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Abstract: Mutual information (MI) quantifies the statistical dependency between a pair
of random variables, and plays a central role in the analysis of engineering and biological
systems. Estimation of MI is difficult due to its dependence on an entire joint distribution,
which is difficult to estimate from samples. Here we discuss several regularized estimators
for MI that employ priors based on the Dirichlet distribution. First, we discuss three
“quasi-Bayesian” estimators that result from linear combinations of Bayesian estimates for
conditional and marginal entropies. We show that these estimators are not in fact Bayesian,
and do not arise from a well-defined posterior distribution and may in fact be negative.
Second, we show that a fully Bayesian MI estimator proposed by Hutter (2002), which relies
on a fixed Dirichlet prior, exhibits strong prior dependence and has large bias for small
datasets. Third, we formulate a novel Bayesian estimator using a mixture-of-Dirichlets
prior, with mixing weights designed to produce an approximately flat prior over MI. We
examine the performance of these estimators with a variety of simulated datasets and show
that, surprisingly, quasi-Bayesian estimators generally outperform our Bayesian estimator.
We discuss outstanding challenges for MI estimation and suggest promising avenues for
future research.
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1. Introduction

Mutual information (MI) is a key statistic in science and engineering applications such as causality
inference [1], dependency detection [2], and estimation of graphical models [3]. Mutual information has
the theoretical virtue of being invariant to the particular coding of variables. As a result, it has been widely
used to quantify the information carried by neural spike trains, where the coding is typically not known
a priori [4].

One approach to mutual information estimation is to simplify the problem using a breakdown of MI
into marginal and conditional entropies (see Equation (2)). These entropies can be estimated separately
and then combined to yield a consistent estimator for MI. As we will show, three different breakdowns
yield three distinct estimators for MI. We will call these estimates “quasi-Bayesian” when they arise from
combinations of Bayesian entropy estimates.

A vast literature has examined the estimation of Shannon’s entropy, which is an important problem in
its own right [5–16]. Among the most popular methods is a Bayes Least Squares (BLS) estimator known
as Nemenman–Shafee–Bialek (NSB) estimator [17]. This estimator employs a mixture-of-Dirichlets prior
over the space of discrete distributions, with mixing weights selected to achieve an approximately flat
prior over entropy. The BLS estimate corresponds to the mean of the posterior over entropy.

A second, “fully Bayesian” approach to MI estimation is to formulate a prior over the joint probability
distribution in question and compute the mean of the induced posterior distribution over MI. Hutter showed
that the BLS estimate (i.e., posterior mean) for MI under a Dirichlet prior has an analytic form [18]. To
our knowledge, this is the only fully Bayesian MI estimator proposed thus far, and its performance has
never been evaluated empirically (but see [19]).

We begin, in Section 2, with a brief introduction to entropy and mutual information. In Section 3,
we review Bayesian entropy estimation, focusing on the NSB estimator and the intuition underlying the
construction of its prior. In Section 4, we show that the MI estimate resulting from a linear combination
of BLS entropy estimates is not itself Bayesian. In Section 5, we examine the MI estimator introduced
by Hutter [18] and show that it induces a narrow prior distribution over MI, leading to large bias and
excessively narrow credible intervals for small datasets. We formulate a novel Bayesian MI estimator
using a mixture-of-Dirichlets prior, designed to have a maximally uninformative prior over MI. Finally,
in Section 6, we compare the performance of Bayesian and quasi-Bayesian estimators on a variety of
simulated datasets.

2. Entropy and Mutual Information

Consider data samples (xi, yi)
N
i=1 drawn iid from π, a discrete joint distribution for random variables

X and Y . Assume that these variables take values on finite alphabets {1, . . . , Kx} and {1, . . . , Ky},
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respectively, and define πij = p(X = i, Y = j). Note that π can be represented as a Kx ×Ky matrix,
and that

∑
i

∑
j πij = 1. The entropy of the joint distribution is given by

H(π) = −
Kx∑
i=1

Ky∑
j=1

πij log πij (1)

where log denotes the logarithm base 2 (We denote the natural logarithm by ln; that is, log x = lnx
ln 2

). The
mutual information between X and Y is also a function of π. It can be written in terms of entropies in
three different but equivalent forms:

I(π) = H(πy) +H(πx)−H(π) (2)

= H(πx)−
Ky∑
j=1

πyjH(πx|yj) (3)

= H(πy)−
Kx∑
i=1

πxiH(πy|xi) (4)

where we use πx and πy to denote the marginal distributions of X and Y , respectively, πx|yj = p(X|Y =

j) and πy|xi = p(Y |X = i) to denote the conditionals, and πxi = p(X = i) and πyj = p(Y = j) to
denote the elements of the marginals.

