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Abstract: We present a framework for the estimation of transfer entropy (TE) under the 

conditions typical of physiological system analysis, featuring short multivariate time series 

and the presence of instantaneous causality (IC). The framework is based on recognizing 

that TE can be interpreted as the difference between two conditional entropy (CE) terms, 

and builds on an efficient CE estimator that compensates for the bias occurring for high 

dimensional conditioning vectors and follows a sequential embedding procedure whereby 

the conditioning vectors are formed progressively according to a criterion for CE 

minimization. The issue of IC is faced accounting for zero-lag interactions according to 

two alternative empirical strategies: if IC is deemed as physiologically meaningful,  

zero-lag effects are assimilated to lagged effects to make them causally relevant; if not, 

zero-lag effects are incorporated in both CE terms to obtain a compensation. The resulting 

compensated TE (cTE) estimator is tested on simulated time series, showing that its 

utilization improves sensitivity (from 61% to 96%) and specificity (from 5/6 to 0/6 false 

positives) in the detection of information transfer respectively when instantaneous effect 

are causally meaningful and non-meaningful. Then, it is evaluated on examples of 

cardiovascular and neurological time series, supporting the feasibility of the proposed 

framework for the investigation of physiological mechanisms. 

Keywords: cardiovascular variability; conditional entropy; instantaneous causality; 

magnetoencephalography; time delay embedding 
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1. Introduction 

Since its first introduction by Schreiber [1], transfer entropy (TE) has been recognized as a powerful 

tool for detecting the transfer of information between joint processes. The most appealing features of 

TE are that it has a solid foundation in information theory, and it naturally incorporates directional and 

dynamical information as it is inherently asymmetric (i.e., different when computed over the two 

causal directions) and based on transition probabilities (i.e., on the conditional probabilities associated 

with the transition of the observed system from its past states to its present state). Moreover, the 

formulation of TE does not assume any particular model as underlying the interaction between the 

considered processes, thus making it sensitive to all types of dynamical interaction. The popularity of 

this tool has grown even more with the recent elucidation of its close connection with the ubiquitous 

concept of Granger causality [2], which has led to formally bridge information-theoretic and predictive 

approaches to the evaluation of directional interactions between processes. Given all these advantages, 

the TE has been increasingly used to assess the transfer of information in physiological systems with 

typical applications in neurophysiology [3–6] and in cardiovascular physiology [7–9]. Nevertheless, in 

front of this widespread utilization of TE and other Granger causality measures, it should be remarked 

that these measures quantify “causality” from a statistical perspective which is quite distinct from the 

interventionist perspective that has to be followed to infer effectively the existence of real causal 

effects [10–12]. Accordingly in this study, when speaking of the transfer of information measured by 

TE we refer to the “predictive information transfer” intended as the amount of information added by 

the past states of a source process to the next state of a destination process, rather than to the causal 

information flow measured via interventional conditional probabilities [12]. 

The estimation of TE from the time series data taken as realizations of the investigated 

physiological processes is complicated by a number of practical issues. One major challenge is the 

estimation of the probability density functions involved in TE computation from datasets the length of 

which is limited by experimental constraints and/or by the need for stationarity [13,14]. Another 

critical point is that, to exploit the dynamical information contained in the transition probabilities, one 

should cover reasonably well the past history of the observed processes; since this corresponds to work 

with long conditioning vectors represented into high-dimensional spaces, TE estimation from short 

time series is further hampered, especially in the presence of multiple processes and long memory 

effects [15]. Moreover, an open issue in practical time series analysis is how to deal with instantaneous 

effects, which are effects occurring between two time series within the same time lag [16]. These 

effects may reflect fast (within sample) physiologically meaningful interactions, or be void of 

physiological meaning (e.g., may be due to unobserved confounders). In either case, instantaneous 

effects have an impact on the computation of any causality measure [17,18]. In particular, the presence 

of unmeasured exogenous inputs or latent variables which cannot be included in the observed data set 

(e.g., because they are not accessible) is a critical issue when investigating Granger causality in 

experimental data, as it may easily lead to the detection of spurious causalities [19–21]. Since an 

instantaneous correlation arises between two observed variables which are affected by latent variables 
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with the same time delay, in the context of model-based analysis attempts have been made to 

counteract this problem by accounting for residual correlations which reflect zero-lag effects. Indeed, 

recent studies have proposed to incorporate terms from the covariance matrix of the model residuals 

into the so-called partial Granger causality measures [21,22], or to express the residual correlation in 

terms of model coefficients and exploit the resulting new model structure for defining extended 

Granger causality measures [17,18]. However, as similar approaches cannot be followed in the  

model-free context of TE analysis, instantaneous effects are usually not considered in the computation 

of TE on experimental data. 

In the present study we describe an approach for the estimation of TE from short realizations of 

multivariate processes which is able to deal with the issues presented above. We develop an estimation 

framework that combines conditional entropy (CE) estimation, non-uniform embedding, and 

consideration of instantaneous causality. The framework is based on recognizing that TE can be 

interpreted as CE difference, and builds on an efficient CE estimator that compensates for the bias 

occurring for high dimensional conditioning vectors and follows a sequential embedding procedure 

whereby the conditioning vectors are formed progressively according to a criterion for CE 

minimization. This procedure realizes an approach for partial conditioning that follows the ideas first 

proposed in [15]. The novel contribution of the paper consists in the integration of the framework with 

a procedure for the inclusion of instantaneous effects. This is a crucial point in TE analysis because, 

even though it is now well recognized that instantaneous causality plays a key role in Granger 

causality analysis, instantaneous effects are commonly disregarded in the computation of TE on 

experimental data. While recent studies have started to unravel the issue of instantaneous causality in 

the linear parametric framework of multivariate autoregressive models [17,18,23,24], there is a paucity 

of works addressing the consequences of excluding instantaneous effects from the computation of 

model-free causality measures. In this paper, the issue of instantaneous causality is faced allowing for 

the possibility of zero-lag effects in TE computation, according to two alternative empirical 

procedures: if instantaneous effects are deemed as causally meaningful, the zero-lag term is 

assimilated to the lagged terms to make it causally relevant; if not, the zero-lag term is incorporated in 

both CE computations to obtain a compensation of its confounding effects. The resulting TE estimator, 

denoted as compensated TE (cTE), is first validated on simulations of linear stochastic and nonlinear 

deterministic systems. Then, the estimator is evaluated on representative examples of physiological 

time series which entail utilization of different strategies for compensating instantaneous causality and 

different procedures for significance assessment, i.e. cardiovascular variability series and multi-trial 

magnetoencephalography signals. The direct comparison between the proposed cTE and the traditional 

TE allows to make explicit the problem of disregarding instantaneous causality in the computation of 

the predictive information transfer in multivariate time series. 

