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Abstract: Entanglement concentration is of most importance in long distance quantum
communication and quantum computation. It is to distill maximally entangled states from
pure partially entangled states based on the local operation and classical communication.
In this review, we will mainly describe two kinds of entanglement concentration protocols.
One is to concentrate the partially entangled Bell-state, and the other is to concentrate the
partially entangled W state. Some protocols are feasible in current experimental conditions
and suitable for the optical, electric and quantum-dot and optical microcavity systems.
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1. Introduction

Quantum communication and quantum computation have attracted much attention over the last
20 years, due to the absolute safety in the information transmission for quantum communication and
the super fast factoring for quantum computation [1,2]. However, in most of the communication
protocols, such as quantum teleportation [3], quantum key distribution (QKD) [4–6], quantum secure
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direct communication (QSDC) [7–9] and quantum secret sharing [10–12], the basic requirement is to set
up the quantum entanglement channel via entanglement distribution. Unfortunately, the entanglement
decreases exponentially with the length of the connecting channel, because of the optical absorption and
inevitable channel noise.

In this way, quantum repeaters are used [13–16]. Moreover, in order to obtain a high quality of
entanglement for long distance communication, the entanglement distillation is required. Usually,
the entanglement distillation mainly includes three different classes [17,18]. The first one is the
entanglement purification that focuses on the general mixed state [19–29]. Entanglement purification
is to distill highly entangled states from mixed states. The second one is the Procrustean method. The
third one is the Schmidt decomposition method. These two methods also are called the entanglement
concentration [17,18,30–37]. In optical fiber transmission, the dielectric constant acquires a temporal
and spatial dependence. Therefore, if the time delay between the photons is small, the effect of
the noise is known as the unitary collective noise model. Some entanglement distribution protocols
based on collective noise are proposed [38–41]. Entanglement concentration is to distill maximally
entangled states from pure partially entangled states. It has been used as a basis for theoretically-oriented
results in quantum information and gives operational meaning to the von Neumann entropy [42].
The Schmidt decomposition method is a powerful way for realizing the entanglement concentration.
The first entanglement concentration protocol (ECP) is proposed by Bennett et al. using collective
measurement [30]. Using linear optical elements, Zhao et al. and Yamamoto et al. developed the
Schmidt decomposition method and proposed two similar ECPs, respectively [33,34]. Two independent
experiments were reported for linear optical entanglement concentration [35,36].

Most ECPs are based on linear optics, for the photons can be manipulated and controlled easily.
However, in current quantum communication and computation, linear optics has an inherent defect,
because it is usually based on the post-selection principle. After the photons are detected by the single
photon detectors, the photons are destroyed simultaneously, and they cannot be further used. Using
nonlinear optics, such as the cross-Kerr nonlinearity, or other systems, as the auxiliary, can greatly
improve such protocols.

In this review, we will mainly describe some ECPs based on the nonlinear optical elements. The
review is organized as follows: In Section 2, we describe the ECPs with Bell states. In Section 3, we
explain the ECPs for W states. In Section 4, we mainly describe some ECPs for NOON states, ECPs for
electrons and quantum dot and optical microcavities systems. In Section 5, we will provide a discussion
and make a conclusion.

2. ECPs for Bell States

Cross-Kerr nonlinearity provides us with a good tool to construct nondestructive quantum
nondemolition detectors (QND), which have the potential for conditioning the evolution of our system
without necessarily destroying the single photon. The Hamiltonian of a cross-Kerr nonlinear medium
can be written by the form [43–45]:

HQND = h̄χn̂an̂c (1)
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where n̂a (n̂c) denotes the number operator for mode a (c) and h̄χ is the coupling strength of the
nonlinearity, which is decided by the property of material. For instance, for a signal photon state,
|φ⟩ = a|0⟩ + b|1⟩, and a coherent state, |α⟩, the cross-Kerr interaction causes the combined system
composed of a single photon and a coherent state to evolve as [43]:

Uck|φ⟩|α⟩ = eiHQNDt/h̄(a|0⟩+ b|1⟩)|α⟩ = a|0⟩|α⟩+ b|1⟩|αeiθ⟩ (2)

Here, the |0⟩ and |1⟩ are the number of the photons. After the interaction, the signal photon state is
unaffected, but the coherent probe beam |α⟩ makes a phase shift of θ with θ = χt, t is the interaction
time here. One can see that the phase shift is directly proportional to the number of photons.

Figure 1 is the basic construction of the parity-check gate, which was first proposed by Nemoto and
Munro in 2004 [43]. It is also a powerful element in current quantum information processing, such as
Bell state analysis [46–48], entanglement purification [22–24], and so on [49–52]. Let us suppose that
two polarization qubits, a1 and a2, are initially in the state:

|Ψa1⟩ = α1|H⟩+ α2|V ⟩ (3)

and

|Ψa2⟩ = β1|H⟩+ β2|V ⟩, (4)

|H⟩ and |V ⟩ are the polarization state of the photon, with horizontal and vertical polarization,
respectively.

Figure 1. The parity-check gate was constructed by Nemoto and Munro [43].
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These two qubits are transmitted into the spatial modes, a1 and a2, respectively, and they interact with
cross-Kerr nonlinearities. The polarization beam splitter (PBS) transmits the |H⟩ polarization photon
and reflects the |V ⟩ polarization photon. The action of the PBS’s and cross-Kerr nonlinearities will make
the whole state of the two photons evolve to:

|ΨT ⟩ab = α1β1|HH⟩ab|α⟩+ α1β2|HV ⟩ab|αeiθ⟩+ α2β1|V H⟩ab|αe−iθ⟩+ α2β2|V V ⟩ab|α⟩ (5)

One can observe immediately that the items, |HH⟩ and |V V ⟩, make the coherent state pick up no
phase shift and remain as a coherent state with respect to each other. However, the items, |HV ⟩ and
|V H⟩, pick up phase shifts, θ and −θ, respectively. The different phase shifts can be distinguished by a
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general homodyne-heterodyne measurement. We can also choose the local oscillator phase, π/2, offset
from the probe phase, which can be used to make states, |αe±θ⟩, undistinguishable [43]. As mentioned
in [43], it is called an X quadrature measurement (|X⟩⟨X|), as shown in Figure 1. The operation of the
QND measurement relies on distinguishing the phase shift of the coherent state. However, the coherent
states are not orthogonal; this will lead to the effect of errors and imperfection. The probability of this
error occurring is given by Perror =

1
2
(1− Erf [Xd/2

√
2]), and it is less than 10−5 when the distance is

Xd ∼ αθ2 > 9 [43]. Here,Xd = 2α[1−cosθ]. This requirement can be satisfied with the large amplitude
of the coherent state. Therefore, this requirement may be feasible with current experimental technology.
If we choose to call the |HH⟩ and |V V ⟩ even parity states and |HV ⟩ and |V H⟩ odd parity states, the
action of the parity-check gate is very clear: it splits the even parity states deterministically from the odd
parity states by nondemolition measurements. If we let the initial coefficient, α1 = β1 = 1√

2
, one can

easily generate four Bell states, with the same probability of 1/4. The four Bell states are:

|Φ±⟩ = 1√
2
(|HH⟩ ± |V V ⟩)

|Ψ±⟩ = 1√
2
(|HV ⟩ ± |V H⟩) (6)

2.1. ECP with Cross-Kerr Nonlinearity

In this section, we will start to describe the ECPs based on nonlinear optics, say cross-Kerr
nonlinearity. The three ECPs are also shown in [53–55].

From Figure 2, suppose there are two identical photon pairs with less entanglement, a1b1 and a2b2.
The photons, a, belong to Alice, and photons, b, belong to Bob. The photon pairs, a1b1 and a2b2, are in
the following unknown polarization entangled states [53]:

|Φ⟩a1b1 = α|H⟩a1 |H⟩b1 + β|V ⟩a1 |V ⟩b1
|Φ⟩a2b2 = α|H⟩a2 |H⟩b2 + β|V ⟩a2 |V ⟩b2 (7)

where |α|2 + |β|2 = 1.

Figure 2. Schematic diagram of the proposed entanglement concentration protocol
(ECP) [53]. Two pairs of identical less entanglement photons are sent to Alice and Bob from
source 1 (S1) and source 2 (S2). The QND is a parity-checking device shown in Figure 3.
The wave plates, R45 andR90, rotate the horizontal and vertical polarizations by 45◦ and 90◦,
respectively.
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Figure 3. The parity check gate with only one Kerr material [45,53,56]. The original work
is shown in [56], with a difference in that the probe beam is rotated by θ.
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The two parties, Alice and Bob, first rotate the polarization states of the second photons by 90◦ with
half-wave plates (i.e., R90 shown in Figure 2), the state of the four photons can evolve to:

|Ψ⟩′ = α2|H⟩a1 |V ⟩a3 |H⟩b1 |V ⟩b3 + αβ|H⟩a1 |H⟩a3 |H⟩b1 |H⟩b3
+ αβ|V ⟩a1 |V ⟩a3 |V ⟩b1 |V ⟩b3 + β2|V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 (8)

Here, a3 (b3) is used to label the photon, a2 (b2), after the half-wave plate R90.
From Equation (8), it is obvious that items, |H⟩a1 |H⟩a3 |H⟩b1 |H⟩b3 and |V ⟩a1 |V ⟩a3 |V ⟩b1 |V ⟩b3 , have

the same coefficient of αβ, but the other two terms are different. After the two photons pass through the
QND, Bob may get three different kinds of phase shifts: θ, 2θ and 0. The phase shift, θ, corresponds to
the items, |HH⟩ and |V V ⟩. The phase shift, 0, corresponds to the item, |V H⟩, and 2θ corresponds to
|HV ⟩. We first discuss the case that the phase shift is θ. The state of the photons becomes

|Ψ⟩′′ =
1√
2
(|H⟩a1 |H⟩a3 |H⟩b1 |H⟩b3 + |V ⟩a1 |V ⟩a3 |V ⟩b1|V ⟩b3) (9)

The probability that Alice and Bob get the above state is: Ps1 = 2|αβ|2.
Now, both pairs, a1b1 and a3b3, are in the same polarization. Alice and Bob use their λ/4-wave plates,

R45, to rotate the photons, a3 and b3, by 45◦. After the rotations, Equation (9) will evolve into:

|Ψ⟩′′′ =
1

2
√
2
(|H⟩a1|H⟩b1 + |V ⟩a1|V ⟩b1)(|H⟩a3|H⟩b3 + |V ⟩a3|V ⟩b3)

+
1

2
√
2
(|H⟩a1|H⟩b1 − |V ⟩a1|V ⟩b1)(|H⟩a3|V ⟩b3 + |V ⟩a3|H⟩b3) (10)

From Equation (10), we need to distinguish the photons in modes, a3 and b3. One can see that if the
two detectors, D1 and D2, or the two detectors, D3 and D4, fire, the photon pair, a1b1, is left in the state:

|ϕ+⟩a1b1 =
1√
2
(|H⟩a1 |H⟩b1 + |V ⟩a1 |V ⟩b1) (11)

If D1 and D4 or D2 and D3 fire, the photon pair, a1b1, is left in the state:

|ϕ−⟩a1b1 =
1√
2
(|H⟩a1 |H⟩b1 − |V ⟩a1 |V ⟩b1) (12)
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Both |ϕ+⟩a1b1 and |ϕ−⟩a1b1 are the maximally entangled states. A bit-flip operation is needed to
convert |ϕ−⟩a1b1 to |ϕ+⟩a1b1 .