The simplest approach for estimating joint entropy H(X, Y ) and mutual information I(X, Y ) is to
directly estimate the joint distribution π from counts nij =

∑N
n=1 1{(xn,yn)=(i,j)}. These counts yield the

empirical joint distribution π̂, where π̂ij = nij/N . Plugging π̂ into Equations (1) and (2) yields the
so-called “plugin” estimators for entropy and mutual information: Ĥplugin = H(π̂) and Îplugin = I(π̂),
respectively. To compute Îplugin we estimate the marginal distributions πx and πy via the marginal counts
nyj =

∑Kx

i=1 nij and nxi =
∑Ky

j=1 nij . The plugin estimators are the maximum-likelihood estimators under
multinomial likelihood. Although these estimators are straightforward to compute, they unfortunately
exhibit substantial bias unless π is well-sampled: Ĥplugin exhibits negative bias and, as a consequence,
Îplugin exhibits positive bias [8,20]. There are many proposed methods for removing these biases, which
generally attempt to compensate for the excessive “roughness” of π̂ that arises from undersampling. Here,
we focus on Bayesian methods, which regularize using an explicit prior distributions over π.

3. Bayesian Entropy Estimation

We begin by reviewing the NSB estimator [17], a Bayes least squares (BLS) estimator for H under the
generative model depicted in Figure 1. The Bayesian approach to entropy estimation involves formulating
a prior over distributions π, and then turning the crank of Bayesian inference to inferH using the posterior
over H induced by the posterior over π. The starting point for this approach is the symmetric Dirichlet
prior with parameter α over a discrete distribution π:

p(π|α) = Dir(α) , Dir(α, α, . . . , α) =
Γ(Kα)

Γ(α)K

K∏
i=1

πα−1i (Dirichlet prior) (5)

where πi (the ith element of the vector π) gives the probability that a data point x falls in the ith bin, K
denotes the number of bins in the distribution, and

∑K
i=1 πi = 1. The Dirichlet concentration parameter
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α > 0 controls the concentration or “roughness” of the prior, with small α giving spiky distributions
(most probability mass concentrated in a few bins) and large α giving more uniform distributions.

Figure 1. Graphical models for entropy and mutual information of discrete data.
Arrows indicate conditional dependencies between variables and gray “plates” indicate N
independent draws of random variables. Left: Graphical model for entropy estimation [16,17].
The probability distribution over all variables factorizes as p(α,π,x, H) =

p(α)p(π|α)p(x|π)p(H|π), where p(H|π) is simply a delta measure on H(π). The
hyper-prior p(α) specifies a set of “mixing weights” for Dirichlet distributions p(π|α) =

Dir(α) over discrete distributions π. Data x = {xj} are drawn from the discrete distribution
π. Bayesian inference for H entails integrating out α and π to obtain the posterior p(H|x).
Right: Graphical model for mutual information estimation, in which π is now a joint
distribution that produces paired samples {(xj, yj)}. The mutual information I is a
deterministic function of the joint distribution π. The Bayesian estimate comes from the
posterior p(I|x), which requires integrating out π and α.
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data
data
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The likelihood (bottom arrow in Figure 1, left) is the conditional probability of the data x given π:

p(x|π) =
N !∏
i ni!

K∏
i=1

πni
i (multinomial likelihood) (6)

where ni is the number of samples in x falling in the ith bin, and N is the total number of samples.
Because Dirichlet is conjugate to multinomial, the posterior over π given α and x takes the form of a
Dirichlet distribution:

p(π|x, α) = Dir(α + n1, . . . , α + nK) = Γ(Kα +N)
K∏
i=1

πni+α−1
i

Γ(α + ni)
(Dirichlet posterior) (7)

From this expression, the posterior mean of H can be computed analytically [17,21]:

ĤDir(α) = E[H|x, α] =

∫
H(π) p(π|x, α) dπ (8)

=
1

ln 2

[
ψ0(N +Kα + 1)−

∑
i

(ni + α)

(N + αK)
ψ0(ni + α + 1)