2. Methods 

2.1. Transfer Entropy 

Let us consider a composite physical system described by a set of M interacting dynamical  

(sub) systems and suppose that, within the composite system, we are interested in evaluating the 
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information flow from the source system X to the destination system Y, collecting the remaining 

systems in the vector Z = {Z(k)}k = 1,...,M-2. We develop our framework under the assumption of 

stationarity, which allows to perform estimations replacing ensemble averages with time averages  

(for non-stationary formulations see, e.g., [10] and references therein). Accordingly, we denote x, y and 

z as the stationary stochastic processes describing the state visited by the systems X, Y and Z over time, 

and xn, yn and zn as the stochastic variables obtained sampling the processes at the time n. Moreover, 

let xt:n represent the vector variable describing all the states visited by X from time t up to time n 

(assuming n as the present time and setting the origin of time at t = 1, x1:n-1 represents the whole past 

history of the process x). Then, the transfer entropy (TE) from X to Y conditioned to Z is defined as: 

   
 




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where the sum extends over all states visited by the composite system, p(a) is the probability 

associated with the vector variable a, and p(b|a) = p(a,b)/p(a) is the probability of the scalar variable b 

conditioned to a. The conditional probabilities used in (1) can be interpreted as transition probabilities, 

in the sense that they describe the dynamics of the transition of the destination system from its past 

states to its present state, accounting for the past of the other processes. Utilization of the transition 

probabilities as defined in (1) makes the resulting measure able to quantify the extent to which the 

transition of the destination system Y into its present state is affected by the past states visited by the 

source system X. Specifically, the TE quantifies the information provided by the past states of X about 

the present state of Y that is not already provided by the past of Y or any other system included in Z. 

The formulation presented in (1) is an extension of the original TE measure proposed for bivariate 

systems [1] to the case of multiple interacting processes. The multivariate (conditional) TE 

formulation, also denoted as partial TE [25], rules out the information shared between X and Y that 

could be possibly triggered by their common interaction with Z. As such, this formulation fulfills for 

multivariate systems the correspondence between TE and the concept of Granger causality [19], that 

refers to the exclusive consideration of direct effects between two processes after resolving the 

conditional effects of the other observed processes. Note that the conditional formulation has been 

shown essential for taking under control the effects of common confounders in experimental contexts 

such as cardiovascular variability analysis [24] or neural signal analysis [26]. In the following, we will 

indicate Granger causal effects from the system X to the system Y with the notation X→Y (or x1:n-1→yn 

if we refer to the corresponding processes). 

Equivalently, the TE defined in (1) can be expressed in terms of mutual information (MI), as the 

conditional MI between the present state of the destination and the past states of the source given the 

past states of all systems except the source: 

 111111   n:n:n:n|YX ,yx,yITE zZ  , (2) 

or in terms of conditional entropy (CE), as the difference between the CE of the present state of the 

destination given the past states of all systems except the source and the CE of the present state of the 

destination given the past states of all systems including the source: 

   1111111111   n:n:n:nn:n:n|YX ,y,xyH,yyHTE zzZ  (3) 
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These alternative compact formulations also favor the estimation of TE, as efficient estimators exist 

for both MI [27] and CE [28]. In Section 2.3 we propose an approach for the estimation of CE based 

on sequential non-uniform conditioning combined with bias compensation, which is exploited for 

estimating TE in short and noisy physiological time series. The CE, which constitutes the backbone of 

the presented approach for TE estimation, can be functionally defined as the difference between two 

Shannon entropies, e.g., according to (3), H(yn|y1:n-1,z1:n-1) = H(y1:n,z1:n-1) − H(y1:n-1,z1:n-1) and  

H(yn|x1:n-1,y1:n-1,z1:n-1) = H(x1:n-1,y1:n,z1:n-1) − H(x1:n-1,y1:n-1,z1:n-1), where the entropy of any vector 

variable a is defined as H(a) = −∑ p(a)·log p(a) and is usually measured in bits when the base of the 

logarithm is 2 or in nats when the base is e (as in the present study). 

2.2. Compensated Transfer Entropy 

An open issue in TE analysis is how to deal with instantaneous effects, which are effects occurring 

between two processes within the same time lag (e.g., with the notation above, xn→yn). Instantaneous 

effects are the practical evidence of the concept of instantaneous causality, which is a known issue in 

causal analysis [16,19]. In practice, instantaneous causality between two time series may either have a 

proper causal meaning, when the time resolution of the measurements is lower than the time scale of 

the lagged causal influences between the underlying processes, or be void of such causal meaning, in 

the case of common driving effects occurring when an unmeasured process simultaneously affects the 

two processes under analysis [17]. In either case, instantaneous causality has an impact on the 

estimation of the TE: if it is causally meaningful, the analysis misses the zero-lag effect xn→yn, if not, 

the analysis includes potential spurious effects taking the form x1:n-1→xn→yn; these misleading 

detections may impair respectively the sensitivity and the specificity of TE estimation. 

To counteract this problem from a practical perspective, we introduce a so-called compensated TE 

(cTE), which realizes a compensation for instantaneous causality in the computation of TE. This 

compensation exploits the representation of TE as CE difference and allows for the possibility of zero-

lag interactions according to two alternative strategies. If instantaneous effects are deemed as causally 

meaningful, the zero-lag term of the source process, xn, is incorporated in the second CE term used for 

TE computation: 

   n:n:n:nn:n:n|YX ,y,xyH,yyH'cTE 1111111 zzZ    (4) 

in this case, the zero-lag term is assimilated with the past states (xn plays a similar role as x1:n-1), so that 

the present state of the source system is taken as causally relevant to account for instantaneous 

causality in TE computation. If, on the contrary, instantaneous effects are deemed as non causally 

meaningful, the zero-lag term is incorporated both in the first and in the second CE terms used for  

TE computation: 

   n:n:n:nn:n:nn|YX ,y,xyH,y,xyH''cTE 1111111 zzZ    (5) 

in this second case, the zero-lag term is considered as a conditioning factor (xn plays a similar role as 

y1:n-1 and z1:n), so that the present state of the source system is compensated to remove instantaneous 

causality from TE computation. The compensation performed in (5) is alternative to the test of time-

shifted data recently proposed to detect instantaneous mixing between coupled processes [4]. Note that 

in both compensations in (4) and (5) instantaneous effects possibly occurring from any scalar element 
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of Z towards Y are conditioned out considering the present term zn, in addition to the past terms z1:n-1, 

in the two CE computations; this is done to avoid that indirect effects x1:n-1→zn→yn were 

misinterpreted as the presence of predictive information transfer from the system X to the system Y. 