In fact, in this protocol, the QND essentially acts as the role of parity check. It picks up the two
photons in the same polarization state, i.e., |HH⟩ and |V V ⟩, with the same phase shift of θ. This
ECP does not require sophisticated single-photon detectors and can reach the same efficiency as the
conventional concentration protocol. Interestingly, the efficiency of this ECP can be improved in the
next step, because in the above description, we only consider the case that both of the parties choose the
phase shift, θ. If we choose θ = π, in this way, 2θ and 0 represent the same phase shift, 0. Therefore, if
both of the parties get the phase shift 0, the initial state will collapse to:

|Φ1⟩
′′

= α2|H⟩a1 |V ⟩a3 |H⟩b1|V ⟩b3 + β2|V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 (13)

The above state is essentially the nonmaximally entangled state and can be concentrated again. In
detail, Alice and Bob take a rotation of 90◦ on each photon of the second four-photon system and make
the state of this system become:

|Φ2⟩
′′

= β2|H⟩a′1 |V ⟩a′3 |H⟩b′1 |V ⟩b′3 + α2|V ⟩a′1 |H⟩a′3 |V ⟩b′1 |H⟩b′3 (14)

The state of the composite system composed of eight photons becomes:

|Φs⟩
′′ ≡ |Φ1⟩

′′ ⊗ |Φ2⟩
′′
= α2β2(|H⟩a1 |V ⟩a3 |H⟩b1|V ⟩b3 |H⟩a′1 |V ⟩a′3 |H⟩b′1 |V ⟩b′3

+ |V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 |V ⟩a′1 |H⟩a′3 |V ⟩b′1 |H⟩b′3) + α4|H⟩a1 |V ⟩a3 |H⟩b1 |V ⟩b3 |V ⟩a′1 |H⟩a′3 |V ⟩b′1 |H⟩b′3
+ β4|V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 |H⟩a′1 |V ⟩a′3 |H⟩b′1 |V ⟩b′3 (15)

The first two terms have the same coefficient, α2β2, and can be picked upped by detecting the two
photons, b3 and b′3, with the QND. If Bob gets the phase shift, θ = π, the eight photons will collapse to
the state:

|Φs⟩
′′′

=
1√
2
(|H⟩a1 |V ⟩a3 |H⟩b1 |V ⟩b3 |H⟩a′1 |V ⟩a′3 |H⟩b′1 |V ⟩b′3

+ |V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 |V ⟩a′1 |H⟩a′3 |V ⟩b′1 |H⟩b′3) (16)

The probability that Alice and Bob get this state is:

Ps2 =
2|αβ|4

(|α|4 + |β|4)2
(17)

They have the probability, P ′
f2

= 1− Ps2 , to obtain the partially entangled state:

|Φ1⟩
′′′

= α4|H⟩a1 |V ⟩a3 |H⟩b1 |V ⟩b3 |V ⟩a′1 |H⟩a′3 |V ⟩b′1 |H⟩b′3
+ β4|V ⟩a1 |H⟩a3 |V ⟩b1 |H⟩b3 |H⟩a′1 |V ⟩a′3 |H⟩b′1 |V ⟩b′3 (18)

which can be concentrated by iteration of the process discussed above.
For the eight photons in the state described by Equation (16), Alice and Bob can obtain a maximally

entangled photon pair with some single-photon measurements on the other six photons.



Entropy 2013, 15 1782

We can denote the yield of the maximally entangled state, Y , as |αβ|2. The yield is the ratio of
the number of maximally entangled photon pairs, Nm, and the number of originally partially entangled
photon pairs, Nl. With the iteration of the entanglement concentration process, the yield of this ECP is:

Y =
n∑

i=1

Yi (19)

where:

Y1 = |αβ|2

Y2 =
1

2
(1− 2|αβ|2) |αβ|4

(|α|4 + |β|4)2

Y3 =
1

22
(1− 2|αβ|2)[1− |αβ|4

(|α|4 + |β|4)2
]

|αβ|8

(|α|8 + |β|8)2
. . .

Yn =
1

2n−1

(
n−1∏
j=2

[1− 2|αβ|2j−1

(|α|2j−1 + |β|2j−1)2
]

)
|αβ|2n

(|α|2n + |β|2n)2
(20)

The yield is shown in Figure 4 with the change of the iteration number of entanglement concentration
processes, n, and the coefficient, α ∈ [0, 1].

One can easily obtain the success probability:

Psn =
2|αβ|2n

(|α|2n + |β|2n)2
(21)

where n is the iteration number of the entanglement concentration processes. The Yn can also be
rewritten as:

Yn =
1

2n

(
n−1∏
j=2

[1− Psj−1
]

)
Psn (22)

Figure 4. The yield (Y ) is altered with the iteration number of entanglement concentration
processes, n, and the coefficient, α ∈ [0, 1] [53].



Entropy 2013, 15 1783

It is straightforward to generalize this ECP to distill the maximally entangled multipartite
Greenberger-Horne-Zeilinger (GHZ) state states from the partially entangled GHZ-class states.
N-particle GHZ-class states can be described as:

|Φ′+⟩ = α|HH · · ·H⟩+ β|V V · · · V ⟩ (23)

Figure 5 shows the principle of this ECP for multipartite GHZ-class states. Two pairs of N-particles
are sent to each party, say, Alice, Bob, Charlie, etc., and each party gets two photons. Following the
same principle described above, they can ultimately obtain the maximally entangled GHZ state with the
same success probability described above.

Figure 5. Schematic diagram of the multipartite entanglement concentration scheme [53].
2N photons in two partially entangledN -particle Greenberger-Horne-Zeilinger (GHZ)-class
states are sent to N parties of quantum communication—say, Alice, Bob, Charlie, etc.
Photons 2 and N +2 are sent to Bob and enter the quantum nondemolition detectors (QND)
to complete a parity-check measurement. After the QND measurement, Bob asks the others
to retain their photons if his two photons have the same parity, (|HH⟩ or |V V ⟩), and remove
them for the next iteration if Bob gets an odd parity (|HV ⟩ or |V H⟩).
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2.2. Single-Photon-Assisted Entanglement Concentration

In the above section, we described the ECP with cross-Kerr nonlinearity. Compared with the ECPs
with linear optics [33,34], it can be repeated to obtain a higher success probability. Moreover, the
concentrated maximally entangled state can be retained, while in linear optics, it is always destroyed
with the post-selection principle. However, it is still not the optimal one. It is shown that the two copies
of partially entangled states are not necessary. One pair of partially entangled states and a single photon
can also complete the task [54]. In this section, we will describe two ECPs both assisted with single
photons. The first one uses linear optics, and the second one uses the cross-Kerr nonlinearity. From
Figure 6, suppose the partially entangled pair of photons emitted from S1 are sent to Alice and Bob. The
photon, a, belongs to Alice, and b belongs to Bob. The initial photon pair is in the following state:

|Φ⟩a1b1 = α|H⟩a1|H⟩b1 + β|V ⟩a1|V ⟩b1 (24)



Entropy 2013, 15 1784

Figure 6. A schematic drawing of the single-photon-assisted ECP with linear optics [54]. S1

is the partial entanglement source, and S2 is the single photon source. HWP90 and HWP45

can rotate the polarization of the state by 90◦ and 45◦, respectively.
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Suppose that we know the coefficients, α and β. In a practical experiment, one can measure enough
samples to obtain the information of the state. Another source, S2, emits a single photon with the form:

|Φ⟩a2 = α|H⟩a2 + β|V ⟩a2 (25)

a1, b1 and a2 are different spatial modes. Before the photons pass through the PBSs, Alice first rotates
the polarization state of the single photon, |Φ⟩a2, by 90◦ by the half-wave plate (HWP90 in Figure 6).
Then, the whole system can be rewritten as:

|Ψ⟩′ = |Φ⟩a1b1 ⊗ |Φ′⟩a3
= α2|H⟩a1|H⟩b1|V ⟩a3 + αβ|H⟩a1|H⟩b1|H⟩a3 + αβ|V ⟩a1|V ⟩b1|V ⟩a3 + β2|V ⟩a1|V ⟩b1|H⟩a3
= α2|H⟩a1|V ⟩a3|H⟩b1 + β2|V ⟩a1|H⟩a3|V ⟩b1 + αβ(|H⟩a1|H⟩a3|H⟩b1 + |V ⟩a1|V ⟩a3|V ⟩b1)

(26)

From the above equation, it is obvious that the items, |H⟩a1|H⟩a3|H⟩b1 and |V ⟩a1|V ⟩a3|V ⟩b1, will
lead the two output modes, c1 and c2, both exactly containing only one photon. However, item
|H⟩a1|V ⟩a3|H⟩b1 will lead two photons both in c2 mode, and item |V ⟩a1|H⟩a3|V ⟩b1 will lead both
photons in c1 mode. Therefore, by choosing the three-mode cases, i.e., each mode of c1, c2 and b1 exactly
contains one photon, and the initial state can be projected into a maximally three-photon entangled state:

|Ψ⟩′′ = 1√
2
(|H⟩c1|H⟩c2|H⟩b1 + |V ⟩c1|V ⟩c2|V ⟩b1) (27)

with a probability of 2|αβ|2. In order to obtain a maximally entangled state, they could perform a 45◦

polarization measurement on the photon in mode c2. In Figure 6, with the quarter-wave plate (HWP45),
Equation (27) will evolve to:

|Ψ⟩′′′ = 1

2
(|H⟩c1|H⟩b1 + |V ⟩c1|V ⟩b1)|H⟩c2 + (|H⟩c1|H⟩b1 − |V ⟩c1|V ⟩b1)|V ⟩c2 (28)

Now, Alice lets the photon, c2, pass through the PBS2. Clearly, if the detector, D1, fires, the photon pair
will be left in the state as:

|ϕ+⟩a1b1 =
1√
2
(|H⟩c1|H⟩b1 + |V ⟩c1|V ⟩b1) (29)
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If the detector, D2, fires, the photon pair will be left in the state as:

|ϕ−⟩a1b1 =
1√
2
(|H⟩c1|H⟩b1 − |V ⟩c1|V ⟩b1) (30)

Both Equations (29) and (30) are the maximally entangled states. One of them, say Alice or Bob, only
needs to perform a phase flip to convert Equation (30) to Equation (29), and the whole concentration
process is finished.