]
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where ψn is the polygamma function of n-th order (ψ0 is the digamma function). For each α, ĤDir(α) is
the posterior mean of a Bayesian entropy estimator with a Dir(α) prior. Nemenman and colleagues [17]
observed that, unless N � K, the estimate ĤDir is strongly determined by the Dirichlet parameter α.
They suggested using a hyper-prior p(α) over the Dirichlet parameter, resulting in a mixture-of-Dirichlets
distributions prior:

p(π) =

∫
p(π|α)p(α)dα (prior) (9)

The NSB estimator is the posterior mean of p(H|x) under this prior, which can in practice be computed
by numerical integration over α with appropriate weighting of ĤDir(α):

ĤNSB = E[H|x] =

∫∫
H(π) p(π|x, α) p(α|x) dπ dα =

∫
ĤDir(α) p(α|x)dα (10)

By Bayes’ rule, we have p(α|x) ∝ p(x|α)p(α), where p(x|α), the marginal probability of x given α,
takes the form of a Polya distribution [22]:

p(x|α) =

∫
p(x|π)p(π|α)dπ =

(N !)Γ(Kα)

Γ(α)KΓ(N +Kα)

K∏
i=1

Γ(ni + α)

ni!
(11)

To obtain an uninformative prior on the entropy, [17] proposed the (hyper-)prior

pNSB(α) ∝ dE[H|α]

dα
=

1

ln 2
[Kψ1(Kα + 1)− ψ1(α + 1)] , (12)

the derivative with respect to α of the prior mean of the entropy (i.e., before any data have been
observed, which depends only on the number of bins K). This prior may be computed numerically (from
Equation (12)) using a fine discretization of α. In practice, we find that a prior representation in terms of
logα is more tractable since the derivative is extremely steep near zero; the prior on logα has a more
approximately smooth bell shape (see Figure 2A).

The NSB prior would provide a uniform prior over entropy if the distribution p(H|α) were a delta
function. In practice, the implied prior on H is not entirely flat, especially for small K (see Figure 2B).

Figure 2. NSB priors used for entropy estimation, for three different values of alphabet size
K. (A) The NSB hyper-prior on the Dirichlet parameter α on a log scale (Equation (12)).
(B) Prior distributions on H implied by each of the three NSB hyper-priors in (A). Ideally,
the implied prior over entropy should be as close to uniform as possible.
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3.1. Quantifying Uncertainty

Credible intervals (Bayesian confidence intervals) can be obtained from the posterior variance of H|x,
which can be computed by numerically integrating the variance of entropy across α. The raw second
moment of the posterior is, from [16,21]:

E[H2|x, α] =
1

ln(2)2

∑
i

(n′i + 1)(n′i)

ν(ν + 1)

[
(ψ0(n

′
i + 2)− ψ0(ν + 2))2 + ψ1(n

′
i + 2)− ψ1(ν + 2)

]
+

1

ln(2)2

∑
i 6=k

n′in
′
k

ν(ν + 1)

[
(ψ0(n

′
k + 1)− ψ0(ν + 2))(ψ0(n

′
i + 1)− ψ0(ν + 2))− ψ1(ν + 2)

]
(13)

where n′i = ni + α and ν = N + αK. As above, this expression can be integrated numerically with
respect to p(α|x) to obtain the second moment of the NSB estimate:

E[H2|x] =

∫
E[H2|x, α]p(α|x)dα (14)

giving posterior variance Var(H|x) = E[H2|x]− E[H|x]2.

3.2. Efficient Computation

Computation of the posterior mean and variance under the NSB prior can be carried out more
efficiently using a representation in terms of multiplicities, also known as the empirical histogram
distribution function [8], which is the number of bins in the empirical distribution with each count.
Let zn = |{i;ni = n}| denote the number of histogram bins with exactly n samples. This gives the
compressed statistic z = [z0, z1, . . . , znmax ]T , where nmax is the largest number of samples in a single
histogram bin. Note that the dot product [0, 1, . . . , nmax] z = N , is the total number of samples in
the dataset.

The advantage of this representation is that we only need to compute sums and products involving the
number of bins with distinct counts (at most nmax), rather than the total number of bins K. We can use
this representation for any expression not explicitly involving π, such as the marginal probability of x
given α (Equation (11)),

p(x|α) =
(N !)Γ(Kα)

Γ(α)KΓ(N +Kα)

nmax∏
n=0

(
Γ(n+ α)

n!