Note that, in the absence of instantaneous causality among the observed processes, the two cTE 

measures defined in (4) and (5) reduce to the traditional TE. 

2.3. Estimation Approach 

The practical estimation of TE and cTE from finite length realizations of multiple processes faces 

the issue of reconstructing the state space of the observed multivariate dynamical system and then 

estimating probabilities within this multidimensional state space. In the context of TE/cTE estimation, 

state space reconstruction corresponds to identifying the multidimensional vector which more suitably 

represents the trajectory of the states visited by the composite system {X,Y,Z}. The most commonly 

followed approach is to perform uniform time delay embedding, whereby each scalar process is 

mapped into trajectories described by delayed coordinates uniformly spaced in time [29]. In this way 

the past history of the source process, x1:n-1, is approximated with the d-dimensional delay vector  

[xn-u-(d-1), ..., xn-u-, xn-u], with  and u representing the so-called embedding time and prediction time. 

This procedure suffers from many disadvantages: first, univariate embedding whereby coordinate 

selection is performed separately for each process does not guarantee optimality of the reconstruction 

for the multivariate state space [30]; second, selection of the embedding parameters d,  and u is not 

straightforward, as many competing criteria exist which are all heuristic and somewhat mutually 

exclusive [31]; third, the inclusion of irrelevant coordinates consequent to the use of an uniform 

embedding exposes the reconstruction procedure to the so called “curse of dimensionality”, a concept 

related to the sparsity of the available data within state spaces of increasing volume [32]. All these 

problems become more cumbersome when the available realizations are of short length, as commonly 

happens in physiological time series analysis due to lack of data or stationarity requirements. To 

counteract these problems, we describe in the following a TE/cTE estimation strategy based on the 

utilization of a non-uniform embedding procedure combined with a corrected CE estimator [15]. 

The basic idea underlying our estimation approach is to optimize the time-delay embedding to the 

estimation of CE, according to a sequential procedure which updates the embedding vector 

progressively, taking all relevant processes into consideration at each step and selecting the 

components that better describe the destination process. Specifically, a set of candidate terms is first 

defined including the past states (and, when relevant, also the present state) of all systems relevant to 

the estimation of the considered CE term; for instance, considering the terms in (4), the candidate set 

for the estimation of H(yn|y1:n-1,z1:n) will be the set Ω1 = {yn-1,...,yn-L,zn,zn-1,...,zn-L}, and the candidate 

set for the estimation of H(yn|x1:n, y1:n-1,z1:n) in (4) will be the set Ω2 = {Ω1,xn,xn-1,...,xn-L} (L is the 

number of time lagged terms to be tested for each scalar process). Given the generic candidate set Ω, 

the procedure for estimating the CE H(yn|Ω) starts with an empty embedding vector V0 = [·], and 

proceeds as follows: (i) at each step k  1, form the candidate vector [s,Vk-1], where s is an element  

of Ω not already included in Vk-1, and compute the CE of the destination process Y given the 

considered candidate vector, H(yn|[s,Vk-1]); (ii) repeat step (i) for all possible candidates, and then 

retain the candidate for which the estimated CE is minimum, i.e., set Vk = [s′,Vk-1] where s′ = arg mins 



Entropy 2013, 15 204 

 

 

H(yn|[s,Vk-1]); (iii) terminate the procedure when irrelevant terms begin to be selected, i.e. when the 

decrease of CE is no longer significant; according to the estimation procedure detailed below, this 

corresponds to stop the iterations at the step k′ such that H(yn|Vk′)  H(yn|Vk′-1), and set VK = Vk′-1 as 

embedding vector. With this procedure, only the components that effectively contribute to resolving 

the uncertainty of the target process (in terms of CE reduction) are included into the embedding vector, 

while the irrelevant components are left out. This feature, together with the termination criterion which 

prevents the selection of new terms when they do not bring further resolution of uncertainty for the 

destination process, help escaping the curse of dimensionality for multivariate CE estimation. 

Moreover the procedure avoids the nontrivial task of setting the embedding parameters (the only 

parameter is the number L of candidates to be tested for each process, which can be as high as allowed 

by the affordable computational times). It is worth noting that the proposed sequential procedure for 

candidate selection takes into account one term at a time, somehow disregarding joint effects that more 

candidates may have on CE reduction. As a consequence, the sequential instead of exhaustive strategy 

does not guarantee convergence to the absolute minimum of CE, and thus does not assure a 

semipositive value for the TE/cTE measures estimated according to (3), (4) and (5). However a 

sequential approach is often necessary in practical analysis, since exhaustive exploration of all possible 

combinations of candidate terms would become computationally intractable still at low  

embedding dimensions. 