The above ECP can also be improved with QND. As shown in Figure 7, we use the QND to substitute
the PBS. The whole system, |Φ⟩a1b1 ⊗ |Φ′⟩a3, with the coherent state, |α⟩, can be rewritten:

|Ψ⟩′|α⟩ = |Φ⟩a1b1 ⊗ |Φ′⟩a3|α⟩
= (α2|H⟩a1|H⟩b1|V ⟩a3 + αβ|H⟩a1|H⟩b1|H⟩a3 + αβ|V ⟩a1|V ⟩b1|V ⟩a3 + β2|V ⟩a1|V ⟩b1|H⟩a3)|α⟩
→ α2|H⟩a1|V ⟩a3|H⟩b1|αei2θ⟩+ β2|V ⟩a1|H⟩a3|V ⟩b1|α⟩
+ αβ(|H⟩a1|H⟩a3|H⟩b1 + |V ⟩a1|V ⟩a3|V ⟩b1)|αeiθ⟩ (31)

With the same principle in Section 2, if the phase shift of homodyne measurement is θ, Alice asks Bob
to keep the whole state. Otherwise, they discard the state. The remaining state is essentially the state
described in Equation (27). Therefore, following the same step described above, one can ultimately
obtain the maximally entangled state |ϕ+⟩c1b1 if D1 fires, and get |ϕ−⟩c1b1 if D2 fires. Certainly, if a
suitable cross-Kerr medium is available and Alice can control the interaction time, t, exactly, which
makes the phase shift θ = π, one cannot distinguish the phase shift 0 and 2π. The discarded items in the
above equation can be written as:

|Φ′⟩ = α2|H⟩c1|V ⟩a3|H⟩b1 + β2|V ⟩c1|H⟩a3|V ⟩b1 (32)

with the probability of |α|4 + |β|4. Alice uses the HWP45 to rotate the photon in c2, and finally, it is
detected by D1 or D2. Equation (32) will become:

|Φ′′⟩ = α2|H⟩c1|H⟩b1 + β2|V ⟩c1|V ⟩b1, (33)

if D1 fires, and will become:

|Φ′′′⟩ = α2|H⟩c1|H⟩b1 − β2|V ⟩c1|V ⟩b1 (34)

if D2 fires. With the same principle with Section 2.1, this ECP can also be repeated to obtain a higher
success probability.

It is known that local operation and classical communication cannot increase entanglement.
Entanglement concentration is essentially the transformation of entanglement. We define the
entanglement transformation efficiency η as:

η =
Ec

E0

(35)

Here, E0 is the entanglement of an initially partial entangled state, and Ec is the entanglement of the
state after performing the concentration process one time. Ec can be described as:

Ec = Ps × 1 + (1− Ps)× E ′ (36)
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E ′ is the entanglement of the remaining state if the concentration is unsuccessful. For a two-body pure
entangled state, von Neumann entropy is suitable to describe the entanglement. The entanglement of the
initial state in Equation (24) can be described as:

E0 = −|α|2 log2 |α|2 − |β|2 log2 |β|2 (37)

Figure 7. The schematic drawing of the ECP with QND [54]. Here, we substitute the
polarization beam splitter (PBS) shown in Figure 6 with QND. The QND is described in
Figure 3. This ECP can obtain a higher success probability.
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We can calculate the η in each previous ECP. We call [33] as the PBS1 protocol, Ref [53] as the
QND1 protocol, the first protocol of this section as PBS2 protocol and the second protocol as the QND2
protocol. The η of PBS1 protocol is [33]:

ηPBS1 =
2|αβ|2 × 1

2E
=

|αβ|
E

(38)

For the ECP in Section 2.1 [53]:

ηQND1 =
E ′

QND1

2E
(39)

with:

E ′
QND1 = 2|αβ|2 + (|α|4 + |β|4)[− |α|4

|α|4 + |β|4
log2

|α|4

|α|4 + |β|4

− |β|4

|α|4 + |β|4
log2

|β|4

|α|4 + |β|4
] (40)

In this ECP, we obtain:

ηPBS2 =
2|αβ|2

E
= 2ηPBS1 (41)

and in QND2 protocol:

ηQND2 =
E ′

QND1

E
= 2ηQND1 (42)
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From Figure 8, it is shown that the η increases with the initial entanglement and can reach the max
value, 1, in the QND2 protocol. In Figure 9, we also calculate the limit of entanglement transformation
efficiency by iterating the protocol N (N → ∞) times.

ηN→∞
QND2 =

∑∞
N=1ENPN

E0

=
P

E0

(43)

Obviously, η is monotone, increasing with the entanglement of the initial state, and can get the max value,
1, when the initial state is a maximally entangled one, that is, α = 1√

2
. However, in the PBS1 protocol,

it only reaches 0.25, and they both reach 0.5 in the QND1 protocol and PBS2 protocol. Therefore, only
the QND2 protocol can completely distill the entanglement, theoretically.

Figure 8. The entanglement transformation efficiency, η, is altered with the coefficient, α,
after performing each protocol one time [54]. Curves B, C, D and E correspond to the
protocols of PBS1 [33], QND1 [53], PBS2 and QND2, respectively. All the curves show
that η increases with the entanglement of the initial entangled state. The QND2 protocol has
the highest transformation efficiency. It can reach maximum value, 1, when α = 1√

2
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Figure 9. The entanglement transformation efficiency, η, plotted against α after performing
each protocol N times(N → ∞) in the QND2 protocol. For numerical simulation, we let
N = 10 as a good approximation [54].
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This ECP is quite different from the ECP described in Section 2.1. In each round, we only require one
pair of the partially entangled state and can reach the same success probability as before. This makes
it optimal. Moreover, only one of the parties needs to operate the ECP. It is more useful when used to
concentrate the multipartite GHZ state. Therefore, this ECP is more suitable than the ECP in Section 2.1.

2.3. Entanglement Concentration for Single-Photon Entanglement

Single-photon entanglement may be the simplest entanglement with the form of 1√
2
(|1⟩A|0⟩B +

|0⟩A|1⟩B) = 1√
2
(a† + b†)|0⟩. It is a superposition state in location A or B. Here, the |0⟩ and |1⟩

represent the photon numbers, 0 and 1, respectively. The most important application for single-photon
entanglement may be the quantum repeater protocol in long-distance quantum communication [13]. We
take the famous Duan-Lukin-Cirac-Zoller (DLCZ) protocol, for example [16]. The first step for the
DLCZ protocol is to entangle two atomic ensembles in distance locations, A and B. The pair sources are
coherently excited by synchronized classical pumping pulses, and then, they emit a photon pair with a
small probability, p/2, corresponding to the state [16,55]:

[1 +

√
p

2
(a†a′† + b†b′†) + o(p)]|0⟩ (44)

Here, a+ (b+, a′+ or b′+) is the creation operation for the mode, a (b, a′ or b′). However, in a practical
manipulation, we cannot ensure that the pair sources excited by the synchronized classical pumping
pulses always have the same probability. For example, in location A, it may be in the following form:

|0⟩a|0⟩a′ +
√
pa
2
a†a′†|0⟩a|0⟩a′ + o(pa) (45)

but in location B, the pair source may emit a pair with the form:

|0⟩b|0⟩b′ +
√
pb
2
b†b′†|0⟩b|0⟩b′ + o(pb) (46)

pa
2

and pb
2

are two different probabilities for locations A and B, respectively.
The whole system evolves as:

[1 +

√
pa
2
a†a′†|0⟩a|0⟩a′ +

√
pb
2
b†b′†|0⟩b|0⟩b′ + o(p)]|0⟩ (47)

Finally, after the detection of the photon by a 50:50 beam splitter (BS), the single-photon entangled state
will become: (

√
pa
2
a† +

√
pb
2
eiθABb†)|0⟩. We can rewrite it as:

|Ψ′⟩ab = (αa† + βeiθABb†)|0⟩ (48)

where |α|2 + |β|2 = 1. θAB is the relative phase between A and B.
Equation (48) is the entanglement of photonic modes, and we can convert it to the memory modes

with MA and MB. In a quantum repeater protocol, after entanglement generation, they need to extend
the entanglement to long distance with entanglement swapping for long-distance communication. If
the entanglement between MA and MB and MC and MD are both maximally entangled ones, we can
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easily establish the maximal entanglement between MA and MD [16]. However, if we cannot get the
maximally entangled states during entanglement generation, but get the entanglement as Equation (48),
then the combination of |Ψ′⟩ab and |Ψ′⟩cd can be written as:

|Ψ′⟩ab ⊗ |Ψ′⟩cd = (αa† + βeiθABb†)⊗ (αc† + βeiθCDd†)|0⟩
= (α2a†c† + β2ei(θAB+θCD)b†d†)|0⟩+ (αβeiθABb†c† + αβeiθCDa†d†)|0⟩ (49)

Here, we let |Ψ′⟩cd have the same form as |Ψ′⟩ab, i.e., |Ψ′⟩cd = (αc† + βeiθCDd†)|0⟩. The BS will make
b†|0⟩ → 1√

2
(D†

1 +D†
2)|0⟩ and c†|0⟩ → 1√

2
(D†

1 −D†
2)|0⟩. After BS, from Equation (49), we can find that

if one of the detectors clicks one photon, we will get:

|Ψ′′⟩ad = (α2a† ± β2d†ei(θAB+θCD))|0⟩. (50)

The “+” or “−” depends on the click of the detector, D1 or D2.

Figure 10. The setup of entanglement connection in the Duan-Lukin-Cirac-Zoller (DLCZ)
protocol [16]. BS is a 50:50 beam splitter [55]. After this swapping, if one of the detectors
registers exactly one photon, the entanglement between MA and MD can be set up.

From Equation (50), the entanglement will be degraded after the entanglement connection, as shown
in Figure 10. If we consider the case that we perform the entanglement swapping for n times to connect
the entanglement between the remote locations, A and K, we will get:

|Ψn+1⟩ak = (αn+1a† ± βn+1k†eiθAK )|0⟩ (51)

For α ̸= β, the entanglement decreases rapidly, so that we cannot establish a perfect long-distance
entanglement channel for quantum communication.

Fortunately, entanglement concentration provides us a good way to convert the nonmaximally
entangled state, like Equation (51), to a maximally entangled state. The principle of our single-photon
ECP is shown in Figure 11 [55]. Alice and Bob want to share the maximally entangled state,
|Ψ⟩ab = 1√

2
(a† + b†)|0⟩. But the initial state shared by Alice and Bob is:

|Ψ⟩a1b1 = (αa†1 + βeiθA1B1 b†1)|0⟩ (52)

|Ψ⟩a2b2 = (αa†2 + βeiθA2B2 b†2)|0⟩ (53)
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Figure 11. The principle of the single-photon ECP [55]. A BS is located in the middle of
A and B, and it is used to couple the two modes, a2 and b2. A homodyne detector is used
to distinguish the photon number. After the detection of D1 and D2, the two parties can get
some maximally entangled states with the probability 2|αβ|2.
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Here, a1b1 and a2b2 are the different spatial modes shown in Figure 11. In this protocol, we neglect
the path length fluctuations of two channels, a1b1 and a2b2, and suppose that the two sources emit the
entangled state simultaneously. In this way, the relative phase, θA1B1 and θA2B2 , can sever as the same.
The combination of the two partially entangled state can be written as:

|Φ⟩ = |Ψ⟩a1b1 ⊗ |Ψ⟩a2b2 = (α2a†1a
†
2 + αβeiθABa†1b

†
2 + αβeiθABa†2b

†
1 + β2e2iθABb†1b

†
2)|0⟩ (54)

a†1a
†
2 and b†1b

†
2 represent that the two photons both belong to Alice and Bob, respectively. From the above

equation, it is obvious that a†1b
†
2 and a†2b

†
1 have the same coefficient, αβeiθAB , and the other two terms

have different coefficients. Therefore, if Bob makes a homodyne measurement on the coherent state,
he will get three different results. The first one is the phase shift, θ, which corresponds to the items
a†1b

†
2 and a†2b

†
1. The second result is 2θ, which corresponds to the item b†1b

†
2, and the last one is 0, which

corresponds to the item a†1b
†
2. Bob will require Alice to keep her result if the phase shift is θ. In this way,

if we omit the global phase shift factor, eiθAB , then the original state will collapse to:

|Φ⟩′ = 1√
2
(a†1b

†
2 + a†2b

†
1)|0⟩ (55)

The probability that Alice and Bob get the state, |Φ⟩′, is 2|αβ|2. The modes, a2 and b2, are reflected and
coupled by a 50:50 BS, which will make:

a†2|0⟩ → 1√
2
(c†2 − d†2)|0⟩ (56)

b†2|0⟩ → 1√
2
(c†2 + d†2)|0⟩ (57)

After the BS, Equation (55) can evolve to:

|Φ⟩′ → 1

2
[a†1(c

†
2 + d†2) + b†1(c

†
2 − d†2)]|0⟩ =

1

2
[(a†1 + b†1)c

†
2 + (a†1 − b†1)d

†
2]|0⟩ (58)



Entropy 2013, 15 1791

One can see that if the detector, D1, fires, the state of the remaining quantum system will be left to:

|Φ1⟩′ =
1√
2
(a†1 + b†1)|0⟩ (59)

otherwise, the detector, D2, fires, and the quantum system will collapse to:

|Φ2⟩′ =
1√
2
(a†1 − b†1)|0⟩ (60)

Equations (59) and (60) are both maximally single-photon entangled states. There is a phase
difference between them, and one can perform a phase-flipping operation with the help of the wave
plate to convert Equation (60) to Equation (59).