)zn
(15)

and the posterior mean of H given α (Equation (8)), given by

ĤDir = E[H|x, α] =
1

ln 2

[
ψ0(N + αK + 1)−

nmax∑
n=0

zn(n+ α)

N + αK
ψ0(n+ α + 1)

]
(16)

which are the two ingredients we need to numerically compute ĤNSB (Equation (10)).
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4. Quasi-Bayesian Estimation of MI

The problem of estimating mutual information between a pair of random variables is distinct from the
problem of estimating entropy. However, it presents many of the same challenges, since the maximum
likelihood estimators for both entropy and mutual information are biased [8]. One way to regularize
an estimate for MI is to use Bayesian estimates for the entropies appearing in the decompositions of
MI (given in Equations (2), (3), and (4)) and combine them appropriately. We refer to the resulting
estimates as “quasi-Bayesian”, since (as we will show below) they do not arise from any well-defined
posterior distribution.

Consider three different quasi-Bayesian estimators for mutual information, which result from distinct
combinations of NSB entropy estimates:

ÎNSB1(π) = ĤNSB(πx) + ĤNSB(πy)− ĤNSB(π) (17)

ÎNSB2(π) = ĤNSB(πx)−
Ky∑
j=1

π̂yiĤNSB(πx|yj) (18)

ÎNSB3(π) = ĤNSB(πy)−
Kx∑
i=1

π̂xiĤNSB(πy|xi) (19)

The first of these (ÎNSB1) combines estimates of the marginal entropies of πx and πy and the full joint
distribution π, while the other two (ÎNSB2 and ÎNSB3) rely on weighted combinations of estimates of
marginal and conditional entropies. Although the three algebraic breakdowns of MI are mathematically
identical, the three quasi-Bayesian estimators defined above are in general different, and they can exhibit
markedly different performance in practice.

Studies in the nervous system often use ÎNSB3 to estimate the MI between sensory stimuli and neural
responses, an estimator commonly known as the “direct method” [7], motivated by the fact that the
marginal distribution over stimuli πx is either pre-specified by the experimenter or well-estimated from
the data [4,23]. In these experiments, the number of stimuli Kx is typically much smaller than the number
of possible neural responses Ky, which makes this approach reasonable. However, we show that ÎNSB3

does not achieve the best empirical performance of the three quasi-Bayesian estimators, at least for the
simulated examples we consider below.

4.1. Bayesian Entropy Estimates do not Give Bayesian MI Estimates

Bayesian estimators require a well-defined posterior distribution. A linear combination of Bayesian
estimators does not produce a Bayesian estimator unless the estimators can be combined in a manner
consistent with a single underlying posterior. In the case of entropy estimation, the NSB prior depends on
the number of bins K. Consequently, the priors over the marginal distributions πx and πy, which have
Kx and Ky bins, respectively, are not equal to the priors implied by marginalizing the NSB prior over
the joint distribution π, which has KxKy bins. This means that ĤNSB(πx), ĤNSB(πy), and ĤNSB(π) are
Bayesian estimators under inconsistent prior distributions over the pieces of π. Combining them to form
ÎNSB1 (Equation (17)) results in an estimate that is not Bayesian, as there is no well-defined posterior over
I given the data.
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The same inconsistency arises for ÎNSB2 and ÎNSB3, which combine Bayesian entropy estimates under
incompatible priors over the conditionals and marginals of the joint distribution. To wit, ÎNSB2 assumes
the conditionals πx|yi and the marginal πx are a priori independent and identically distributed (i.e., with
uniform entropy on [0, logKx] as specified by the NSB prior). This is incompatible with the fact that the
marginal is a convex combination of the conditionals, and therefore entirely dependent on the distribution
of the conditionals. We state the general observation as follows:

Proposition 1. The estimators ÎNSB1, ÎNSB2, or ÎNSB3 are not Bayes least squares estimators for
mutual information.