The application of the procedure described above relies on an efficient estimation of the CE. The 

problem amounts to estimating, at the k-th step of the procedure, the entropy of the scalar variable yn 

conditioned to the vector variable Vk, seen as the difference of two Shannon entropies:  

H(yn|Vk) = H(yn,Vk) − H(Vk). A major problem in estimating CE is the bias towards zero which affects 

the estimates as the dimension of the reconstructed state space grows higher [33,34]. Since the bias 

increases progressively with the embedding dimension, its occurrence also prevents from being able to 

reveal the inclusion of irrelevant terms into the embedding vector by looking at the estimated CE; in 

other words, since the estimated CE decreases progressively as a result of the bias rather than of the 

inclusion of relevant terms, the iterations of the sequential procedure for nonuniform embedding 

cannot be properly stopped. To deal with this important problem, we propose to compensate the CE 

bias adding a corrective term as proposed by Porta et al. [28,34], in order to achieve a minimum in the 

estimated CE which serves as stopping criterion for the embedding procedure. The idea is based on the 

consideration that, for time series of limited length, the CE estimation bias is due to the isolation of the 

points in the k-dimensional state space identified by the vectors Vk; such an isolation becomes more 

and more severe as the dimension k increases. Since isolated points tend to give the same contribution 

to the two entropy terms forming CE (i.e., p(Vk) ≈ p(yn,Vk) if Vk is an isolated point), their contribution 

to the CE estimate will be null; therefore, the CE estimate decreases progressively towards zero at 

increasing the embedding dimension [i.e., when k is high compared to the series length,  

H(Vk) ≈ H(yn,Vk) and thus H(yn|Vk) ≈ 0], even for completely unpredictable processes for which 

conditioning should not decrease the information carried. This misleading indication of predictability 

in the analysis of short time series is counteracted introducing a corrective term for the CE. The 

correction is meant at quantifying the fraction of isolated points Vk in the k-dimensional state space, 

denoted as n(Vk), and on substituting their null contribution with the maximal information amount 

carried by a white noise with the same marginal distribution of the observed process yn [i.e., with H(yn)]. 
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The resulting final estimate is obtained adding the corrective term n(Vk)H(yn) to the estimated CE 

H(yn|Vk). In the present study, practical implementation of the correction is performed in the context of 

entropy estimation through uniform quantization [15,28,34]. Briefly, each time series is coarse grained 

spreading its dynamics over Q quantization levels, so that the state space containing the vectors Vk is 

partitioned in Qk disjoint hypercubes. As all points falling within the same hypercube are considered 

indistinguishable to each other, the Shannon entropy is estimated approximating the probabilities with 

the frequency of visitation of the hypercubes. Partitioning in disjoint hypercubes helps also in 

quantifying the fraction of isolated points n(Vk), which is taken simply as the fraction of points found 

only once inside the hypercubes. 

3. Validation 

In this section we test the compensation for instantaneous causality in TE computation proposed in 

Section 2.2, as well as the approach for CE estimation described in Section 2.3, on numerical 

simulations reproducing different conditions of interaction between multivariate processes. The 

proposed simulations were devised, in terms of imposed dynamics, interaction conditions and series 

length, to mimic the conditions typical of the two applicative contexts which are then considered in 

Section 4, i.e., short-term cardiovascular variability and magnetoencephalography. The reader is 

referred to [15,28,34] for more extensive validations which investigate the dependence of CE measures 

on a variety of dynamics, series length, noise conditions, and parameter settings. Here, we consider 

short realizations of linear stochastic and nonlinear deterministic coupled systems with and without 

instantaneous effects, and compare TE and cTE as regards their ability to detect the absence or 

presence of information transfer between pairs of systems. All TE and cTE computations were 

performed following the described procedure for nonuniform embedding, including in the initial set of 

candidates L = 10 past terms for each process (plus the zero-lag term when relevant); this choice was 

based on the necessity to cover the whole range of expected time lagged interactions, while at the same 

time keeping reasonably low the computational times. The number of quantization levels used for 

coarse-graining the dynamics of each process was set at Q = 6, in accordance with previous validation 

studies [15,28,34]; whereas in theory high values of Q would lead to finer state space partitions and 

more accurate TE estimates, in practice Q should remain as low as QK ≈ N for series of length N  

(with K the embedding dimension) [15,28,34]. 

3.1. Physiologically Meaningful Instantaneous Causality 

In the first simulation we considered the case in which instantaneous effects are causally 

meaningful, i.e., correspond to real causal effects between pairs of processes. While zero-lag causal 

effects are unattainable in physical systems because interactions take time to occur, in practical 

analysis instantaneous causality becomes meaningfully relevant when the time resolution of the 

measurements is lower than the time scale of the lagged effects occurring between the processes, or 

when the time series are built in a way that entails the existence of zero-lag effects. Situations like 

these are commonly modeled in the framework of Bayesian networks or structural vector 

autoregression models [18,23,35]. Within this context, we consider a simulation scheme with M = 3 

linear stochastic processes X, Y, and Z which interact according to the equations: 
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where un, vn and wn are independent white noises with zero mean and variance 2
u = 5, 2

v = 1, and  

2
w = 1. According to (6), the processes X and Y are represented as second order autoregressive 

processes described by two complex-conjugate poles with modulus x,y and phases x,y = ±2fx,y; 

setting modulus and central frequency of the poles as x = 0.95, y = 0.92, fx = 0.3, fy = 0.1, the 

parameters quantifying the dependence of xn and yn on their own past in (6) are a1 = 2xcosx = 0.5871,  

a2 = −2
x = −0.9025, b1 = 2ycosy = 1.4886, a2 = −2

y = −0.8464. The other parameters, all set with a 

magnitude c = 0.5, identify causal effects between pairs of processes; the imposed effects are mixed 

instantaneous and lagged from X to Y, exclusively instantaneous from Y to Z, and exclusively lagged 

from X to Z. With this setting, self-dependencies and causal effects are consistent with rhythms and 

interactions commonly observed in cardiovascular and cardiorespiratory variability, showing an 

autonomous oscillation at the frequency of the Maier waves (fy ~ 0.1 Hz) for Y, which is transmitted to 

Z mimicking feedback effects from arterial pressure to heart period, and an oscillation at a typical 

respiratory frequency (fx ~ 0.3 Hz) for X, which is transmitted to both Y and Z mimicking  

respiratory-related effects on arterial pressure and heart period (a realization of the three processes is 

shown in Figure 1a). 

The analysis was performed on 100 realizations of (6), each lasting N = 300 points. For each 

realization, we computed the TE according to (3) and the cTE according to (4). The statistical 

significance of each estimated information transfer was assessed by using surrogate time series. 

Specifically, the TE or cTE of the original time series was compared with the distribution of its values 

obtained for a set of S = 40 realizations of time-shifted surrogates, obtained by shifting the source time 

series of a randomly selected lag (>20 points); then, the null hypothesis of absence of information 

transfer was rejected if the original TE or cTE took the first or second position in the descending 

ordered sequence of original and surrogate values (this corresponds to a type-I error probability  

of 0.0405 [36]). 

