ2 − λλ− µ(γ + γ) + νπ − ν(τ − 3β − α),

6Λ = 2[δτ −∆ρ− ρµ− σλ+ τ(β − α− τ) + ρ(γ + γ + νκ]−
= Dγ + ∆ε+ δα− β + α(τ + π) + β(τ + π)− γ(ε+ ε)−
= ε(γ + γ) + τπ − κν − µρ+ λσ

Choose a metric in the form

g00 = 1, g0α = 0, gij = −γij

where γij is the metric of a three-dimensional space with the signature (+,+,+). It is simple to establish
that this space permits a three-parameter Abelian group of motions, and hence is a Steckel space of
type (3.0).

The orthogonal tetrad is chosen in the form

e(0)α = (1, 0, 0, 0), e(1)α = (0, A,B,C)

e(2)α = (0, K, S, V ), e(3)α = (0, P,M,Z)

where A,B,C,R, S, V, P,M,Z are arbitrary functions of the time.
Using this tetrad, we construct the Newman–Penrose tetrad

`i =
1√
2

(e(0)i + e(1)i), ni =
1√
2

(e(0)i − e(1)i),

mi =
1√
2

(e(2)i + ie(3)i), mi =
1√
2

(e(2)i − ie(3)i)

and obtain the following relations between the spin factors

λ = −σ, ν = κ, π = τ , γ = −ε

α = β, µ = −ρ = µ, α =
1

2
(τ − κ)

The spinor field of spatial rotation of the tetrad may be diagonalized and made real (one real
component remains). For this case, the energy-momentum tensor takes the form (5).

T00′00′ = 2ikaξ20(ε− ε), T00′01′ = ikaξ20τ, T01′01′ = −2ikaξ20σ

T01′11′ = ikaξ20κ, T11′11′ = 0, T00′11′ = ikaξ20(ε− ε), T01′10′ = 0

The field equations take the form

ρ̇− ρ2 − σσ − 2ρε− 4κκ = 0 (6)
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σ̇ − 2ρσ + 2σε = 2iyξ0
2σ (7)

κ̇− 2ρκ+ 2κε = iyξ0
2κ (8)

2ε̇− ρ̇+ ρ2 + σσ − 2ρε− 4κκ+ 4ε2 =
H

2
(9)

ρ̇− 1ρ2 + 2ρε =
H

2
(10)

ξ̇0 + (ε− ρ)ξ0 = 0 (11)

where ˙ = d
dt

.
Multiplying Equation (7) by σ and Equation (8) by κ, we add and subtract the resulting equations and

their conjugate forms. Transformation yields

˙(lnκκ) = −4(ε− ρ)

˙(lnσσ) = −4(ε− ρ)
(12)

Multiplying Equation (11) by yξ0, we obtain

˙[
ln
(
yξ0

2
)]

= −2(ε− ρ) (13)

One find that

κ = kyξ20e
iω1

σ = syξ20e
iω2

(14)

Finally, we obtain the following equation

˙(ε− ρ) + 2(ε− ρ)2 =
3H

4
(15)

(1) Consider the case when H = 0. In this case

˙(ε− ρ)

(ε− ρ)2
= −2

and thus
1

(ε− ρ)
= 2x+ const

Incorporating the constant into the definition of x, we write

(ε− ρ) =
1

2x
(16)

Hence
1

2x
= −1

2

ω̈

ω̇
⇒ ω̇ =

d

x
(17)

where d is a constant of integration. We now find P and e in explicit form

ρ̇+
ρ

x
= 0⇒ ρ =

f

x
(18)

ε− ρ =
1

2x
⇒ ε =

1

2x
+
f

x
=
f + 1/2

x
(19)
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where f is a constant of integration. The constants of integration satisfy the condition

2f + 3f 2 + d2(s2 + 4k2) = 0

Obviously, this equation has a nontrivial solution.
(2) Similarly, for the case H 6= 0, we can show that it is not implemented.
To find the tetrad we have to solve the two equations

2Aε− (K − iP )κ− (K + iP )κ = A′ (20)

2Aκ+ (K − iP )σ + (K + iP )ρ = − (K ′ + iP ′) (21)

Since

ε =
1/2 + f

x
, ρ =

f

x
, κ = k

d

x
eiω, σ = s

d

x
ei(2ω+c)

they take the form

2A
1/2 + f

x
− (K − iP )

kd

x
eiω − (K + iP )

kd

x
e−iω = A′

2A
kd

x
eiω + (K − iP )

sd

x
ei(2ω+c)(K + iP )

f

x
= − (K ′ + iP ′)

We multiply the second equation by e−iω and make the substitution{
X = K cosω + P sinω

Y = P cosω −K sinω

The inverse transformations are {
K = Y cosω +X sinω

P = X cosω − Y sinω

We also introduce the notation f
d

= F, 1
d

= D

A(2F +D)− k(X − iY )− k(X + iY ) =
A′

ω′

2Ak + s(X − iY )eic + F (X + iY ) =
− (X + iY )′ − iω′(X + iY )

