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Abstract: In this paper, we investigate the finite-time synchronization problem of a
novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll attractors.
Based on the finite-time stability theory, two control strategies are proposed to realize
synchronization of the novel hyperchaotic complex-variable system in finite time.
Finally, two numerical examples have been provided to illustrate the effectiveness of the
theoretical analysis.
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1. Introduction

Hyperchaos [1] is generally characterized as a chaotic attractor with more than one positive Lyapunov
exponent and has richer dynamical behaviors than chaos. Over the past three decades, hyperchaotic
systems with real variables have been investigated extensively [2–5]. Since Fowler et al. [6] generalized
the real Lorenz model to a complex Lorenz model, which can be used to describe and simulate the physics
of a detuned laser and the thermal convection of liquid flows [7,8], complex chaotic and hyperchaotic
systems have been intensively studied. After the complex Lorenz model, many other chaotic and
hyperchaotic complex-variable systems have been reported, including the complex Chen and complex



Entropy 2013, 15 4335

Lü systems [9], complex detuned laser system [10], complex modified hyperchaotic Lü system [11], and
a novel hyperchaotic complex-variable system [12] which generates 2-, 3- and 4-scroll attractors.

In recent years, chaos synchronization has attracted increasing attention among scientists due to
its potential applications in the fields of secure communications, optical, chemical, physical and
biological systems, neural networks, etc. [13–16]. When applying the complex-variable systems in
communications, the complex variables will double the number of variables and can increase the content
and security of the transmitted information. Therefore, synchronization in chaotic or hyperchaotic
complex-variable systems has been extensively investigated. In [17], the authors investigated hybrid
projective synchronization of a chaotic complex nonlinear system via linear feedback control method.
Liu et al. [18] studied adaptive anti-synchronization of a class of chaotic complex nonlinear systems.
Based on the passive theory, the authors studied the projective synchronization of hyperchaotic complex
nonlinear systems and its application in secure communications [19]. The robust adaptive full state
hybrid projective synchronization for a class of chaotic complex-variable systems with uncertain
parameters and external disturbances was achieved in [20].

As time goes by, more and more researchers have begun to realize the importance of synchronization
time and proposed the finite-time synchronization scheme [21,22]. Finite-time synchronization means
optimization in convergence time. Moreover, the finite-time control techniques have demonstrated better
robustness and disturbance rejection properties [23].

Up until now, to the best of our knowledge, there are no published results about finite-time
synchronization for chaotic or hyperchaotic systems with complex variables. In this paper, we investigate
the finite-time synchronization of a novel hyperchaotic complex-variable system [12] which generates
2-, 3- and 4-scroll attractors. Based on the finite-time stability theorem, two control strategies are
proposed to realize the finite-time synchronization of the hyperchaotic complex-variable system.

2. Basic Conception of Finite-Time Stability Theory and System Description

Finite-time stability means that the state of the dynamic system converges to a desired target in a
finite time.

Definition 1 [23]. Consider the nonlinear dynamical system modeled by

ẋ = f(x) (1)

where the state variable x ∈ Rn. If there exists a constant T > 0 ( T > 0 may depend on the initial state
x(0)) such that

lim
t→T
‖ x(t) ‖= 0 (2)

and ||x(t)|| ≡ 0, if t ≥ T , then system in Equation (1) is finite-time stable.

Lemma 1 [23]. Suppose there exists a continuous function V : D → R such that the following
conditions hold:

(i) V is positive definite.
(ii) There exist real numbers c > 0 and α ∈ (0, 1) and an open neighborhood V ⊆ D of the origin

such that
V̇ (x) + c(V (x))α ≤ 0, x ∈ V \ {0} (3)
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then the origin is a finite-time stable equilibrium of system in Equation (1), and the settling time,
depending on the initial state x(0) = x0, satisfies

T (x0) ≤
V 1−α(x0)

c(1− α)
(4)

In addition, if D = Rn and V (x) is also radially unbounded (i.e., V (x) → +∞ as ‖x‖ → +∞) the
origin is a globally finite-time stable equilibrium of system (1).