An example of the analysis is depicted in Figure 1. Each panel reports the corrected CE estimated 

for the destination process after conditioning to all processes except the source process (black) and 

after conditioning to all processes including the source process (red), together with the term selected at 

each step of the conditioning procedure. Note that the two estimated CE profiles overlap whenever no 

terms from the source process are selected even if considered as possible candidates, so that the two 

CE minima are the same and the estimated TE or cTE is zero. For instance, considering the estimation 

of TE or cTE from Y to X conditioned to Z (lower left panel in Figures 1b and 1c) we see that the first 

repetition of the embedding procedure –which starts from the initial set of candidate terms  

1 = {xn-1,...,xn-10, zn-1,...,zn-10} − selects progressively the past terms of X with lags 5, 2, and 3, 

terminating at the third step with the embedding vector V3 = [xn-5, xn-2, xn-3]. The second repetition of 

the procedure, although starting with the enlarged set of candidates 2 = {1,yn-1,...,yn-10,} which 

includes also past terms from the source system Y, selects exactly the same candidates leading again to 

the embedding vector V3 = [xn-5, xn-2, xn-3] and yielding no reduction in the estimated CE minimum, so 

that we have TEY→X|Z = cTE′Y→X|Z = 0. 
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Figure 1. Example of transfer entropy analysis performed for the first simulation. (a) 

realization of the three processes generated according to (6). (b) TE estimation between 

pairs of processes based on nonuniform embedding; each panel depicts the CE estimated 

for the destination process through application of the non-uniform embedding procedure 

without considering the source process (black circles), or considering the source process 

(red triangles), in the definition of the set of candidates; the terms selected at each step k of 

the sequential embedding are indicated within the plots, while filled symbols denote each 

detected CE minimum. (c) Same of (b) for estimation of the compensated TE (cTE′). 

 

On the contrary, the selection of one or more terms from the input process during the second 

repetition of the procedure leads to a decrease in the CE minimum, and thus to the detection of a 

positive information transfer. For instance, considering the estimation of TE from Y to Z conditioned to  

X (upper right panel in Figure 1b) the vector resulting from the first embedding is  

[xn-1, zn-5, xn-3], while the second embedding selects at the second and third steps some past terms from 

the source process Y (i.e., the terms yn-5 and yn-1), so that the selected embedding vector changes to  

[xn-1, yn-5, yn-1] and this results in a reduction of the CE minimum with respect to the first embedding 

and in the detection of a nonzero information transfer (TEY→Z|X > 0). 

The difference between TE and cTE is in the fact that in cTE computation the zero-lag term of the 

source process is a possible candidate in the second repetition of the embedding procedure, so that 

when selected to enter the embedding vector, it may reduce the information carried by the target 

process and thus lead to detecting information transfer. In the example of Figure 1, this is the case of 

the analysis performed from X to Y: the traditional TE misses detection of the existing information 

transfer because the procedure selects at both repetitions the embedding vector [yn-5, yn-4, zn-2], failing 

to include any term from the source system X and thus returning TEX→Y|Z = 0 (Figure 1b, upper left 
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panel); on the contrary the compensated TE captures the information transfer thanks to the fact that the 

zero-lag term xn is in the set of candidates for the second embedding, and is selected determining a 

reduction in the estimated CE that ultimately leads to cTE′X→X|Z > 0 [Figure 1(c), upper left panel]. 

Figure 2 reports the results of the analysis extended to all realizations. As seen in Figure 2(a), the 

distributions of both TE and cTE′ are close to zero when computed over the directions for which no 

information transfer was imposed (i.e., Y→X, Z→X and Z→Y), and cover a range of larger positive 

values over the directions with imposed coupling (X→Y, X→Z and Y→Z). cTE′ shows higher values 

than TE when computed over the coupled directions, while the two distributions substantially overlap 

when evaluated over the uncoupled directions. Note that markedly higher values are obtained for cTE′ 

compared to TE even for the direction X→Z even though X does not contribute to Z in an 

instantaneously causal way; this is likely due to the fact that Y causes Z instantaneously, an effect that 

cannot be detected in the traditional analysis and ultimately leads to underestimation of the TE. 

Figure 2. Results of transfer entropy analysis for the first simulation. (a) Distribution over 

100 realizations of (6) (expressed as 5th percentile, median and 95th percentile) of the 

information transfer estimated between each pair of processes using the traditional TE 

(white) and the compensated TE (black). (b) Percentage of realizations for which the 

information transfer estimated using TE (white) and compensated TE (black) was detected 

as statistically significant according to the test based on time-shifted surrogates. 

 

The results of Figure 2a are further supported by the percentage of significant information transfer 

of Figure 2b. Indeed, while over the uncoupled directions the number of detected significant causal 

couplings is low and comparable for TE and cTE′ (the overall specificity is 87% for the TE and 90% 

for the cTE), over the coupled directions the number of detected significant couplings is substantially 

higher for cTE′ than for TE (the overall sensitivity is 61% for the TE and 96% for the cTE). Thus, in 

this situation with causally meaningful instantaneous interactions, utilization of the cTE in place of  

the traditional TE yields a better sensitivity in the detection of information transfer between  

coupled processes. 
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3.2. Non-Physiological Instantaneous Causality 

In the second simulation we considered the case in which instantaneous effects are not 

physiologically meaningful, reproducing a situation of cross-talk between two nonlinear processes 

which is typical in the analysis of neurophysiological settings where data acquired at the scalp level are 

the result of the instantaneous mixing of unmeasured cortical sources. Specifically, we considered the 

simulated systems X′ and Y′ described by two unidirectionally coupled logistic processes x′ and y′: 
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which were then instantaneously mixed to obtain the processes x and y as: 
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where u and w are independent additive noise processes with zero mean and variance set to get a 

signal-to-noise ratio of 20 dB. In (7), we set R1 = 3.86 and R2 = 4 to obtain a chaotic behavior for the 

two logistic maps describing the autonomous dynamics of X and Y; the parameters C and  in (7) and 

(8) set respectively the strength of coupling from X to Y and the amount of instantaneous mixing 

between the two processes. 