ω′

We make one more substitution

A = We−Fω, (X + iY ) = (U + iV )e−Fω

and take into account that
A′

ω′
=
dA

dx

dx

dω
=
dA

dω

Then the equations take the form

W (3F +D)− k [(U + iV ) + (U − iV )] =
dW

dω

2kW + seic(U − iV ) = − d

dω
(U + iV )− i(U + iV )
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If eic = α + iβ, l = 3F +D and α2 + β2 = 1, then
Wl − 2kU =

dW

dω

2kW + c2αU + (sβ − 1)V = − dU

dω

(sβ + 1)U − sαV = − dV

dω

One can obtain a third-order equation in V

d3V

dω3
− d2V

dω2
l − dV

dω
(s2 + 4k2 − 1) + V (4k2sα + l(s2 − 1)) = 0

The characteristic equation takes the form

λ3 − λ2l − λ(s2 + 4k2 − 1) + (4k2sα + l(s2 − 1)) = 0 (22)

¿From this it is possible to find three roots λ1, λ2, λ3

λ3 − λ2l − λ(s2 + 4k2 − 1) + (4k2sα + l(s2 − 1)) =

λ3 − λ2(λ1 + λ2 + λ3)− λ(λ1λ2 + λ1λ3 + λ2λ3)− λ1λ2λ3 = (4k2sα + l(s2 − 1))
λ1 + λ2 + λ3 = l

λ1λ2 + λ1λ3 + λ2λ3 = − (s2 + 4k2 − 1)

λ1λ2λ3 = − (4k2sα + l(s2 − 1))

In all, four cases are possible:

(1) λ1, λ2, λ3 are pairwise unequal and real. Then

V = c1e
λ1ω + c2e

λ2ω + c3e
λ3ω

(2) λ1 is real, λ2 = λ3

V = c1e
λ1ω + c2e

λ2ω + c3e
λ2ω

(3) λ1, λ2 = λ3 are real

V = c1e
λ1ω + (c2 + c3ω)eλ2ω

(4) λ1 = λ2 = λ3 = λ

V = (c1 + c2ω + c3ω
2)eλω

U =
−dV

dω
+ bαV

bβ + 1

W =
d2V
dω2 − (b2 − 1)V

2a(bβ + 1)
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Thus, an accurate solution of the Einstein–Weyl equation has been obtained for space-time of Bianchi
type 1. The solution only exists when H = 0. The spin coefficients and the Weyl spinor take the form

ρ =
f

x
, ε =

1/2 + f

x
, σ =

sd

x
ei(2ω+c), κ =

kd

x
eiω, yξ0

2 =
d

x

where f, k, s, y, c are constants and ω = d lnx

On integrating the equations for the tetrad, the functions obtained will depend on the form of
Equation (22). As an example, the functions for the first case, when all the roots are different and
real, are

A = e−Fω
[
c1e

λ1ω(λ1
2 − b2 + 1) + c2e

λ2ω(λ2
2 − b2 + 1) + c3e

λ3ω(λ3
2 − b2 + 1)

2a(bβ + 1)

]
K = e−Fω

[
c1e

λ1ω
(bα− λ1)
bβ + 1

+ c2e
λ2ω

(bα− λ2)
bβ + 1

+ c3e
λ3ω

(bα− λ3)
bβ + 1

]
P = e−Fω

[
c1e

λ1ω + c2e
λ2ω + c3e

λ3ω
]

where λ1, λ2, λ3 are the roots of Equation (22); F, a, b, c1, c2, c3, α, β are constant.
The other functions specifying the tetrad are of analogous form. The only difference is that another

set of arbitrary constants must be chosen in place of c1, c2, c3.

3. Modified Gravity

In the previous sections a few exact solutions of the classical theory of gravitation were obtained.
However, in recent years, modified gravity theory is very popular. These theories my be studied also
using the methods described above. Typically, solutions with a spatially flat metric depend only on time.
It corresponds to the first type of Bianchi and type (3.1) on the classification of Stäckel.

The most popular models are models of modified gravity [33–35], which represents a classical
generalization of general relativity (modifications of the Hilbert–Einstein action by introducing different
functions of the Ricci scalar [34–38] or Gauss–Bonnet invariant [39–45]), should consistently describe
the early-time inflation and late-time acceleration, without the introduction of any other dark component.

In the framework of these theories, a number of cosmological models have been constructed to
adequately describe the current observational data [46–51]. In addition, under this theory there may
be objects such as black holes. The properties of these objects are different from classical ones. For
example the black hole entropy in the model F (R) gravity will have the form [52,53]

S =
AH
4
f ′(R0) (23)

where AH = 4πr2H .
As an example of the exact solution in modified theory of gravity. We consider the sixth dimensional

Gauss–Bonnet theory [54,55].
We shall start from the following string-inspired action in six dimensions

S =

∫
d6x
√
−g(R + εLGB) (24)
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where ε is a constant and LGB is Gauss–Bonnet invariant