Lemma 2 [24]. For any real number αi, i = 1, 2, ..., k and 0 < r < 1, the following inequality holds:

(|α1|+ |α2|+ · · ·+ |αk|)r ≤ |α1|r + |α2|r + · · ·+ |αk|r (5)

Lately, a novel hyperchaotic complex-variable system, which generates 2-, 3- and 4-scroll attractors
has introduced and is described by 

ẋ = y − ax+ byz

ẏ = cy − xz + z

ż =
d

2
(x̄y + xȳ)− hz

(6)

where a, b, c, d, and h are positive parameters, x = v1 + iv2 and y = v3 + iv4 are complex variables,
i =

√
−1; vk (k = 1, 2, 3, 4) and z = v5 are real variables. Dots represent derivatives with respect

to time, and an overbar represents complex conjugation. This system’s hyperchaotic attractors exist for
large ranges of system parameters. For detailed information about this system, please refer to [12].

3. Finite-Time Synchronization of a Novel Hyperchaotic Complex-Variable System

The drive system is described by the Equation (6), and the response system can be described as follows
ẋ′ = y′ − ax′ + by′z′ + µ1 + iµ2

ẏ′ = cy′ − x′z′ + z′ + µ3 + iµ4

ż′ =
d

2
(x̄′y′ + x′ȳ′)− hz′ + µ5

(7)

where a, b, c, d, and h are positive parameters, x′ = u1 + iu2 and y′ = u3 + iu4 are complex variables, uk
(k = 1, 2, 3, 4) and z′ = u5 are real variables. And µk(k = 1, 2, 3, 4, 5) are controllers to be determined.
With these controllers, the drive system in Equation (6) and the response system in Equation (7) can
achieve synchronization in finite time.

Next,the error states are defined as 
e1 + ie2 = x′ − x
e3 + ie4 = y′ − y

e5 = z′ − z

(8)

then the error system can be obtained by
ė1 + iė2 = y′ − ax′ + by′z′ − (y − ax+ byz) + µ1 + iµ2

ė3 + iė4 = cy′ − x′z′ + z′ − (cy − xz + z) + µ3 + iµ4

ė5 =
d

2
(x̄′y′ + x′ȳ′)− hz′ − [

d

2
(x̄y + xȳ)− hz] + µ5

(9)
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Separating the real and imaginary parts of Equation (9) yields

ė1 = e3 − ae1 + b(u3u5 − v3v5) + µ1

ė2 = e4 − ae2 + b(u4u5 − v4v5) + µ2

ė3 = ce3 + e5 − u1u5 + v1v5 + µ3

ė4 = ce4 − u2u5 + v2v5 + µ4

ė5 = d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 + µ5

(10)

Our aim is to design controllers that can achieve finite-time synchronization between the drive system
in Equation (6) and the response system in Equation (7). This problem can be converted to design
controllers to attain finite-time stable of the error system in Equation (10). Two control strategies are
proposed to fulfill this goal.

Control strategy 1:

Theorem 1. If the controllers are designed as

µ1 = −e3 − b(u3u5 − v3v5)− ek1
µ2 = −e4 − b(u4u5 − v4v5)− ek2
µ3 = −L1e3 − e5 + u1u5 − v1v5 − ek3
µ4 = −L2e4 + u2u5 − v2v5 − ek4
µ5 = −d(u1u3 + u2u4) + d(v1v3 + v2v4)− ek5

(11)

where k = q/p is a proper rational number, p and q are positive odd integers and p > q, L1 ≥ c and
L2 ≥ c. Then the trajectories of the error system converge to zero in finite time.

Proof. Construct the following Lyapunov function

V =
1

2
(e21 + e22 + e23 + e24 + e25) (12)

By differentiating the function V along the trajectories of the error dynamical system in Equation (10),
we have

V̇ =e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5

=e1[e3 − ae1 + b(u3u5 − v3v5) + µ1] + e2[e4 − ae2 + b(u4u5 − v4v5) + µ2]

+ e3(ce3 + e5 − u1u5 + v1v5 + µ3) + e4(ce4 − u2u5 + v2v5 + µ4)

+ e5[d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 + µ5]

(13)
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Substituting the controllers given in Equation (11) into Equation (13), yields

V̇ =e1[e3 − ae1 + b(u3u5 − v3v5)− e3 − b(u3u5 − v3v5)− ek1]

+ e2[e4 − ae2 + b(u4u5 − v4v5)− e4 − b(u4u5 − v4v5)− ek2]

+ e3[ce3 + e5 − u1u5 + v1v5 + (c− L1)e3 − e5 + u1u5 − v1v5 − ek3]

+ e4[ce4 − u2u5 + v2v5 + (c− L2)e4 + u2u5 − v2v5 − ek4]