The analysis was performed at varying the coupling strength from C = 0 (absence of coupling) to  

C = 1 (full coupling, intended as absence of self-dependencies in Y with maximal dependence on X) in 

the absence of signal mixing ( = 0), and at varying the mixing parameter from  = 0 to  = 0.4 either 

in the absence of coupling (C = 0) or with fixed coupling (C = 0.2). For each combination of the 

parameters, 50 realizations of (7-8) were generated, each lasting 100 points, and the TE and cTE were 

computed according to (3), (4) and (5), respectively. Since in this simulation the data were interpreted 

as having a trial structure, as typically happens in neurophysiological studies, the statistical 

significance of each estimated information transfer was assessed by means of a permutation test. The 

test consisted in performing repeatedly (S = 100 times in this study) a random shuffling of the relative 

ordering of the trials for the two processes to get S datasets with uncoupled trials; then, the null 

hypothesis of absence of information transfer was rejected if the median TE (or cTE′′) computed for 

the original trials was outside the 95-th percentile of the distribution of the median TE (or cTE′′) 

computed over the S datasets with shuffled trials (this corresponds to set a type-I error probability of 0.05). 

Examples of the analysis performed with significant coupling but absence of signal cross-talk  

(C = 0.2,  = 0) and significant cross-talk but absence of coupling (C = 0,  = 0.2) are depicted in 

Figure 3a and Figure 3b, respectively. In the first case, both TE and cTE seem able to detect correctly 

the imposed unidirectional coupling. Indeed, in the computation of TEX→Y and cTE′′X→Y the second 

repetition of the conditioning procedure (red) selects a term from the input process (i.e., xn-1) 

determining a decrease in the estimated CE minimum and thus the detection of a positive information 

transfer; on the contrary, the analysis performed from Y to X does not select any term from the source 

process in the second repetition of the conditioning procedure, thus leading to unvaried CE and hence 

to null values of the information transfer (TEY→X = cTE′′Y→X = 0). The identical behavior of TE and 

cTE is explained by noting that, in this case with absence of instantaneous signal mixing, zero-lag 
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effects are not present, and indeed the zero-lag term is not selected (although tested) during the 

embedding procedures for cTE. On the contrary, in the case of Figure 3b where the instantaneous 

mixing is not trivial, the two repetitions of the embedding procedure for cTE both select the zero  

lag-term (xn in the analysis from X to Y and yn in the analysis from Y to X); as a consequence, the cTE 

correctly reveals the absence of information transfer from X to Y and from Y to X, while the TE seems 

to indicate a false positive detection of information transfer over both directions because of the CE 

reduction determined by inclusion of a term from the input process during the second conditioning. 

Figure 3. Example of transfer entropy analysis performed for the second simulation. (a) 

Presence of coupling and absence of instantaneous mixing (C = 0.2,  = 0) (b) Absence of 

coupling and presence of instantaneous mixing (C = 0,  = 0.2). Panels depict a realization 

of the two processes X and Y generated according to (7) and (8), together with the 

estimation of TE and cTE′′ over the two directions of interaction based on nonuniform 

embedding and conditional entropy (CE, see caption of Figure 1 for details). 

 

Figure 4 reports the results of the overall analysis. As shown in Figure 4a, the traditional and 

compensated TE perform similarly in the absence of signal cross-talk, as the median values of TE and 

cTE′′ are statistically significant, according to the permutation test, for all values of C > 0 when 

computed from X to Y, and are never statistically significant when computed from Y to X. On the 

contrary, the presence of instantaneous mixing may induce the traditional TE to yield a misleading 

indication of information transfer for uncoupled processes. This erroneous indication occurs in Figure 4b 

where both TEX→Y and TEY→X are statistically significant with >0 even though X and Y are uncoupled 

over both the directions of interaction, and in Figure 4c where TEY→X is statistically significant with  

 = 0.2 even though no coupling was imposed from Y to X (in total, false positive detections using the 

TE were five out of six negative cases with presence of instantaneous mixing). Unlike the traditional 

TE, the cTE does not take false positive values in the presence of signal cross-talk, as the detected 

information transfer is not statistically significant over both directions in the case of uncoupled 

systems of Figure 4b, and is statistically significant from X to Y but not from Y to X in the case of 

unidirectionally coupled systems of Figure 4c. Thus, in this simulation where instantaneous causality is 

due to common driving effects, utilization of cTE′′ in place of the traditional TE measure yields a 

better specificity in the detection of predictive information transfer. 
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Figure 4. Results of transfer entropy analysis for the second simulation, showing the 

median values over 50 realizations of (7) and (8) of the TE (first panel row) and the 

compensated TE (second panel row) computed along the two directions of interactions 

(X→Y, circles; Y→X, triangles) (a) at varying the parameter C with parameter  = 0; (b) at 

varying  with C = 0 (b); and (c) varying  with C = 0.2. Filled symbols denote statistically 

significant values of TE or cTE′′ assessed by means of the permutation test. 

 

4. Application Examples 

This section describes the evaluation of the proposed TE/cTE estimation approach in physiological 

systems where commonly only short realizations of the studied processes (few hundred points) are 

available due to stationarity constraints. The considered applications are taken as examples of 

commonly performed time series analyses of physiological systems, i.e., the study of short-term 

cardiovascular and cardiorespiratory interactions during a paced breathing protocol [7], and  

the study of neural interactions from magnetoencephalographic data during an experiment of  

visuo-motor integration [37]. 

4.1. Cardiovascular and Cardiorespiratory Variability 

In the first application we studied cardiovascular and cardiorespiratory time series measured during 

an experiment of paced breathing [7]. The considered dynamical systems are the respiratory system, 

the vascular system, and the cardiac system, from which we take the respiratory flow, the systolic 

arterial pressure and the heart period as representative processes, respectively denoted as processes x, y 

and z. Realizations of these processes were obtained measuring in a healthy subject the beat-to beat 

time series of heart period, zn, systolic pressure, yn,, and respiratory flow, xn, respectively as the 

sequences of the temporal distances between consecutive heartbeats detected from the 

electrocardiogram, the local maxima of the arterial pressure signal (acquired through the Finapres 

device) measured inside each detected heart period, and the values of the airflow signal (acquired from 

the nose through a differential pressure transducer) sampled at the onset of each detected heart period. 