LGB = RµναβR
νµαβ − 4RµνR

µν +R2

The metric is the product of the usual metric corresponding to the 4-dimensional FRW universe and a
2-dimensional surface, namely

ds2 = −dt2 + a2(t)[(dx1)2 + (dx2)2 + (dx3)2] + b2(t)[(dx4)2 + (dx5)2], (25)

the scalar curvature is

R =
6ȧ2

a2
+

12ȧḃ

ab
+

2ḃ2

b2
+

6ä

a
+

4b̈

b
(26)

while the four-dimensional and topologically invariant Gauss–Bonnet Lagrangian, LGB, has the form

LGB =
48ȧ3ḃ

a3b
+

72ȧ2ḃ2

a2b2
+

24ȧ2ä

a3
+

96ȧäḃ

a2b
+

24äḃ2

ab2
+

48ȧ2b̈

a2b
+

48ȧḃb̈

ab2
(27)

or, equivalently,

LGB =
24

a3b2
(2ȧ3bḃ+ 3aȧ2ḃ2 + ȧ2äb2 + 4aȧäbḃ+ a2äḃ2 + 2aȧ2bb̈+ 2a2ȧḃb̈) (28)

The corresponding equations of motion are obtained by variation of the action with respect to a and
b, which yields

ȧ2b2 + 4aȧbḃ+ a2ḃ2 + 2aäb2 + 2a2bb̈+ 12εȧ2ḃ2 + 16εȧäbḃ+ 8εaäḃ2 + 8εȧ2bb̈+ 16εaȧḃb̈ = 0

3aȧ2b+ 3a2ȧḃ+ 3a2äb+ a3b̈+ 12εȧ3ḃ+ 12εȧ2äb+ 24εaȧäḃ+ 12εaȧ2b̈ = 0
(29)

These equations can be easily rewritten in terms of the Hubble rates H = a′/a and h = b′/b, namely

3h2 + 4hH + 3H2 + 2ḣ+ 2Ḣ + 16εh3H + 28εh2H2 + 16εhH3

+16εhḣH + 8εḣH2 + 8εh2Ḣ + 16εhHḢ = 0

h2 + 3hH + 6H2 + ḣ+ 3Ḣ + 12εh2H2 + 36εhH3 + 12εH4

+12εḣH2 + 24εhHḢ + 12εH2Ḣ = 0

(30)

In addition, variation over the metric in the above expressions gives the constraint equation

h2 + 6hH + 3H2 + 36εh2H2 + 24εhH3 = 0 (31)

This equation helps to exclude h and h′ from Equation (30). As a result, one gets an equation forH only:

H ′ = 3H2 ×
√
6 + 4G+ ε(−22

√
6 + 64G)H2 − 24ε2(9

√
6− 52G)H4 + 96ε3(17

√
6 + 12G)H6 − 8064

√
6ε4H8

√
6− 12ε(

√
6 + 16G)H2 + 72ε2(3

√
6− 32G)H4 − 2880

√
6ε3H6 + 31104

√
6ε4H8

(32)

where

G =
√

1− 6εH2 + 24ε2H4 (33)

One can check that this last equation obeys the fundamental relation (for ε > 0):

H ′ =
H2(H2 − p2)

(H2 − q2)(H2 − r2)
f(H) (34)
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where p, q and r are constants, and the function f(H) < 0.
For ε = 0 one does recover (as it should be) an explicit solution. In other cases, only a numerical

analysis can be carried out. In fact, the equations for a, b are

b2a′
2

+ 4aba′b′ + a2b′
2

+ 2ab2a′′ + 2a2bb′′ = 0

3aba′
2

+ 3a2a′b′ + 3a2ba′′ + a3b′′ = 0
(35)

and, from here,

3h2 + 4hH + 3H2 + 2h′ + 2H ′ = 0

h2 + 3hH + 6H2 + h′ + 3H ′ = 0
(36)

from where one gets that

H ′ = (3± 2
√

6)H2 (37)

and the solution is given by

H = − 1

αt+ C1

(38)

being

α = 3± 2
√

6 (39)

Moreover, in terms of the scale factors:

a = C2[±(αt+ C1)]
−1/α

b = C3[±(αt+ C1)]
β/α

(40)

where

β = 3±
√

6 (41)

General approach to Stäckel spaces of first sections may be applied to such theory as well. However,
this is more complicated in modified gravity.

4. Conclusions

In this article we consider the exact solutions constructed in the classical theory of Stäckel spaces and
partially homogeneous spaces. We consider in detail the exact solution of Einstein–Weyl space of the
first type of classification of Bianchi in the Newman–Penrose formalism. As an example we consider
the exact solution for the modified gravity theory of the Gauss–Bonnet for the six-dimensional metric
which depends only on time and has a diagonal form. Thus, we discuss the problem of obtaining exact
solutions in the different theories of gravity. The paper shows how, by use of the method of separation
of variables, can one construct exact solutions of cosmological models, both for space with matter (the
classical theory of gravity) and in the case of the modified theories of gravity (six-dimensional theory of
the Gauss–Bonnet).



Entropy 2012, 14 1150

Note that separation of field equations for modified gravity in Stäckel space may be done in analogy
with the method developed at the beginning of this work. However, the corresponding generalization is
very cumbersome technically.
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