So far, we have explained the basic principle of this concentration protocol. Alice and Bob pick up
the case that the phase shift is θ with the probability of 2|αβ|2. In fact, similar to the above section, the
yield can also be increased if a suitable cross-Kerr material can be provided, or the interaction time can
be controlled accurately. This time, Alice and Bob will get the phase shift, θ = π, when one photon is
detected, and one cannot distinguish the phase shift, 0 and 2π. In this case, Equation (54) will collapse to:

|Φ⟩′′ = (α2a†1a
†
2 + β2e2iθABb†1b

†
2)|0⟩ (61)

In the next step, one can also get the maximal one with single-photon entanglement concentration. In
detail, after coupled by BS, Equation (54) collapses to:

|Φ⟩′′ = [
α2

√
2
a†1(c

†
2 − d†2) +

β2e2iθAB

√
2

b†1(c
†
2 + d†2)]|0⟩

= [(
α2

√
2
a†1 −

β2e2iθAB

√
2

b†1)c
†
2 + (

α2

√
2
a†1 +

β2e2iθAB

√
2

b†1)d
†
2]|0⟩ (62)

If the detector, D1, fires, the state in Equation (62) will be transformed to:

|Φ1⟩′′ = (α2a†1 − β2e2iθABb†1)|0⟩ (63)

If the detector, D2, fires, it will be transformed to:

|Φ2⟩′′ = (α2a†1 + β2e2iθABb†1)|0⟩ (64)

Compared with Equation (48), Equation (64) has the same form as Equation (48) and can be
reconcentrated. In the next concentration step, we choose two copies of these partially entangled states,
and the whole system becomes:

|Φ⟩′′′ = |Φ2⟩′′a1b1 ⊗ |Φ2⟩′′a2b2 = (α4a†1a
†
2 + α2β2ei2θABa†1b

†
2 + α2β2ei2θABa†2b

†
1 + β4ei4θABb†1b

†
2)|0⟩

(65)

Alice and Bob pick up the case that the phase shift is also θ with the success probability of 2|α2β2|2, and
they keep the other terms for the next iteration. Equation (63) can also be manipulated with the same step
as that discussed above. In this way, this ECP can also be repeated to obtain a higher success probability.



Entropy 2013, 15 1792

3. ECPs for W States

In the three-particle system, there are two classes of tripartite-entangled states, which cannot be
converted into each other by stochastic local operations and classical communication. They are the GHZ
state and the W state. The GHZ state can be written as |GHZ⟩ = 1√

2
(|000⟩ + |111⟩), and the W state

can be written as |W ⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩). The concentration for the GHZ state can be easily

extended from the ECPs for the Bell state in Section 2. However, the ECPs described in Section 2 cannot
deal with the W state. Certainly, there are several ECPs for the W state, such as the ECP with joint unitary
transformation proposed by Cao and Yang [57], the ECP based on the Bell-state measurement [58]. Both
joint unitary transformation and Bell-state measurement are not easy to realize in the current condition.
There are ECPs for some special types of W states, such as α|HHV ⟩+ β(|HVH⟩+ |V HH⟩), and the
asymmetric W states [59]

In this section, we will describe the ECP for concentrating arbitrary W stat, α|V HH⟩+ β|HVH⟩+
γ|HHV ⟩, to a standard maximally entangled W state, 1√

3
(|V HH⟩+ |HVH⟩+ |HHV ⟩) [60]. We also

extend this idea to concentrate the single-photon multi-mode W state [61]. We will show that both linear
optics and nonlinear optics can achieve the task. Interestingly, different from the other ECPs, these ECPs
only require some single photons [60,61].

3.1. Two-Step Entanglement Concentration for Arbitrary W States

We will describe two ECPs for concentrating the arbitrary W state, α|V HH⟩+β|HVH⟩+γ|HHV ⟩.
The first one uses linear optics, and the second one uses the cross-Kerr nonlinearity. From Figure 12,
suppose a pair of partially entangled W states, |Φ⟩a1b1c1, is sent to Alice, Bob and Charlie [60]. The
photon pair is initially in the following polarization partially entangled state:

|Φ⟩a1b1c1 = α|V ⟩a1|H⟩b1|H⟩c1 + β|H⟩a1|V ⟩b1|H⟩c1 + γ|H⟩a1|H⟩b1|V ⟩c1 (66)

We let α, β and γ be real for simplicity, with α2 + β2 + γ2 = 1. The source, S2, emits a single photon
of the form:

|Φ⟩a2 =
α√

α2 + β2
|H⟩a2 +

β√
α2 + β2

|V ⟩a2 (67)

In this way, the whole system can be written as:

|Ψ⟩ = |Φ⟩a1b1c1 ⊗ |Φ⟩a2 = (α|V ⟩a1|H⟩b1|H⟩c1 + β|H⟩a1|V ⟩b1|H⟩c1 + γ|H⟩a1|H⟩b1|V ⟩c1)

⊗ (
α√

α2 + β2
|H⟩a2 +

β√
α2 + β2

|V ⟩a2)

=
α2√
α2 + β2

|V ⟩a1|H⟩a2|H⟩b1|H⟩c1 +
β2√
α2 + β2

|H⟩a1|V ⟩a2|V ⟩b1|H⟩c1

+
αγ√
α2 + β2

|H⟩a1|H⟩a2|H⟩b1|V ⟩c1 +
βγ√
α2 + β2

|H⟩a1|V ⟩a2|H⟩b1|V ⟩c1

+
αβ√
α2 + β2

|V ⟩a1|V ⟩a2|H⟩b1|H⟩c1 +
αβ√
α2 + β2

|H⟩a1|H⟩a2|V ⟩b1|H⟩c1 (68)
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If they choose the cases that the spatial modes, d1, d2, b1 and c1, all contain exactly one photon, the
initial state will become:

|Ψ⟩′ =
αγ√
α2 + β2

|H⟩d1|H⟩d2|H⟩b1|V ⟩c1 +
αβ√
α2 + β2

|V ⟩d1|V ⟩d2|H⟩b1|H⟩c1

+
αβ√
α2 + β2

|H⟩d1|H⟩d2|V ⟩b1|H⟩c1 (69)

The probability is:

P 1 =
α2(γ2 + 2β2)

α2 + β2
(70)

The superscript “1” means the first concentration step.

Figure 12. Schematic drawing of the first ECP with linear optics [60]. S1 is the partial
entanglement source and S2 and S3 are the single photon sources. HWP90 and HWP45 can
rotate the polarization of the state by 90◦ and 45◦, respectively.
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Equation (69) can be rewritten as:

|Ψ⟩′ =
γ√

γ2 + 2β2
|H⟩d1|H⟩d2|H⟩b1|V ⟩c1 +

β√
γ2 + 2β2

|V ⟩d1|V ⟩d2|H⟩b1|H⟩c1

+
β√

γ2 + 2β2
|H⟩d1|H⟩d2|V ⟩b1|H⟩c1 (71)

From Equation (71), the initial coefficient, α, is eliminated. Then, Alice rotates the photons in spatial
mode, d2, with λ/4-wave plate HWP45 to perform a Hadamard operation and measures it with D1 and
D2. If the photon in spatial mode, d2, is |H⟩d2, which makes detector D1 fire, the original state will be
left in the state:

|Φ1⟩d1b1c1 =
γ√

γ2 + 2β2
|H⟩d1|H⟩b1|V ⟩c1 +

β√
γ2 + 2β2

|V ⟩d1|H⟩b1|H⟩c1

+
β√

γ2 + 2β2
|H⟩d1|V ⟩b1|H⟩c1 (72)
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Otherwise, if D2 fires, the original state will be left in the state:

|Φ2⟩d1b1c1 =
γ√

γ2 + 2β2
|H⟩d1|H⟩b1|V ⟩c1 −

β√
γ2 + 2β2

|V ⟩d1|H⟩b1|H⟩c1

+
β√

γ2 + 2β2
|H⟩d1|V ⟩b1|H⟩c1 (73)

In order to get |Φ1⟩d1b1c1, one of the parties, say, Alice, Bob or Charlie, should perform a local operation
of phase rotation on her or his photon.

The second concentration step is analogous with the first one performed by Charlie. The source, S3,
emits a single photon of the form:

|Φ⟩c2 =
β√

γ2 + β2
|H⟩c2 +

γ√
γ2 + β2

|V ⟩c2 (74)

Charlie first rotates the photon by 90◦ in the spatial mode, c2, with HWP90. The |Φ⟩c2 can be written as:

|Φ⟩c3 =
β√

γ2 + β2
|V ⟩c3 +

γ√
γ2 + β2

|H⟩c3 (75)

Certainly, one can also first perform the single-photon of the form of Equation (75). We prepare the state,
|Φ⟩c2, to have the same form of |Φ⟩a2 and make the whole protocol have the same form. The combination
of the four-photon state can be written as:

|Φ1⟩d1b1c1 ⊗ |Φ⟩c3 =
βγ√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|H⟩b1|V ⟩c1|V ⟩c3

+
γ2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|H⟩b1|V ⟩c1|H⟩c3 +
β2√

γ2 + 2β2
√
γ2 + β2

|V ⟩d1|H⟩b1|H⟩c1|V ⟩c3

+
βγ√

γ2 + 2β2
√
γ2 + β2

|V ⟩d1|H⟩b1|H⟩c1|H⟩c3 +
β2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|V ⟩b1|H⟩c1|V ⟩c3

+
βγ√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|V ⟩b1|H⟩c1|H⟩c3 (76)

With the same principle, Charlie chooses the cases that two output modes of PBS2 both exactly contain
only one photon, and the Equation (76) becomes:

|Ψ′′′⟩ =
1√
3
(|H⟩d1|H⟩b1|V ⟩e1|V ⟩e2 + |V ⟩d1|H⟩b1|H⟩e1|H⟩e2 + |H⟩d1|V ⟩b1|H⟩e1|H⟩e2) (77)

with a success probability of:

P 2 =
3β2γ2

(γ2 + β2)(γ2 + 2β2)
(78)

Here, the superscript “2” means the second concentration step. Finally, Charlie rotates his photon in the
mode, e2, by 45◦ and measures the photon in spatial mode, e2. If D3 fires, they will get:

|Φ1⟩d1b1e1 =
1√
3
(|H⟩d1|H⟩b1|V ⟩e1 + |V ⟩d1|H⟩b1|H⟩e1 + |H⟩d1|V ⟩b1|H⟩e1) (79)
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If D4 fires, they will get:

|Φ2⟩d1b1e1 =
1√
3
(−|H⟩d1|H⟩b1|V ⟩e1 + |V ⟩d1|H⟩b1|H⟩e1 + |H⟩d1|V ⟩b1|H⟩e1) (80)

Both Equations (79) and (80) are the maximally entangled W states. In order to get |Φ1⟩d1b1e1, one
of three parties, says Alice, Bob or Charlie, should perform a local operation of phase rotation on her or
his photon.