The measurement convention is illustrated in Figure 5. The experimental protocol consisted in signal 
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acquisition, after subject stabilization in the resting supine position, for 15 min with spontaneous 

breathing, followed by further 15 min with the subject inhaling and exhaling in time with a metronome 

acting at 15 cycles/min (paced breathing at 0.25 Hz). Two artifact-free windows of N = 300 samples, 

measured synchronously for the M = 3 series during spontaneous breathing and during paced 

breathing, were considered for the analysis. Weak stationarity of each series was checked by means of 

a test checking the stability of the mean and variance over the analysis window [38]. The analyzed 

series are shown in Figure 6. 

Figure 5. Measurement of heart period (series z), systolic arterial pressure (series y) and 

respiratory flow (series x) variability series from the electrocardiogram, arterial blood 

pressure and nasal flow signals. 

 

In this application, instantaneous effects between the measured time series were considered as 

physiologically meaningful, since from the above described measurement convention we can infer that 

the occurrence of the present respiration value, xn, precedes in time the occurrence of the present 

systolic pressure value, yn, which in turn precedes in time the end of the present heart period,  

zn (see Figure 5). Therefore, cTE analysis was performed for this application using the compensation 

proposed in (4). The statistical significance of each estimated TE and cTE′ was assessed using time 

shifted surrogates. The results of the analysis for the spontaneous breathing and paced breathing 

conditions are depicted in Figure 6a and Figure 6b, respectively. Utilization of the traditional TE led to 

detect as statistically significant the information transfer measured from respiration to heart period 

during spontaneous breathing (TEX→Z in Figure 6a, and from respiration to systolic pressure during 

paced breathing (TEX→Y in Figure 6b. The same analysis performed accounting for instantaneous 

causality effects led to detect a higher number of statistically significant interactions, specifically from 

respiration to heart period and from systolic pressure to heart period during both conditions (cTE′X→Z 

and cTE′Y→Z in Figures 6a, b), and also from respiration to systolic pressure during paced breathing 

(cTE′X→Y in Figure 6b).  
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Figure 6. Transfer entropy analysis in cardiovascular and cardiorespiratory variability 

performed. (a) during spontaneous breathing and (b) during paced breathing. Plots depict 

the analyzed time series of respiratory flow (xn, system X), systolic arterial pressure (yn, 

system Y) and heart period (zn, system Z) together with the corresponding TE (circles) and 

compensated TE (triangles) estimated between each pair of series. The gray symbols 

indicate the values of TE/cTE obtained over 40 pairs of time-shifted surrogates; filled 

symbols denote statistically significant TE or cTE′. 

 

Though not conclusive as they are drawn on a single subject, these results suggest a higher 

sensitivity of the cTE, compared with the traditional TE, in the detection of information transfers that 

can be associated to known cardiovascular and cardiorespiratory mechanisms. These mechanisms, also 

recently investigated using tools based on transfer entropy [7], are the baroreflex modulation of heart 

rate, manifested through coupling from systolic pressure to heart period variability [39], and the effects 

of respiration on heart period (describing the so-called respiratory sinus arrhythmia [40]) and on 

arterial pressure (describing the mechanical perturbations of arterial pressure originating from 

respiration-related movements [41]). In particular, the higher sensitivity of cTE to the information 

transferred from systolic pressure to heart period, denoted in this example by the significant values 

observed for cTE′Y→Z but not for TEY→Z in both conditions, could suggest a major role played by fast 

vagal effects −whereby the systolic pressure affects heart period within the same heartbeat—in the 

functioning of the baroreflex mechanism. 

4.2. Magnetoencephalography 

The second application is about quantification of the information transfer between different cerebral 

areas from the analysis of magnetoencephalographic (MEG) data. The analyzed MEG signals were 

taken from a database of neurobiological recordings acquired during a visuo-tactile cognitive 
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experiment [42]. Briefly, a healthy volunteer underwent a recording session in which simultaneous 

visual and tactile stimuli were repeatedly presented (60 trials). At each trial, geometric patterns 

resembling letters of the Braille code were both shown on a monitor and embossed on a tablet, and the 

subject had to perceive whether the pattern seen on the screen was the same of that touched on the 

tablet. The MEG signals (VSM whole head system) were recorded with 293 Hz sampling frequency 

during two consecutive time frames of 1 s, before (rest window) and after (task window) the 

presentation of the combined stimuli. 

The two dynamical systems considered for this application were the somatosensory cortex  

(system X) and the visual cortex (system Y). At each experimental trial, we considered two MEG 

sensors as representative of the two areas, and considered the signals measured from these sensors as 

realizations of the processes x and y. Sensor selection was performed trial by trial through a suitable 

event-related field analysis looking for the scalp locations, situated within the visual cortex and the 

somatosensory cortex, at which the signal magnitude was maximized in response to pure-visual or 

pure-tactile stimulation [42]. The considered signals were preprocessed applying a band-pass filter 

(FFT filter, 2–45 Hz); moreover, the event-related field was removed from each task window by 

subtraction of the average response over the 60 trials. An example of the analyzed signals is shown  

in Figures 7a, 7b. 

Figure 7. Transfer entropy analysis in magnetoencephalography performed before (left) 

and during (right) presentation of the combined visuo-tactile stimuli. (a) Representative 

MEG signals acquired from the somatosensory cortex (xn, system X) and the visual cortex 

(yn, system Y) for one of the experiment trials (n ranges from 1 to 293 samples before and 

during simulation). (b) Median over the 60 trials of TE (circles) and compensated TE 

(triangles) estimated for the two directions of interaction between X and Y before and 

during stimulation; gray symbols indicate the values of TE/cTE′′ obtained over 100 trial 

permutations; filled symbols denote statistically significant TE or cTE′′. 
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In this application, instantaneous effects were considered as non-physiological, because in large part 

they are the result by artifacts of volume conduction, i.e., of the instantaneous mixing of unmeasured 

cortical sources which are simultaneously mapped onto the different MEG sensors [43]. Therefore, 

cTE analysis was performed using the compensation for signal cross-talk proposed in (5). The statistical 

significance of each estimated TE and cTE′′ value was assessed using a permutation test applied to  

the 60 trials. 