+ e5[d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 − d(u1u3 + u2u4) + d(v1v3 + v2v4)− ek5]

=e1(−ae1 − ek1) + e2(−ae2 − ek2) + e3[(c− L1)e3 − ek3] + e4[(c− L2)e4 − ek4] + e5(−he5 − ek5)

≤− ek+1
1 − ek+1

2 − ek+1
3 − ek+1

4 − ek+1
5

=− (
1

2
)−

k+1
2 [(

1

2
e21)

k+1
2 + (

1

2
e22)

k+1
2 + (

1

2
e23)

k+1
2 + (

1

2
e24)

k+1
2 + (

1

2
e25)

k+1
2 ]

(14)
In light of Lemma 2, we have

V̇ ≤− (
1

2
)−

k+1
2 (

1

2
e21 +

1

2
e22 +

1

2
e23 +

1

2
e24 +

1

2
e25)

k+1
2

=− (
1

2
)−

k+1
2 (

V

2
)
k+1
2

(15)

then from Lemma 1, the error dynamical system in Equation (10) is finite-time stable. This implies there
exists a T > 0 such that e ≡ 0 if t ≥ T .

Control strategy 2:

Theorem 2. If the controllers are designed as

µ1 = −e3 − b(u3u5 − v3v5)− ek1
µ2 = −e4 − b(u4u5 − v4v5)− ek2
µ3 = −L3e3 − e5 + v1e5 − ek3
µ4 = −L4e4 + v2e5 − ek4
µ4 = −dv1e3 − dv2e4 − ek5

(16)

where k = q/p is a proper rational number, p and q are positive odd integers and p > q, L3 ≥ c and
L4 ≥ c, then the trajectories of the error dynamical system converge to zero in finite time.

Proof. The design procedure is divided into two steps.
Step 1. Substituting the controllers µ1 and µ2 into the first two parts of Equation (10) yields

ė1 = e3 − ae1 + b(u3u5 − v3v5)− e3 − b(u3u5 − v3v5)− ek1 = −ae1 − ek1
ė2 = e4 − ae2 + b(u4u5 − v4v5)− e4 − b(u4u5 − v4v5)− ek2 = −ae2 − ek2

(17)

Choose the following candidate Lyapunov function:

V1 =
1

2
(e21 + e22) (18)
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The derivative of V1 along the trajectory of Equation (17) is

V̇1 = e1ė1 + e2ė2

= e1(−ae1 − ek1) + e2(−ae2 − ek2)

≤ −ek+1
1 − ek+1

2

= −(
1

2
)−

k+1
2 [(

1

2
e21)

k+1
2 + (

1

2
e22)

k+1
2 ]

≤ −(
1

2
)−

k+1
2 (

1

2
e21 +

1

2
e22)

k+1
2

= −(
1

2
)−

k+1
2 V

k+1
2

1

(19)

From Lemma 1, the system in Equation (17) is finite-time stable. That means there is a T1 > 0 such
that e1 ≡ 0 and e2 ≡ 0 for any t ≥ T1.

When t > T1 , the last three equations of system in Equation (10) become:
ė3 = ce3 + e5 − v1e5 + µ3

ė4 = ce4 − v2e5 + µ4

ė5 = dv1e3 + dv2e4 − he5 + µ5

(20)

A candidate Lyapunov function for system in Equation (20) is chosen as follows

V2 =
1

2
(e23 + e24 + e25) (21)

The derivative of V2 along the trajectory of Equation (20) is

V̇2 = e3ė3 + e4ė4 + e5ė5

= e3(ce3 + e5 − v1e5 + µ3) + e4(ce4 − v2e5 + µ4) + e5(dv1e3 + dv2e4 − he5 + µ5)
(22)

Substituting the controllers µ3, µ4, µ5 in Equation (16) into the above equation, yields

V̇2 =e3(ce3 + e5 − v1e5 − L3e3 − e5 + v1e5 − ek3)

+ e4(ce4 − v2e5 − L4e4 + v2e5 − ek4)

+ e5(dv1e3 + dv2e4 − he5 − dv1e3 − dv2e4 − ek5)

=(c− L3)e
2
3 − ek+1

3 + (c− L4)e
2
4 − ek+1

4 − he25 − ek+1
5

≤− ek+1
3 − ek+1

4 − ek+1
5

=− (
1

2
)−

k+1
2 [(

1

2
e23)

k+1
2 + (

1

2
e24)

k+1
2 + (

1

2
e25)

k+1
2 ]