To establish this proposition, it suffices to show that there is a dataset for which the quasi-Bayesian
estimates are negative. Since MI can never be negative, the posterior cannot have negative support,
and the Bayesian least squares estimate must therefore be non-negative. It is easy to find datasets with
small numbers of observations for which the quasi-Bayesian estimates are negative. Consider a dataset
from a joint distribution on 3 × 3 bins, with counts given by

[
0 1 0
1 10 1
0 1 0

]
. Although the plugin estimate

for MI is positive (0.02 bits), all three quasi-Bayesian estimates are negative: ÎNSB1 = −0.07 bits, and
ÎNSB2 = ÎNSB3 = −0.05 bits. Even more negative values may be obtained when this 3 × 3 table is
embedded in a larger table of zeros. This discrepancy motivates the development of fully Bayesian
estimators for MI under a single, consistent prior over joint distributions, a topic we address in the
next section.

5. Fully Bayesian Estimation of MI

A Bayes least squares estimate for MI is given by the mean of a well-defined posterior distribution
over MI. The first such estimator, proposed originally by [18], employs a Dirichlet prior over the joint
distribution π. The second, which we introduce here, employs a mixture-of-Dirichlets prior, which is
conceptually similar to the NSB prior in attempting to achieve a maximally flat prior distribution over the
quantity of interest.

5.1. Dirichlet Prior

Consider a Dirichlet prior with identical concentration parameters α over the joint distribution of
X×Y , defined by a probability table of sizeKx×Ky (see Figure 1). This prior treats the joint distribution
π as a simple distribution on K = KxKy bins, ignoring any joint structure. Nevertheless, the properties
of the Dirichlet distribution again prove convenient for computation. While table π is distributed just as a
probability vector in Equation (2), by the aggregation property of the Dirichlet distribution, the marginals
of π are also Dirichlet distributed:

p(πx|α) = Dir(αKy, . . . , αKy) (20)

p(πy|α) = Dir(αKx, . . . , αKx) (21)
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These observations permit us to compute a closed-form expression for the expected mutual information
given x and α (first given by Hutter in [18]),

E[I(π)|α,x] = E[H(πx)|α,x] + E[H(πy)|α,x]− E[H(π)|α,x]

=
1

ln 2

(
ψ0(N +Kα + 1)−

∑
i,j

(nij + α)

(N + αK)
[ψ0(nxi + αKy + 1)

+ψ0(nyj + αKx + 1)− ψ0(nij + α + 1)
] )

(22)

which we derive in Appendix A.

Figure 3. The distribution of MI under a Dir(α) prior as a function of α for a 10 × 100

joint probability table. The distributions p(I|α) are tightly concentrated around 0 for very
small and very large values of α. The mean MI for each distribution increases with α until
a “cutoff” near 0.01, past which the mean decreases again with α. All curves are colored in
a gradient from dark red (small α) to bright yellow (large α). (A) Distributions p(I|α) for
α < 0.01. Notice that some distributions are bimodal, with peaks in MI around 0 and 1 bit.
The peak around 0 appears because, for very small values of α, nearly all probability mass
is concentrated on joint tables on a single entry. The peak around 1 bit arises because, as α
increases from 0, tables with 2 nonzero entries become increasingly likely. (B) Distributions
p(I|α) for α > 0.01. (C) The distributions in (A) and (B) plotted together to better illustrate
their dependence on log10(α). The color bar underneath shows the color of each distribution
that appears in (A) and (B). Note that no Dir(α) prior assigns significant probability mass to
the values of I near the maximal MI of log 10 ≈ 3.3 bits; the highest mean E[I|α] occurs at
approximately 2.65, for the cutoff value α ≈ 0.01.

M
I (

bi
ts

)

−4 −3 −2 −1 0 1 2

0

1

2

3

0 1 2 3
0

1

2

3

4

5
 < 

MI (bits)
0 1 2 3

0

5

10

15

20

MI (bits)

 > A B

C



Entropy 2013, 15 1747

The expression in Equation (22) is the mean of the posterior over MI under a Dir(α) prior on the joint
distribution π. However, we find that fixed-α Dirichlet priors yield highly biased estimates of mutual
information: the conditional distributions p(I|α) under such Dirichlet priors are tightly concentrated
(Figure 3). For very small and very large values of α, p(I|α) is concentrated around 0, and even for
moderate values of α, where the support of p(I|α) is somewhat more broad, the distributions are still
highly localized. This poses a difficulty for Bayesian estimators based upon priors with fixed values of α;
we can only expect them to perform well when the MI to be estimated falls within a very small range.
To address this problem, we pursue a strategy similar to [17] of formulating a more uninformative prior
using a mixture-of-Dirichlet distributions.