The results shown in Figure 7b indicate that the TE is statistically significant from the 

somatosensory area towards the visual area before stimulus presentation, and from the visual area to 

the somatosensory area during stimulation. On the other hand, the cTE was not statistically significant 

along any direction before task, and was significant from the visual area to the somatosensory area 

during task. Therefore, utilization of cTE′′ seems to indicate in this exemplary application the 

emergence of causality X→Y with stimulus presentation, with a significant information transfer 

detected only during execution of the task. This result is compatible with the activation of mechanisms 

of sensory-motor integration moving from rest to task, with the posterior visual cortex driving the 

coherent activation of the somatosensory cortex during the combined visuo-tactile stimulation [44]. 

Moreover, the significant information transfer detected by the traditional TE over the opposite 

direction in the absence of stimulation, which is more difficult to interpret according to the paradigm 

proposed by this experiment, could be interpreted as a false positive detection of information transfer, 

thus confirming the lower specificity of non-compensated TE analysis evidenced by the simulation 

results. While the results reported here are certainly not conclusive, we believe that utilization of a 

nonlinear, model-free tool like TE, in conjunction with the compensation for instantaneous mixing 

realized by cTE, may deepen the interpretation of the mechanisms of multisensory integration involved 

in visuo-tactile experiments given by more standard tools, e.g., based on spectral analysis [37,42]. 

5. Discussion 

Our results suggest that the framework proposed in this study for the practical estimation of 

multivariate TE can successfully deal with the issues arising in the conditions typical of physiological 

time series analysis. First, to counteract the problems related to high dimensionality and small sample 

size, we exploited a data-efficient estimation approach which combines a strategy for optimizing the 

embedding of multiple time series with a method for correcting the bias that affect conditional entropy 

estimates progressively at increasing the embedding dimension [15]. The reported simulation results 

indicate that using this approach together with appropriate statistical tests (i.e., time-shifted surrogates 

or, when the dataset has a trial structure, permutation tests), detection of significant information 

transfer is possible even when the analyzed realizations are very short (a few hundred data points). 

Moreover, we devised a compensation strategy aimed at properly taking into account the concept of 

instantaneous causality in the computation of TE. In the presented simulated datasets utilization of this 

strategy led to an improvement in sensitivity of about 35% when instantaneous effects were 

physiologically meaningful, and to an improvement in specificity of about 85% when instantaneous 

effects were non physiological (i.e., due to common driving from unobserved sources). These two 

kinds of improvement were suggested also by the reported representative applications to physiological 

time series. In cardiovascular and cardiorespiratory variability, where the construction of the time 
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series suggests the existence of physiological causal effects occurring at lag zero, the compensated TE 

evidenced better than the traditional TE the presence of expected interaction mechanisms (e.g., the 

baroreflex). In magnetoencephalography, where instantaneous effects are likely the result of the 

simultaneous mapping of single sources of brain activity onto several recording sensors, utilization of 

the proposed compensation suggested the activation of multisensory integration mechanisms in 

response to a specific stimulation paradigm. Nevertheless, we emphasize that practical analysis was 

limited in the present study to preliminary investigations aimed at supporting the feasibility of the 

proposed approach in different fields of application, and that systematic tests performed on extensive 

databases need to be carried out to corroborate the validity of our experimental results. 

While with the present study we have proposed feasible approaches to deal with the detrimental 

effects of instantaneous causality in the practical estimation of TE, it is important to remark that the 

proposed compensations constitute an empirical rather than a principle solution to the problem. In fact, 

from a theoretical perspective the compensation achieved in (4) through the index cTE′ could not yield 

a better sensitivity than the traditional TE measure (3), because an instantaneous causal effect from X 

to Y can be detected by cTE′ reflecting a direct effect xn→yn, but by TE as well reflecting an indirect 

effect x1:n-1→xn→yn, (provided that X has an internal memory structure). Therefore, the higher 

sensitivity observed for the cTE in this case should be explained in practical terms (i.e., as an easier 

estimation of a direct than an indirect effect). Moreover, when instantaneous effects are causally 

meaningful, including them in TE computation as done in (4) might yield to a detection of information 

transfer not only over the direction of the actual causal effects, but also over the opposite direction. On 

the other hand, when instantaneous effects are not causally meaningful the full removal of zero-lag 

effects performed by (5) may be conservative when real causal effects taking place within the same 

sample are present besides the spurious effects to be removed. Another point regarding theoretical 

values of the index cTE′′ is that conditioning to the zero-lag term as done in (5) may cause, in 

particular circumstances involving unobserved variables (e.g., due to latent confounders or resulting 

from inappropriate sampling), spurious detections of predictive information transfer reflecting an 

effect known as “selection bias” or “conditioning on a collider” [45]. Nevertheless it is likely that, in 

most practical situations in which real short data sequences are considered and significance tests are 

applied, the null hypothesis of absence of information transfer cannot be rejected solely as a 

consequence of spurious effects deriving from selection bias. Further studies should be aimed at 

assessing the real capability of these spurious effects to produce detectable predictive information transfer 

in practical estimation contexts. 

As to the practical utilization of the cTE estimation framework developed in this study, we stress 

that the proposed compensation for instantaneous causality relies on prior knowledge about the nature 

of the zero-lag interactions among the observed physiological processes. Indeed, we have shown that 

the proposed compensation strategies work properly only when one can reasonably assume that 

instantaneous effects are the result of an improper sampling of actual physiological causal interactions, 

or of a simultaneous mapping of unobserved processes. In fact, using the index cTE′ when 

instantaneous effects are not causally meaningful may exacerbate the false positive detection of 

information transfer, while using cTE′′ in the presence of meaningful instantaneous effects does not 

improve the detection rate. Therefore, future studies should aim at integrating within our framework 

recently proposed approaches for the inference of the direction of instantaneous causality based on 
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data structure rather than on prior assumptions [17,23]. Another interesting development would be to 

combine together the approach for partial conditioning recently proposed in [46], which selects the 

most informative subset of processes for describing the source process, with our nonuniform 

embedding procedure, which selects the most informative subset of lagged variables for describing the 

target process. Such an integrated approach for dimensionality reduction would further favor the 

development of a fully multivariate efficient TE estimator. Finally we remark that, whereas in this 

study we have followed a uniform quantization approach for estimating entropies, other approaches 

such as those using kernel density and nearest neighbor estimators have been proven more  

accurate [4,13,14]. Accordingly, future investigations will be directed towards the implementation of 

correction strategies realizing for these alternative estimators the compensation of the CE bias obtained 

here in the context of uniform quantization. 
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