The total success probability, Ps, for obtaining a maximally entangled W state is:

Ps = P 1P 2 =
α2(γ2 + 2β2)

α2 + β2

3β2γ2

(γ2 + β2)(γ2 + 2β2)
=

3α2β2γ2

(α2 + β2)(γ2 + β2)
(81)

In the above description, the total ECP is divided into two steps. The first one is performed by Alice,
and the second one is performed by Charlie. In the practical operation, they should perform the ECP
simultaneously, because of the post-selection principle. On the other hand, they should resort to the
sophisticated single-photon detectors to check the photon number. So, it is not an optimal ECP. In the
second ECP, we use the QND to substitute the PBS to redescribe this ECP. The QND is described in
Figure 3. The principle of the second ECP is shown in Figure 13. The first step is also performed by
Alice. The four photons combined with the coherent state can be written as:

|Ψ⟩|α⟩ = |Φ⟩a1b1c1 ⊗ |Φ⟩a2|α⟩ = (α|V ⟩a1|H⟩b1|H⟩c1 + β|H⟩a1|V ⟩b1|H⟩c1 + γ|H⟩a1|H⟩b1|V ⟩c1)

⊗ (
α√

α2 + β2
|H⟩a2 +

β√
α2 + β2

|V ⟩a2)|α⟩

→ α2√
α2 + β2

|V ⟩a1|H⟩a2|H⟩b1|H⟩c1|α⟩+
β2√
α2 + β2

|H⟩a1|V ⟩a2|V ⟩b1|H⟩c1|αei2θ⟩

+
αγ√
α2 + β2

|H⟩a1|H⟩a2|H⟩b1|V ⟩c1|αeiθ⟩+
βγ√
α2 + β2

|H⟩a1|V ⟩a2|H⟩b1|V ⟩c1|αei2θ⟩

+
αβ√
α2 + β2

|V ⟩a1|V ⟩a2|H⟩b1|H⟩c1|αeiθ⟩+
αβ√
α2 + β2

|H⟩a1|H⟩a2|V ⟩b1|H⟩c1|αeiθ⟩ (82)

After the photons pass through the QND1, if Alice picks up the phase shift, θ, the remaining state
essentially will be Equation (69). Certainly, the similar step is performed by Charlie. The |Φ1⟩d1b1c1 and
|Φ⟩c3 combined with the coherent state evolves as:

|Φ⟩c3 ⊗ |Φ1⟩d1b1c1|α⟩ →
βγ√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|H⟩b1|V ⟩c1|V ⟩e2|αeiθ⟩

+
γ2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|H⟩b1|V ⟩c1|H⟩e2|α⟩

+
β2√

γ2 + 2β2
√
γ2 + β2

|V ⟩d1|H⟩b1|H⟩c1|V ⟩e2|αei2θ⟩

+
βγ√

γ2 + 2β2
√
γ2 + β2

|V ⟩d1|H⟩b1|H⟩c1|H⟩e2|αeiθ⟩

+
β2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|V ⟩b1|H⟩c1|V ⟩e2|αei2θ⟩

+
βγ√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|V ⟩b1|H⟩c1|H⟩e2|αeiθ⟩ (83)
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From Equation (83), if Charlie also picks up the θ phase shift, the remaining state essentially will be
the four-photon maximally entangled W state, which can be used to obtain the three-photon maximally
entangled W state by measuring one of the photons. From the above description, both Alice and Charlie
pick up the θ shift of the coherent state. If a suitable cross-Kerr nonlinearity can be provided, and the
interaction time, t, can be well controlled, which leads to θ = π. In this way, phase shift, 2θ = 2π and 0,
will not be distinguished. Therefore, the discarded items in each step are the nonmaximally entangled W
states and can be reconcentrated in the next round. For example, if the phase shift in Charlie’s location
is not θ, yet, then the Equation (83) will become:

|Ψ2⟩′d1b1c1e2 =
γ2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|H⟩b1|V ⟩c1|H⟩e2

+
β2√

γ2 + 2β2
√
γ2 + β2

|V ⟩d1|H⟩b1|H⟩c1|V ⟩e2 +
β2√

γ2 + 2β2
√
γ2 + β2

|H⟩d1|V ⟩b1|H⟩c1|V ⟩e2

(84)

Figure 13. Schematic drawing of the second ECP with the cross-Kerr nonlinearity [60].
Compared with Figure 12, we use two QNDs described in Figure 3 to substitute the two
PBSs. It can reach a higher success probability than the first ECP.
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By measuring the photon in mode, e2, after rotating it by 45◦, it becomes:

|Ψ±
2 ⟩′d1b1c1 = γ′′|H⟩d1|H⟩b1|V ⟩c1 ± β′′|V ⟩d1|H⟩b1|H⟩c1 ± β′′|H⟩d1|V ⟩b1|H⟩c1 (85)

Here we let:

γ′′ =
γ2√

γ4 + 2β4

β′′ =
β2√

γ4 + 2β4
(86)

“+” or “−” also depend on the measurement result. If D3 fires, it is “+”, otherwise, it is “−”. In
this way, the remaining state in Equation (85) can be reconcentrated in the next round. In detail, Charlie
chooses another single photon of the form:

|Φ′⟩c2 =
β2√
γ4 + β4

|H⟩c2 +
γ2√
γ4 + β4

|V ⟩c2 (87)
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After rotating this photon by 90◦, it becomes:

|Φ′⟩c3 =
β2√
γ4 + β4

|V ⟩c3 +
γ2√
γ4 + β4

|H⟩c3 (88)

Therefore, states |Ψ+
2 ⟩′d1b1c1 and |Φ′⟩c3 combined with the coherent state, |α⟩, evolve to:

|Φ′⟩c3 ⊗ |Ψ+
2 ⟩′d1b1c1|α⟩ →

β2γ2√
γ4 + 2β4

√
γ4 + β4

|H⟩d1|H⟩b1|V ⟩c1|V ⟩e2|αeiθ⟩

+
γ4√

γ4 + 2β4
√
γ4 + β4

|H⟩d1|H⟩b1|V ⟩c1|H⟩e2|α⟩

+
β4√

γ4 + 2β4
√
γ4 + β4

|V ⟩d1|H⟩b1|H⟩c1|V ⟩e2|αei2θ⟩

+
β2γ2√

γ4 + 2β4
√
γ4 + β4

|V ⟩d1|H⟩b1|H⟩c1|H⟩e2|αeiθ⟩

+
β4√

γ4 + 2β4
√
γ4 + β4

|H⟩d1|V ⟩b1|H⟩c1|V ⟩e2|αei2θ⟩

+
β2γ2√

γ4 + 2β4
√
γ4 + β4

|H⟩d1|V ⟩b1|H⟩c1|H⟩e2|αeiθ⟩ (89)

After the photons in the spatial modes, c1 and c3, pass through the QND2, if the homodyne measurement
of the coherent state is θ, Equation (89) will also collapse to the maximally entangled W state. The
success probability P 2

2 is:

P 2
2 =

γ4 + 2β4

(γ2 + β2)(γ2 + 2β2)

3β4γ4

(γ4 + 2β4)(γ4 + β4)
=

3β4γ4

(γ2 + 2β2)(γ4 + β4)(γ2 + β2)
(90)

Here, the subscript “2” means the second concentration round.
In the first step, we calculate the success probability in the Nth round:

P 1
N =

α2N (β2N−2γ2 + 2β2N )

(α2N + β2N )(α2N−1 + β2N−1) · · · (α2 + β2)
(91)

In the second step, we obtain the success probability in the Mth round:

P 2
M =

3β2Mγ2
M

(γ2M + β2M )(γ2M−1 + β2M−1) · · · (γ2 + β2)
· 1

(γ2 + 2β2)
(92)

Therefore, by repeating both steps, the total success probability is:

Ptotal = P 1
1 (P

2
1 + P 2

2 + · · ·+ P 2
M) + P 1

2 (P
2
1 + P 2

2 + · · ·+ P 2
M)

+ · · ·+ P 1
N(P

2
1 + P 2

2 + · · ·+ P 2
M) =

∞∑
N=1

P 1
N

∞∑
M=1

P 2
M (93)

We calculate the total success probability of both the PBS and the QND protocol, as shown in Figure 14.

In Figure 14, it is shown that both success probability monotones increase with α, when α ∈ (0,
√

1
3
).

They both have a maximal value when α = 1√
3
.
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Figure 14. The total success probability, P, of getting a maximally entangled W state is

altered with the initial coefficient, α [60]. Here, we choose β = 1√
3
, α ∈ (0,

√
2
3
). Curve

A is the ECP with QND, and Curve B is the ECP with PBS. For numerical simulation, we
choose N =M = 3 for approximation.

3.2. Entanglement Concentration for Single-Photon Multi-Mode W State

The single-photon Bell state, 1√
2
(|1⟩A|0⟩B + |0⟩A|1⟩B) = 1√

2
(a† + b†)|0⟩, described in Section 2.3,

can be easily extended to the single-photon multi-mode W state of the form [61]:

|W ⟩N =
1√
N
(|1, 0, 0, · · · , 0⟩+ |0, 1, 0, · · · , 0⟩+ · · ·+ |0, · · · 0, 1⟩) (94)

where the single photon is in the superposition of N spatial modes in different locations (N > 2).
Experimental schemes to generate these W states have been already proposed [62–65]. It has been
proven that the W state is robust to decoherence in the noisy environment [66–68], and it displays an
effective all-versus-nothing nonlocality, as the number of N delocalizations of the single particle goes
up [69]. Especially, Gottesman et al. discussed an approach to building interferometric telescopes
using such W states [70]. Unfortunately, in practical application, the maximally entangled W state may
inevitably suffer decoherence under realistic conditions, which can make it degrade to the pure partially
entangled state of the form:

|W ′⟩N = a1|1, 0, 0, · · · , 0⟩+ a2|0, 1, 0, · · · , 0⟩+ · · ·+ aN |0, · · · 0, 1⟩ (95)

where |a1|2 + |a2|2 + · · ·+ |aN |2 = 1, and all the ai (i = 1, 2, · · · , N ) are not equal.
In this section, we put forward an efficient ECP for recovering the single-photon three-mode partially

entangled W state into the maximally entangled W state [61]. We suppose a single photon source, here
named S1, emits a photon and sends it to the three parties, say Alice, Bob and Charlie, in the spatial
mode, a1, b1 and c1, respectively. Therefore, a partially entangled three-mode W state shared by the
three parties is created, which can be written as:

|ψ⟩a1b1c1 = α|1, 0, 0⟩a1b1c1 + β|0, 1, 0⟩a1b1c1 + γ|0, 0, 1⟩a1b1c1 (96)
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α, β and γ are the coefficients of the initial W state, where |α|2 + |β|2 + |γ|2 = 1 and α ̸= β ̸= γ. The
QND is shown in Figure 15, which is different from the QND as shown in Figures 1 and 3. The basic
principle of the ECP is described in Figure 16.