Figure 4. Prior mean, E[I|α] (solid gray lines), and 80% quantiles (gray regions) of mutual
information for tables of size 10 × 10, 10 × 100, and 10 × 103, as α varies. Quantiles are
computed by sampling 5× 104 probability tables from a Dir(α) distribution for each value of
α. For very large and very small α, p(I|α) is concentrated tightly around I = 0 (see Figure 3).
For small α, the most probable tables under Dir(α) are those with all probability mass in a
single bin. For very large α, the probability mass of Dir(α) concentrates on nearly uniform
probability tables. Notice that sampling fails for very small values of α due to numerical
issues; for α ≈ 10−6 nearly all sampled tables have only a single nonzero element, and
quantiles of the sample do not contain E[I|α].
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5.2. Mixture-of-Dirichlets (MOD) Prior

Following [17], we can design an approximately uniform NSB-style prior over MI by mixing together
Dirichlet distributions with appropriate mixing weights. The posterior mean of mutual information under
such a mixture prior will have a form directly analogous to Equation (10), except that the posterior mean
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of entropy is replaced by the posterior mean of MI (Equation (22)). We refer to the the resulting prior as
the Mixture of Dirichlets (MOD) distribution. Naively, we want mixing weights to be proportional to the
derivative of the expected MI with respect to α, which depends Kx and Ky:

pMOD(α) ∝ d

dα
E[I(π)|α]=

1

ln 2
[Kψ1(Kα+1)+ψ1(α+1)−Kxψ1(Kxα+1)−Kyψ1(Kyα+1)] . (23)

However, this derivative crosses zero and becomes negative above some value α0, meaning we cannot
simply normalize by

∫∞
0

d
dα
E[I(π)|α]dα to obtain the prior. We are, however, free to weight pMOD(α) for

α ≤ α0 and α ≥ α0 separately, to form a flat implied prior over I , since either side provides a flat prior.
Our only constraint is that together they form a valid probability distribution (one might consider improper
priors on α, but we do not pursue them here). We choose to combine the two portions together with
equal weight, i.e.,

∫ α0

0
pMOD(α)dα =

∫∞
α0
pMOD(α)dα = 1

2
. Empirically, we found different weightings

of the two sides to give nearly identical performance. The result is a bimodal prior over α designed to
provide an approximately uniform prior p(I). (See Figure 5). Although the induced prior over I is not
exactly uniform, it is relatively non-informative and robust to changes in table size. This represents a
significant improvement over the fixed-α priors considered by [18]. However, the prior still assigns very
little probability to distributions having the values of MI near the theoretical maximum. This roll-off in
the prior near the maximum depends on the size of the matrix, and cannot be entirely overcome with any
prior defined as a mixture of Dirichlet distributions.

Figure 5. Illustration of Mixture-of-Dirichlets (MOD) priors and hyper-priors, for three
settings of Ky and Kx. (A) Hyper-priors over α for three different-sized joint distributions:
(Kx, Ky) = (10, 500) (dark), (Kx, Ky) = (50, 100) (gray), and (Kx, Ky) = (50, 500) (light
gray). (B) Prior distributions over mutual information implied by each of the priors on α
shown in (A). The prior on mutual information remains approximately flat for varying table
sizes, but note that it does not assign very much probability the maximum possible mutual
information, which is given by the right-most point on the abscissa in each graph.
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6. Results

We analyzed the empirical performance of Bayesian (ÎMOD, ÎHutter) and quasi-Bayesian (ÎNSB1, ÎNSB2,
and ÎNSB3) estimators on simulated data from six different joint distributions (shown in Figures 6–9). We
examine ÎHutter with four fixed values of α = {0, 1

K
, 1
2
, 1}, with K = KxKy, as suggested in [19]. For

visual simplicity, we show only the uninformative Jeffreys’ prior α = 1
2

in Figures 6–8, and compare



Entropy 2013, 15 1749

all other values in Figure 9. The conditional entropies appearing in ÎNSB2 and ÎNSB3 require estimates
of the marginal distributions πy and πx, respectively. We ran experiments using both the true marginal
distributions πx and πy and their maximum likelihood (plugin) estimates from data. The two cases
showed little difference in the experiments shown here (data not shown). Note that all these estimators are
consistent, as illustrated in the convergence figures (right column in Figures 6–8). However, with a small
number of samples, the estimators exhibited substantial bias (left column).