≤− (
1

2
)−

k+1
2 (

1

2
e23 +

1

2
e24 +

1

2
e25)

k+1
2

=− (
1

2
)−

k+1
2 V

k+1
2

2

(23)

Then from Lemma 1, the error states e3, e4 and e5 will converge to zero at a finite time T2. After T2,
the error states of error dynamical system in Equation (10) will stay at zero, i.e., the trajectories of the
error dynamical system converge to zero in finite time.
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4. Numerical Simulations

In this section, two numerical examples are presented to illustrate the theoretical analysis. In
the following numerical simulations the fourth-order Runge-kutta method is employed with time step
size 0.001. The system parameters are selected as a = 3.5, b = 0.6, c = 3, d = 2, and
h = 9, so that the complex nonlinear hyperchaotic system in Equation (1) exhibits hyperchaotic
behavior. The initial conditions of the drive system and response system are always adopted as
(x(0), y(0), z(0)) = (5 + 2i,−1 + i,−4) and (x′(0), y′(0), z′(0)) = (−5− 2i, 1− i, 4) respectively.

Example 1. Consider strategy 1 with the controllers given by Equation (11). We choose
L1 = 3, L2 = 3 and k = 7/9, Figures 1 and 2 show the results of numerical simulation. From
Figure 1, we can see that the states of the drive system from Equation (6) and the response system from
Equation (7) quickly synchronize. Figure 2 shows the state errors e1, e2, e3, e4, e5 are rapidly stabilize
at zero. So the system given by Equations (6) and (7) achieves finite-time synchronization.

Figure 1. The states of the drive system in Equation (6) and the response system in
Equation (7) with controllers given by Equation (11).
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Figure 2. The time response of error states with controllers as in Equation (11).
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Example 2. Consider strategy 2 with the controllers given in Equation (16). We choose
L3 = 3, L4 = 3 and k = 7/9, Figures 3 and 4 show that systems in Equations (6) and (7) achieve
finite-time synchronization. From Figures 2 and 4, we can see the synchronized time of error dynamical
system in Figure 4 is longer than that in Figure 2.

Figure 3. The states of the drive system in Equation (6) and the response system in
Equation (7) with controllers given by Equation (16).
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Figure 4. The time response of error states with controllers as in Equation (16).
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5. Conclusions

When applying complex-variable systems in communications, the complex variables double the
number of variables and can increase the content and security of the transmitted information. In this
paper, a novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll attractors has
been considered and the fast synchronization problem of such a system has been investigated. Based on
the finite-time stability theory, two kinds of simple and effective controllers for the novel hyperchaotic
complex-variable system have been proposed to guarantee the global exponential stability of the resulting
error systems. Finally, two numerical examples have been provided to illustrate the effectiveness of the
theoretical analysis.
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1. Rössler, O.E. An equation for hyperchaos. Phys. Lett. A 1979, 71, 155–157.



Entropy 2013, 15 4343

2. Matsumoto, T.; Chua, L.O.; Kobayashi, K. Hyperchaos: Laboratory experiment and numerical
confirmation. IEEE Trans. Circuits Syst. 1986, 33, 1143–1149.

3. Grassi, G.; Mascolo, S. A system theory approach for designing cryptosystems based on
hyperchaos. IEEE Trans. Circuits Syst. I 1999, 46, 1135–1138.

4. Yin, H.; Chen, Z.; Yuan, Z. A blind watermarking algorithm based on hyperchaos and coset by
quantizing wavelet transform coefficients. Int. J. Innov. Comput. Inf. Control 2007, 3, 1635–1643.

5. Zhu, C.X. A novel image encryption scheme based on improved hyperchaotic sequences.
Opt. Commun. 2012, 285, 29–37.

6. Fowler, A.C.; Gibbon, J.D.; McGuinness, M.J. The complex Lorenz equations. Physica D 1982, 4,
139–163.

7. Ning, C.Z.; Haken, H. Detuned lasers and the complex Lorenz equations: Subcritical and
supercritical Hopf bifurcations. Phys. Rev. A 1990, 41, 3826–3837.

8. Gibbon, J.D.; McGuinness, M.J. The real and complex Lorenz equations in rotating fluids and
lasers. Physica D 1983, 5, 108–122.

9. Mahmoud, G.M.; Bountis, T.; Mahmoud, E.E. Active control and global synchronization of the
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