Figure 15. A schematic drawing of the photon-number quantum nondemolition detector
(QND) based on the weak cross-Kerr nonlinearity [61]. Here, the photons in the spatial
modes, a1 and a2, pass through the cross-Kerr material. In the early work of [51],
the high-efficiency quantum-nondemolition single-photon-number-resolving detector with
cross-Kerr nonlinearity was proposed. This setup is a development of [51], for it is essentially
the parity check measurement for the photon number.
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Figure 16. A schematic drawing of our ECP for distilling the single-photon maximally
entangled W state from the arbitrary single-photon partially entangled W state [61]. The
VBSis used to adjust the coefficients of the entangle state and, ultimately, obtain the
maximally entangled state [71].
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Analogous to Section 3.1, the whole protocol can be divided into two steps. In the first step, the single
photon source, here named S2, emits an auxiliary single photon and sends it to Bob. Then, the single
photon is passed through the VBS1, with the transmission of t [71]. In this way, it can be written as:

|ψ⟩d1d2 =
√
1− t|1, 0⟩d1d2 +

√
t|0, 1⟩d1d2 (97)
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Therefore, the whole two-photon system can be described as:

|Ψ⟩a1b1c1d1d2 = |ψ⟩a1b1c1 ⊗ |ψ⟩d1d2
= (α

√
1− t|1, 0, 0, 1, 0⟩+ α

√
t|1, 0, 0, 0, 1⟩

+ β
√
1− t|0, 1, 0, 1, 0⟩+ β

√
t|0, 1, 0, 0, 1⟩

+ γ
√
1− t|0, 0, 1, 1, 0⟩+ γ

√
t|0, 0, 1, 0, 1⟩)a1b1c1d1d2 (98)

After the two photons pass through the QND, the whole system combined with the coherent state can
evolve to:

|Ψ⟩a1b1c1d1d2 ⊗ |α⟩ −→ α
√
1− t|1, 0, 0, 1, 0⟩a1b1c1d1d2 |αe−iθ⟩+ α

√
t|1, 0, 0, 0, 1⟩a1b1c1d1d2 |α⟩

+ β
√
1− t|0, 1, 0, 1, 0⟩a1b1c1d1d2 |α⟩+ β

√
t|0, 1, 0, 0, 1⟩a1b1c1d1d2 |αeiθ⟩

+ γ
√
1− t|0, 0, 1, 1, 0⟩a1b1c1d1d2 |αe−iθ⟩+ γ

√
t|0, 0, 1, 0, 1⟩a1b1c1d1d2 |α⟩

(99)

One can find that the items, α
√
1− t|1, 0, 0, 1, 0⟩a1b1c1d1d2 and γ

√
1− t|0, 0, 1, 1, 0⟩a1b1c1d1d2 , can make

the coherent state pick up the phase shift of −θ, while the item, β
√
t|0, 1, 0, 0, 1⟩a1b1c1d1d2 , can make it

pick up θ. After the measurements, Bob only selects the items corresponding to the phase shift, ±θ, and
discards other items. Therefore, Equation (99) can collapse to:

|Ψ1⟩a1b1c1d1d2 = α
√
1− t|1, 0, 0, 1, 0⟩a1b1c1d1d2 + β

√
t|0, 1, 0, 0, 1⟩a1b1c1d1d2

+ γ
√
1− t|0, 0, 1, 1, 0⟩a1b1c1d1d2 (100)

Bob lets the photons in the spatial modes, d1 and d2, pass through the 50:50 beam splitter (BS1),
Equation (100) can evolve to:

|Ψ1⟩a1b1c1e1e2 = (
α
√
1− t√
2

|1, 0, 0⟩a1b1c1 +
β
√
t√
2
|0, 1, 0⟩a1b1c1 +

γ
√
1− t√
2

|0, 0, 1⟩a1b1c1)|1⟩e1

+ (
α
√
1− t√
2

|1, 0, 0⟩a1b1c1 −
β
√
t√
2
|0, 1, 0⟩a1b1c1 +

γ
√
1− t√
2

|0, 0, 1⟩a1b1c1)|1⟩e2
(101)

From the above equation, it can become:

|ψ1⟩a1b1c1 = α
√
1− t|1, 0, 0⟩a1b1c1 + β

√
t|0, 1, 0⟩a1b1c1 + γ

√
1− t|0, 0, 1⟩a1b1c1 (102)

if the detector, D1, fires. It can also become:

|ψ′
1⟩a1b1c1 = α

√
1− t|1, 0, 0⟩a1b1c1 − β

√
t|0, 1, 0⟩a1b1c1 + γ

√
1− t|0, 0, 1⟩a1b1c1 (103)

if the detector, D2, fires. There is only a phase difference between Equation (102) and Equation (103).
Interestingly, if we can adopt a suitable VBS with the transmission t1 =

|α|2
|α|2+|β|2 , where the subscript “1”

means in the first concentration step, Equation (102) can evolve to:

|ψ1⟩a1b1c1 =
αβ√
α2 + β2

|1, 0, 0⟩a1b1c1 +
αβ√
α2 + β2

|0, 1, 0⟩a1b1c1 +
γβ√
α2 + β2

|0, 0, 1⟩a1b1c1(104)
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Equation (104) can be rewritten as:

|ψ1⟩a1b1c1 = α|1, 0, 0⟩a1b1c1 + α|0, 1, 0⟩a1b1c1 + γ|0, 0, 1⟩a1b1c1 (105)

So far, we have completed the first concentration step. In this step, with the help of the cross-Kerr
nonlinearities and the VBS, we successfully make the entanglement coefficients of the items |1, 0, 0⟩a1b1c1
and |0, 1, 0⟩a1b1c1 be the same, with the success probability of

P 1
1 =

|β|2(2|α|2 + |γ|2)
|α|2 + |β|2

(106)

From the above discussion, we only pick up the cases that the phase shift is θ. If Alice picks up no phase
shift, the Equation (99) can collapse to:

|Ψ′⟩a1b1c1d1d2 = α2|1, 0, 0, 0, 1⟩a1b1c1d1d2 + β2|0, 1, 0, 1, 0⟩a1b1c1d1d2
+ αγ|0, 0, 1, 0, 1⟩a1b1c1d1d2 (107)

With the same principle, it can be found that if the detector, D1, fires, Equation (107) will collapse to:

|ψ2⟩a1b1c1 = α2|1, 0, 0⟩a1b1c1 + β2|0, 1, 0⟩a1b1c1 + αγ|0, 0, 1⟩a1b1c1 (108)

while if the detector, D2, fires, Equation (107) will collapse to:

|ψ′
2⟩a1b1c1 = α2|1, 0, 0⟩a1b1c1 − β2|0, 1, 0⟩a1b1c1 + αγ|0, 0, 1⟩a1b1c1 (109)

Similarly, Equation (109) can be easily converted to Equation (108) by a phase flip operation from Bob.
Equation (108) can be rewritten as:

|ψ2⟩a1b1c1 = α′|1, 0, 0⟩a1b1c1 + β′|0, 1, 0⟩a1b1c1 + γ′|1, 0, 0⟩a1b1c1 (110)

Here, α′ = α2√
α4+β4+α2γ2

, β′ = β2√
α4+β4+α2γ2

and γ′ αγ√
α4+β4+α2γ2

. It has the same form of the initial

partially entangled W state in Equation (96) and can be reconcentrated in the second round. Bob chooses
another VBS with the transmission of t21, where the subscript “1” means in the first concentration step
and the superscript “2” means in the second concentration round. After the single photon passes through
the VBS, the new two-photon system can ultimately evolve to:

|ψ3⟩a1b1c1 = α2
√

1− t21|1, 0, 0⟩a1b1c1 + β2
√
t21|0, 1, 0⟩a1b1c1 + αγ

√
1− t21|0, 0, 1⟩a1b1c1 (111)

If a suitable transmission, t21 =
|α′|2

|α′|2+|β′|2 = |α|4
|α|4+|β|4 , can be selected, Equation (111) can be converted

into Equation (105), with the success probability of:

P 2
1 =

|β|4(|αγ|2 + 2|α|4)
(|α|2 + |β|2)(|α|4 + |β|4)

(112)

Similarly, we can get a new partially entangled W state as:

|ψ4⟩a1b1c1 = α4|1, 0, 0⟩a1b1c1 + β4|0, 1, 0⟩a1b1c1 + α3γ|0, 0, 1⟩a1b1c1 (113)
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which can be reconcentrated for the third round. Following the same principle, Alice can perform the

concentration step for K times, with tK1 = |α|2K

|α|2K+|β|2K
, with the success probability as:

PK
1 =

|β|2K (|α|2K−2|γ|2 + 2|α|2K )
(|α|2 + |β|2)(|α|4 + |β|4) · · · (|α|2K + |β|2K )

(114)

and the total success probability of the first concentration step can be written as:

Ptotal1 = P 1
1 + P 2

1 + · · ·+ PK
1 =

∞∑
K=1

PK
1 (115)

The concentration step in Charlie’s location is analogous to that of Alice. He first chooses a suitable
VBS, named VBS2, and makes the single photon become:

|ψ⟩g1g2 =
√
1− t2|1, 0⟩g1g2 +

√
t2|0, 1⟩g1g2 (116)

The two photons combined with the coherent state can be written as:

|ψ1⟩a1b1c1 ⊗ |ψ⟩g1g2 ⊗ |α⟩ → α
√
1− t2|1, 0, 0, 1, 0⟩a1b1c1g1g2 |αe−iθ⟩+ α

√
t2|1, 0, 0, 0, 1⟩a1b1c1g1g2 |α⟩

+ α
√
1− t2|0, 1, 0, 1, 0⟩a1b1c1g1g2 |αeiθ⟩+ α

√
t2|0, 1, 0, 0, 1⟩a1b1c1g1g2 |α⟩

+ γ
√
1− t2|0, 0, 1, 1, 0⟩a1b1c1g1g2 |α⟩+ γ

√
t2|0, 0, 1, 0, 1⟩a1b1c1g1g2 |αeiθ⟩ (117)

If Charlie selects the cases that the coherent state picks up the phase shift θ, the above equation
will become:

|Ψ2⟩a1b1c1g1g2 = α
√
1− t2|1, 0, 0, 1, 0⟩a1b1c1g1g2 + α

√
1− t2|0, 1, 0, 1, 0⟩a1b1c1g1g2

+ γ
√
t2|0, 0, 1, 0, 1⟩a1b1c1g1g2 (118)

After passing through the BS, it becomes:

|ψ5⟩a1b1c1 = α
√
1− t2|1, 0, 0⟩a1b1c1 + α

√
1− t2|0, 1, 0⟩a1b1c1 + γ

√
t2|0, 0, 1⟩a1b1c1 (119)

if the detector, D3, fires, and becomes:

|ψ′
5⟩a1b1c1 = α

√
1− t2|1, 0, 0⟩a1b1c1 − α

√
1− t2|0, 1, 0⟩a1b1c1 + γ

√
t2|0, 0, 1⟩a1b1c1 (120)

if the detector, D4, fires. Obviously, if a suitable VBS2 with t2 =
|α|2

|α|2+|γ|2 can be selected, Equation (119)
can evolve to:

|ψ5⟩a1b1c1 =
1√
3
(|1, 0, 0⟩a1b1c1 + |0, 1, 0⟩a1b1c1 + |0, 0, 1⟩a1b1c1) (121)

which is the maximally entangled W state. The Equation (120) also can become the maximally entangled
W state with a phase flip operation. The success probability is:

P 1
2 =

3|α|2|γ|2

(|α|2 + |γ|2)(2|α|2 + |γ|2)
(122)

where the subscript “2” means the second concentration step and the superscript “1” means the first
concentration round.
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If the coherent state picks up no phase shift, they can obtain:

|Ψ′
2⟩a1b1c1g1g2 = α2|1, 0, 0, 0, 1⟩a1b1c1g1g2 + α2|0, 1, 0, 0, 1⟩a1b1c1g1g2

+ γ2|0, 0, 1, 1, 0⟩a1b1c1g1g2 (123)

From Equation (117), it can also be used to concentrate to the maximally entangled state, with the
suitable VBS with t22 =

|α|4
|α|4+|γ|4 . The success probability is:

P 2
2 =

3|α|4|γ|4

(|α|2 + |γ|2)(|α|4 + |γ|4)(2|α|2 + |γ|2)
(124)

In the Kth round, Charlie chooses the VBS2 with tK′
2 = |α|2K

′

|α|2K
′
+|γ|2K

′ , where the superscript “K” means
the iteration time. The second concentration step can be reused to get a higher success probability. The
success probability of the second concentration step in each round can be written as:

PK′

2 =
3|α|2K

′
|γ|2K

′

(|α|2 + |γ|2)(|α|4 + |γ|4) · · · (|α|2K′
+ |γ|2K′

)(2|α|2 + |γ|2)
(125)

and the total success probability of the second concentration step is:

Ptotal2 = P 1
2 + P 2

2 + · · ·+ PK′

2 =
∞∑

K′=1

PK′

2 (126)

We can calculate the total success probability of this ECP as:

Ptotal = Ptotal1Ptotal2 =
∞∑

K,K′=1

PK
1 P

K′

2 (127)

4. Some other ECPs

4.1. Entanglement Concentration for NOON State

Recently, a special quantum state, named the NOON state, has drawn great attention [72–76]. It
can be used to study the violations of quantum realism in the well-known GHZ contradictions[77]. It
also shows great sensitivity for optical interferometry over a coherent state [78,79]. It can approach the
Heisenberg limit of 1/N [80–82]. For N-photon interference, the de Broglie wavelength is λ/N . The
N-photon NOON state can be written as:

|NOON⟩ab =
1√
2
(|0, N⟩ab + |N, 0⟩ab) (128)

Certainly, the maximally entangled NOON state inevitably interacts with the environment. For instance,
the variation of the path length may induce a phase shift and makes it become:

|NOON ′⟩ab =
1√
2
(|0, N⟩ab + eiN△φ|N, 0⟩ab) (129)

where the △φ comes from the fluctuation of the path length [75,76]. If we consider other noise, the
more general form of the partially entangled NOON state can be described as:

|NOON ′′⟩ab = α|0, N⟩ab + β|N, 0⟩ab (130)
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where |α|2 + |β|2 = 1 and α ̸= β. If the maximally entangled state is polluted, we should concentrate it
into a maximally entangled one with the form of Equation (128).

Essentially, the single-photon entanglement described in Section 2.3 is the simplest NOON state. In
this section, we will described the entanglement concentration for the NOON state following the similar
principle in Section 2.3 [83].

From Figure 17, it is rather analogous with Figure 11. From Figure 17, by choosing two copies of
partially entangled NOON states with the form of Equation (130), the whole 2N-photon system can be
described as:

|Φ⟩Na1a2b1b2 = (α2|0, 0, N,N⟩+ β2|N,N, 0, 0⟩+ αβ|0, N,N, 0⟩+ αβ|N, 0, 0, N⟩)a1a2b1b2 .(131)

After the photons passes through the cross-Kerr nonlinearity, the state of the whole system combined
with the coherent state can evolve to:

|Φ⟩Na1a2b1b2 ⊗ |α⟩ → (α2|0, 0, N,N⟩|α⟩+ β2|N,N, 0, 0⟩|α⟩
+ αβ|0, N,N, 0⟩|αeNiθ⟩+ αβ|N, 0, 0, N⟩|αe−Niθ⟩)a1a2b1b2 (132)

Then, they select the items, which make the coherent state pick up the phase shift of ±Nθ, so that
Equation (132) will collapse to:

|Φ1⟩Na1a2b1b2 =
1√
2
(|0, N,N, 0⟩+ |N, 0, 0, N⟩)a1a2b1b2 (133)

with the success probability of PN
1 = 2|αβ|2. In order to obtain the maximally entangled NOON

state, they let the photons pass through the BS simultaneously. With the help of the creation operators,
Equation (133) becomes:

|Φ′
1⟩Na1a2b1b2 =

1

N
√
2
(|(â†2)N(b̂

†
1)

N |0⟩+ |(â†1)N(b̂
†
2)

N |0⟩)a1a2b1b2 (134)

Equation (134) can finally evolve to:

|Φ1⟩Na1b1d1d2 =
1

√
2
(N+1)

(|N, 0, N, 0⟩a1b1d1d2 + |0, N,N, 0⟩a1b1d1d2)

+
1

√
2
(N+1)√

N

N∑
i=1

√
i(N − i)Ci

N [|N, 0, (N − i), i⟩a1b1d1d2

+ (−1)i|0, N, (N − i), i⟩a1b1d1d2
]

(135)

If the photon number detected by D2 is even, Equation (135) will collapses to:

|Ψ⟩Na1b1 =
1√
2
(|0, N⟩a1b1 + |N, 0⟩a1b1) (136)

while if the photon number detected by D2 is odd, it will collapse to:

|Ψ′⟩Na1b1 =
1√
2
(|0, N⟩a1b1 − |N, 0⟩a1b1) (137)

Both Equation (136) and Equation (137) are maximally entangled N-photon NOON states, and there is
only a phase difference between them.
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Figure 17. A schematic drawing of the ECP for the N-photon partially entangled NOON
state [83].
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In order to obtain Equation (136), one of the two parties only needs to perform a phase flip operation
on her or his photons to convert Equation (137) to Equation (136). The success probability is PN

1 =

2|αβ|2.
On the other hand, if the previous step is a failure, which makes the coherent state pick up no phase

shift, the remaining state is:

|Φ2⟩Na1a2b1b2 = α2|0, 0, N,N⟩a1a2b1b2 + β2|N,N, 0, 0⟩a1a2b1b2 (138)

By making the photons in modes a2 and b2 pass through the BS, Equation (138) can evolve to:

|Φ2⟩Na1b1d1d2 → α2

√
2
N
|0, N,N, 0⟩a1b1d1d2 +

β2

√
2
N
|N, 0, N, 0⟩a1b1d1d2

+
1

√
2
N√

N

N∑
i=1

√
i(N − i)Ci

N

[
α2|N, 0, (N − i), i⟩a1b1d1d2

+ (−1)iβ2|0, N, (N − i), i⟩a1b1d1d2
]

(139)

With the same principle, if the photon number detected by D2 is even, Equation (139) will collapse to:

|Ψ2⟩Na1b1 = α2|0, N⟩a1b1 + β2|N, 0⟩a1b1 (140)

If the photon number detected by D2 is odd, Equation (139) collapses to:

|Ψ′
2⟩Na1b1 = α2|0, N⟩a1b1 − β2|N, 0⟩a1b1 (141)

From Equation (140) and Equation (141), they are both the partially entangled N-photon NOON
states. Equation (141) can be converted to Equation (140) by performing the phase flip operation.
Equation (140) has the same form with Equation (130), and following the same principle, it can be
reconcentrated in the third round. In this way, we have proven that our ECP can be used repeatedly to
further concentrate arbitrary N-photon NOON states.
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4.2. Entanglement Concentration for Electrons with Charge Detection

Quantum communication and computation can also be achieved with conduction electrons, since
Beenakker et al. broke through the obstacle of the no-go theorem [84,85]. In 2004, with the help of
a charge detector, they proposed a deterministic CNOT gate based on the spin degree of freedom [84].
The charge detector can distinguish the occupation number, 1, from the occupation number, 0 and 2, but
cannot distinguish between 0 and 2. Interestingly, spin and charge commute, so that the measurement
of the charge leaves the spin qubit unaffected. Based on such elements, several quantum information
processing protocols were proposed [86–94].

The ECP for electrons with charge detection is rather analogous with the ECP described in Section 2.
As shown in Figure 18, there are two pairs of entangled electrons in the following unknown polarization
states [94]:

|Φ⟩a1b1 = α| ↑⟩a1 | ↑⟩b1 + β| ↓⟩a1 | ↓⟩b1
|Φ⟩a2b2 = α| ↑⟩a2 | ↑⟩b2 + β| ↓⟩a2 | ↓⟩b2 (142)

where |α|2 + |β|2 = 1. The | ↑⟩ is spin up, and | ↓⟩ is spin down. After the state passes through the
half-wave plates, which are used to transfer the | ↑⟩ to | ↓⟩ and vice versa, the whole state becomes:

|Ψ⟩′ = α2| ↑⟩a1 | ↓⟩a3 | ↑⟩b1 | ↓⟩b3 + αβ| ↑⟩a1 | ↓⟩a3 | ↑⟩b1 | ↑⟩b3
+ αβ| ↓⟩a1 | ↓⟩a3 | ↓⟩b1 | ↓⟩b3 + β2| ↓⟩a1 | ↑⟩a3 | ↓⟩b1 | ↑⟩b3 (143)

The PBS for the electron can transmit the spin up and reflect | ↑⟩ the spin down | ↓⟩. If the charge
detector detects only one electron, the original state will collapse to:

|Ψ⟩′′ =
1√
2
(| ↑⟩a1 | ↑⟩a3 | ↑⟩b1 | ↑⟩b3 + | ↓⟩a1 | ↓⟩a3 | ↓⟩b1 | ↓⟩b3) (144)

It is easy to get a two-particle maximally entangled state from Equation (144). They only need to use
the Hadamard operation to change a3b3 to the x-axis. Finally, by measuring the electrons, a4c3, with the
basis, Z; if the two detectors, D1 and D2, have the same results, the a1b1 will collapse to the state:

|ϕ+⟩a1b1 =
1√
2
(| ↑⟩a1| ↑⟩b1 + | ↓⟩a1 | ↓⟩b1) (145)

Otherwise, thet will get:

|ϕ−⟩a1b1 =
1√
2
(| ↑⟩a1 | ↑⟩b1 − | ↓⟩a1 | ↓⟩b1) (146)

In this ECP, the charge detector is used to detect the parity of the two electrons. If the two electrons
are in even parity (both spin up or down), the charge detector will detect only one electron, and this
above state can be concentrated to the maximally entangled state. Otherwise, the charge detector will
detect zero or two electrons, which will make the state collapse to another partially entangled state as:

|Φ1⟩
′′

= α2| ↑⟩a1 | ↓⟩a3 | ↑⟩b1 | ↓⟩b3 + β2| ↓⟩a1 | ↑⟩a3| ↓⟩b1 | ↑⟩b3 (147)
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For |Φ1⟩
′′ , it can be concentrated to the maximally entangled state in the next round. As shown in

Figure 19, after the measurements, Equation (147) becomes:

|Φ1⟩
′′
= α2| ↑⟩a1 | ↑⟩b1± β2| ↓⟩a1 | ↓⟩b1 (148)

The “+” or “−” depends on the measurement results of D1 and D2. If the results of D1 and D2 are the
same, both | ↑↑⟩ or | ↓↓⟩, they will get “+”. Otherwise, they will get “−”. Both of them are the partially
entangled state and can be reconcentrated in the next round.