Figure 6. Performance of MI estimators for true distributions sampled from distributions
related to Dirichlet. Joint distributions have 10× 100 bins. (left column) Estimated mutual
information from 100 data samples, as a function of a parameter defining the true distribution.
Error bars indicate the variability of the estimator over independent samples (± one standard
deviation). Gray shading denotes the average 95% Bayesian credible interval. Insets show
examples of true joint distributions, for visualization purposes. (right column) Convergence
as a function of sample size. True distribution is given by that shown in the central panel of
the corresponding figure on the left. Inset images show examples of empirical distribution,
calculated from data. (top row) True distributions sampled from a fixed Dirichlet Dir(α) prior,
where α varies from 10−3 to 102. (bottom row) Each column (conditional) is an independent
Dirichlet distribution with a fixed α.
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Figure 7. Performance of MI estimators on distributions sampled from more structured
distributions. Joint distributions have 10× 100 bins. The format of left and right columns
is the same as in Figure 6. (top row) Dirichlet joint distribution with a base measure µij
chosen such that there is a diagonal strip of low concentration. The base measure is given
by µij ∝ 1

10−6+Q(i,j)
, where Q(x, y) is a 2D Gaussian probability density function with 0

mean and covariance matrix [ 0.08 0
0 0.0003 ]. We normalized µij to sum to one over the grid

shown. (bottom row) Laplace conditional distributions with linearly-shifting means. Each
conditional p(Y = y|X = x) has the form of e−|y−10x|/η. These conditionals are shifted
circularly with respect to one another, generating a diagonal structure.
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Among Bayesian estimators, we found ÎMOD performed substantially better than ÎHutter in almost all
cases. However, we found that quasi-Bayesian estimators generally outperformed the fully Bayesian
estimators, and ÎNSB1 exhibited the best performance overall. The ÎMOD estimator performed well when
the joint distribution π was drawn from a Dirichlet distribution with a fixed α (Figure 6 top). It also
performed well when each column was independently distributed as Dirichlet with a constant global α
(Figure 6 bottom). The ÎHutter estimator performed poorly except when the true concentration parameter
matched the value assumed by the estimator (α = 1

2
). Among the quasi-Bayesian estimators, ÎNSB1 had

the best performance, on par with ÎMOD.
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Figure 8. Performance of MI estimators: failure mode for ÎMOD. Joint distributions have
10 × 100 bins. The format of left and right column is same as in Figure 6. (top row)
True distributions are rotating, discretized Gaussians, where rotation angle is varied from
0 to π. For cardinal orientations, the distribution is independent and MI is 0. For diagonal
orientations, the MI is maximal. (bottom row) Each column (conditional) is an independent
Laplace (double-exponential) distribution: p(Y = j|X = i) = e−|j−50|/τ(i). The width of the
Laplace distribution is governed by τ(i) = e−1.11iζ where ζ is varied from 10−2 to 1.
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In Figure 7, the joint distributions significantly deviate from the prior assumed by the ÎMOD estimator.
The top panel shows joint distributions sampled from a Dirichlet distribution with non-constant
concentration parameter, taking the form Dir(αµ11, αµ12, . . . , αµKxKy), with variable weights µij . The
bottom panel shows joint distributions defined by double-exponential distributions in each column. Here,
the ÎMOD estimator exhibits reasonable performance, and ÎNSB1 is the best quasi-Bayesian estimator.

Figure 8 shows two example distributions for which ÎMOD performs relatively poorly, yet the
quasi-Bayesian estimators perform well. These joint distributions have low probability in the space
parameterized by a Dirichlet distribution with fixed α parameter. As a result, when data are drawn from
such distributions, ÎMOD posterior estimates are far removed from the true mutual information.
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Figure 9. Comparison of Hutter MI estimator for different values of α. Four datasets shown
in Figure 6 and 7 are used with the same sample size of N = 100. We compare improper
Haldane prior (α = 0), Perks prior (α = 1

KxKy
), Jeffreys’ prior (α = 1

2
), and uniform prior

(α = 1) [19]. ÎNSB1 is also shown for comparison.
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Among the quasi-Bayesian estimators, ÎNSB1 had superior performance compared to both ÎNSB2 and
ÎNSB3, for all of the examples we considered. To our knowledge, ÎNSB1 is not used in the literature, and
this comparison between different forms of NSB estimation has not been shown previously. However, the
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quasi-Bayesian estimators sometimes give negative estimates of mutual information, for example in the
rotating Gaussian distribution (see Figure 8, upper left).

In Figure 9, we examined the performance of ÎHutter for these same simulated datasets, for several
different commonly-used values of the Dirichlet parameter α [19]. The ÎHutter estimate under Jeffrey’s
(α = 1

2
) and Uniform (α = 1) priors is highly determined by the prior, and does not track the true entropy

accurately. However, the ÎHutter estimate with smaller α (Haldane and Perks priors) exhibits reasonably
good performance across a range of values of the true entropy, as long as the true distribution is relatively
sparse. This indicates that small-α Dirichlet priors are less informative about mutual information than
large-α priors (which may also be observed from the gray regions in Figure 4 showing quantiles of I|α).

7. Conclusions

We have proposed ÎMOD, a novel Bayesian mutual information estimator that uses a mixture-of-
Dirichlets prior over the space of joint discrete probability distributions. We designed the mixing
distribution to achieve an approximately flat prior over MI, following a strategy similar to the one
proposed by [17] in the context of entropy estimation. However, we find that the MOD estimator
exhibits relatively poor empirical performance compared with quasi-Bayesian estimators, which rely
on combinations Bayesian entropy estimates. This suggests that mixtures of Dirichlet priors do not
provide a flexible enough family of priors for highly-structured joint distributions, at least for purposes of
MI estimation.

However, quasi-Bayesian estimators based on NSB entropy estimates exhibit relatively high accuracy,
particularly the form denoted ÎNSB1, which involves the difference of marginal and joint entropy estimates.
The neuroscience literature has typically employed ÎNSB3, but our simulations suggests ÎNSB1 may perform
better. Nevertheless, quasi-Bayesian estimators also show significant failure modes. These problems
arise from its use of distinct models for the marginals and conditionals of a joint distribution, which
do not correspond to a coherent prior over the joint. This suggests an interesting direction for future
research: to develop a well-formed prior over joint distributions that harnesses the good performance of
quasi-Bayesian estimators while producing a tractable Bayesian least squares estimator, providing reliable
Bayesian credible intervals while avoiding pitfalls such as negative estimates.

While the properties of the Dirichlet prior, in particular the closed form of E[I|α], make the MOD
estimator tractable and easy to compute, one might consider more flexible models that rely on sampling
for inference. A natural next step would be to design a prior capable of mimicking the performance of
ÎNSB1, ÎNSB2, or ÎNSB3 under fully Bayesian sampling-based inference.
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A. Derivations

In this appendix we derive the posterior mean of mutual information under a Dirichlet prior.
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A.1. Mean of Mutual Information Under Dirichlet Distribution

As the distributions for the marginals and full table are themselves Dirichlet distributed, we may use
the posterior mean of entropy under a Dirichlet prior, Equation (8), to compute E[I(π)|α,x]. Notice that
we presume α to be a scalar, constant across πij . We have,

E[I(π)|α,x] = E

[∑
i,j

πij ln(πij)−
∑
i

πxi ln πxi −
∑
j

πyj ln πyj

∣∣∣α,x]
= E

[
H(πx)

∣∣∣α,x]+ E
[
H(πy)

∣∣∣α,x]− E
[
H(π)

∣∣∣α,x]
=

[
ψ0(N +Kα + 1)−

∑
i

(nxi + αKy)

(N + αK)
ψ0(nxi + αKy + 1)

]
+[

ψ0(N +Kα + 1)−
∑
j

(nyj + αKx)

(N + αK)
ψ0(nyj + αKx + 1)

]
−[

ψ0(N +Kα + 1)−
∑
i,j

(nij + α)

(N + αK)
ψ0(nij + α + 1)

]

= ψ0(N +Kα + 1)−

[∑
i

∑
j(nij + α)

(N + αK)
ψ0(nxi + αKy + 1)

]

−

[∑
j

∑
i(nij + α)

(N + αK)
ψ0(nyj + αKx + 1)

]

+

[∑
i,j

(nij + α)

(N + αK)
ψ0(nij + α + 1)

]

= ψ0(N +Kα + 1)−
∑
i,j

(nij + α)

(N + αK)[
ψ0(nxi + αKy + 1) + ψ0(nyj + αKx + 1)− ψ0(nij + α + 1)

]
Note that, as written, the expression above has units of nats. It can be expressed in units of bits by scaling
by a factor of 1

ln(2)
.
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