Figure 18. Schematic diagram of the proposed electronic ECP. Alice and Bob receive two
pairs of identical less entangled photons, which are sent from source S1 and S2 [94]. The PBS
plus the charge detector can make a parity check for the spin of electrons. The Hadamard
operation is to change the spin in the z-axis to the x-axis.

a1 b1

D2

R90

PBS

a2 b3b2

S2

Alice Bob

D1

D2

R90

a3

S1

C H

H

Figure 19. Another PBS is added in this protocol to make sure each mode contains only
one electron. The device in Bob’s laboratory is a complete parity measurement [84]. This
protocol can be iterated and reach a higher yield and efficiency [94].
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Certainly, the above ECP can also be improved, if we know the initial coefficients of the partially
entangled state. We only need to use the single mobile electron to complete the entanglement
concentration. The basic principle is shown in Figure 20. The basic idea is essentially similar to the
optical ECP in Section 2.2. We only need to prepare the single electron of the form [90]:

|Φ⟩b2 = α| ↑⟩b2 + β| ↓⟩b2 (149)

to start the protocol. Certainly, it can also be repeated if the first step is a failure, as discussed above. It
can reach the same success probability as the ECP for photons.
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Figure 20. The schematic drawing of the principle for reconstructing the ECP [90]. If the
measurement result of the charge detector is 0, the remaining lesser-entangled pair can also
be reused to perform the entanglement concentration. Another PBS, say PBS2, is used to
couple the state into the same spatial mode. P denotes that it plays essentially the role of the
parity check gate.
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4.3. Efficient Entanglement Concentration for Quantum Dot and Optical Microcavities Systems

A charged quantum-dot carrying a single spin coupled to an optical microcavity is a novel system for
quantum information processing [95]. In this system, the photon-spin entangling gate can be realized
theoretically [96]. It is also shown that the neutral quantum-dot cavity systems behave like a beam
splitter in the limit of the weak incoming field [97]. In 2009, Waks and Monroe described a scheme of
creating hybrid entanglement between atomic quantum systems and semiconductors [95]. Entanglement
purification and concentration protocols based on the hybrid entangled state using quantum-dot and
microcavity coupled system were also proposed [100].

In the entanglement concentration, Wang et al. proposed an ECP for electron-spin entangled states
using quantum-dot spins in optical microcavities in 2011 [100]. In this ECP, two pairs of partially
entangled states and the ancillary photons are required. In 2012, He improved the ECP [101]. With the
assistance of an ancillary quantum dot and a single photon, it can reach the same success probability.
However, the second ECP of Wang et al. is still not an optimal one. In this section, we will describe
the efficient ECP for such entangled electrons with the help of only one single photon [102]. Compared
with the ECPs of Wang et al., the most significant advantage is that during the whole ECP, the single
photon only needs to pass through one microcavity, which will increase the total success probability if
the cavity is imperfect. Before we start to explain this ECP, we first describe the basic element of the
ECP, say, the hybrid parity check gate, as shown in Figure 21. In the single charged GaAs/InAs quantum
dot associated with the dipole transitions, it has four relevant electronic levels. There are two optically
allowed transitions between the electron state and the exciton state, the bound state of two electrons and
a hole. The spin of the holes are Jz = ±3/2 (| ⇓⟩| ⇑⟩), and the spin of the single electron states are
Jz = ±1/2 (| ↓⟩| ↑⟩). The electron-spin state does not interact with the hole spin, because the total spin
is zero, according to Pauli’s principle. If the spin of the electron is in spin up, | ↑⟩, and a photon is in
state, sz = +1 (|R↑⟩ and |L↓⟩), the circularly polarized light might change their polarization according
to the direction of propagation, as well as the spin of the electron, after the photon passes through
the cavity.
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Figure 21. A schematic drawing of the basic element of the ECP [102]. The quantum dot
spin is coupled in optical microcavities. Input represents the input port of a photon. Output1
and Output2 are the output ports of the photon after coupled with the electron-spin system.
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Figure 22. A schematic drawing of the basic principle of the ECP for quantum dot and
optical microcavities systems [102]. The input mode means that the photon enters into the
cavity. D1, D2, D3 and D4 are four single photon detectors. The half wave plate (HWP45)
can make a Hadamard operation.
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The total rules of the state change under the interaction of the photon with sz = +1 (|R↑⟩ and |L↓⟩)
and sz = −1 (|R↓⟩ and |L↑⟩) can be described as [96,100]:

|R↑, ↑⟩ → |L↓, ↑⟩, |R↓, ↑⟩ → −|R↓, ↑⟩
|R↑, ↓⟩ → −|R↑, ↓⟩, |R↓, ↓⟩ → |L↑, ↓⟩
|L↑, ↑⟩ → −|L↑, ↑⟩, |L↓, ↑⟩ → |R↑, ↑⟩
|L↑, ↓⟩ → |R↓, ↓⟩, |L↓, ↓⟩ → −|L↓, ↓⟩ (150)

Here, |R⟩ and |L⟩ denote the states of right-circular-polarized and left-circular-polarized photons,
respectively. The ↑ and ↓ on the superscript arrow are the propagation direction along the z-axis, as
shown in Figure 21. If the initial input state is the photon-spin product state, 1√

2
(|R⟩ + |L⟩) ⊗ 1√

2
(| ↑

⟩ + | ↓⟩), it will be converted into the two constituent hybrid entangled states, 1√
2
(|R⟩| ↑⟩ + |L⟩| ↓⟩), in

the transmission port, say, output2 mode, and 1√
2
(|R⟩| ↓⟩ + |L⟩| ↑⟩) in the reflection port, say, output1

mode, with a success probability of 100%, in principle.



Entropy 2013, 15 1810

The initial partially entangled state shared by Alice and Bob is:

|ϕ+⟩12 = α| ↑⟩1| ↑⟩2 + β| ↓⟩1| ↓⟩2 (151)

with |α|2+ |β|2 = 1. The subscripts “1” and “2” are spin 1 and spin 2 shown in Figure 22. Alice prepares
another single photon as:

|Φ⟩P = α|R⟩+ β|L⟩ (152)

The whole system evolves as:

|Φ⟩P |ϕ+⟩12 = (α|R↓⟩+ β|L↓⟩)(α| ↑⟩1| ↑⟩2 + β| ↓⟩1| ↓⟩2)
= α2|R↓⟩| ↑⟩1| ↑⟩2 + β2|L↓⟩| ↓⟩1| ↓⟩2 + αβ(|R↓⟩| ↓⟩1| ↓⟩2 + |L↓⟩| ↑⟩1| ↑⟩2)
→ −α2|R↓⟩| ↑⟩1| ↑⟩2 − β2|L↓⟩| ↓⟩1| ↓⟩2 + αβ(|L↑⟩| ↓⟩1| ↓⟩2 + |R↑⟩| ↑⟩1| ↑⟩2) (153)

From the above description, if the photon is reflected and finally passes through the HWP45,
Equation (153) will become:

1√
2
(|L↑⟩| ↓⟩1| ↓⟩2 + |R↑⟩| ↑⟩1| ↑⟩2)

→ 1

2
(|H⟩ − |V ⟩)| ↓⟩1| ↓⟩2 +

1

2
(|H⟩+ |V ⟩)| ↑⟩1| ↑⟩2

=
1√
2
|H⟩ 1√

2
(| ↑⟩1| ↑⟩2 + | ↓⟩1| ↓⟩2) +

1√
2
|V ⟩ 1√

2
(| ↑⟩1| ↑⟩2 − | ↓⟩1| ↓⟩2) (154)

They will obtain 1√
2
(| ↑⟩1| ↑⟩2+ | ↓⟩1| ↓⟩2), if D1 fires, and obtain 1√

2
(| ↑⟩1| ↑⟩2− | ↓⟩1| ↓⟩2), if D2 fires.

The success probability is: 2|αβ|2.

Figure 23. Success probability, P , for obtaining a maximally entangled state after
performing this ECP is altered with the initial coefficient, α ∈ (0, 1) [102]. Curve A is
the ideal case with no leakage. Curve B is the success probability with κs = 0.5κ, g = 0.5κ

and γ = 0.5κ in this protocol. Curve C is the success probability of ECP in [101]. For
numerical simulation, we let K = 5 as a good approximation.

Certainly, from Equation (153), the photon may also be transmitted to another output mode and lead
the state collapse to α2|R↓⟩| ↑⟩1| ↑⟩2 + β2|L↓⟩| ↓⟩1| ↓⟩2. By measuring the photon after passing through
the HWP45 and PBS2, they will obtain:

|ϕ±⟩′12 = α2| ↑⟩1| ↑⟩2 ± β2| ↓⟩1| ↓⟩2 (155)
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Both |ϕ±⟩′12 are lesser-entangled states and can be reconcentrated in the second round. If they obtain
|ϕ+⟩′12, Alice only needs to prepare another single photon of the form:

|Φ⟩′P = α2|R⟩+ β2|L⟩ (156)

In this way, the whole system can be written as:

|ϕ+⟩′12|Φ⟩′P = (α2| ↑⟩1| ↑⟩2 + β2| ↓⟩1| ↓⟩2)(α2|R↓⟩+ β2|L↓⟩)
= α4| ↑⟩1| ↑⟩2|R↓⟩+ β4| ↓⟩1| ↓⟩2|L↓⟩+ α2β2(| ↑⟩1| ↑⟩2|L↓⟩+ | ↓⟩1| ↓⟩2|R↓⟩)
→ −α4|R↓⟩| ↑⟩1| ↑⟩2 − β4|L↓⟩| ↓⟩1| ↓⟩2 + α2β2(|L↑⟩| ↓⟩1| ↓⟩2 + |R↑⟩| ↑⟩1| ↑⟩2) (157)

Obviously, from Equation (157), if the detector D1 or D2 fires, they will obtain the maximally entangled
pair. If D1 or D2 fires, they will obtain another partially entangled pair:

|ϕ±⟩′′12 = α4| ↑⟩1| ↑⟩2 ± β4| ↓⟩1| ↓⟩2 (158)

It is still a partially entangled state, which can be reconcentrated for the third round. The success
probability in the Kth round can be written as:

PK =
2|αβ|2K

(|α|4 + |β|4)(|α|8 + |β|8) · · · (|α|2K + |β|2k)
(159)

Actually, the realization of this ECP relies on the efficiency of transmission and the reflection for
electrons and photon. By solving the Heisenberg equations of motion for the cavity-field operator and
the trion dipole operator in weak excitation approximation, the reflection and transmission coefficients
can be described as:

r(w) = 1 + t(ω)

t(ω) =
−κ[i(ωX− − ω) + γ

2
]

[i(ωX− − ω) + γ
2
][i(ωc − ω) + κ+ κs

2
] + g2

(160)

where g represents the coupling constant. γ
2

is the X− dipole decay rate. κ and κs/2 are the cavity field
decay rate into the input and output modes, and the leaky rate, respectively [98]. We can obtain the
reflection and transmission coefficients in the approximation of weak excitation with ωc = ωX− = ω0

and g = 0 as:

r0(ω) =
i(ω0 − ω) + κs

2

i(ω0 − ω) + κs

2
+ κ

t0(ω) =
−κ

i(ω0 − ω) + κs

2
+ κ

(161)

Here, the ω0, ωc and ωX− are the frequencies of the input photon, cavity mode and the spin-dependent
optical transition, respectively. If we choose ω0 = ω, the reflection coefficient, |r(ω)| ≈ 1, and
the transmission coefficient, |t0|(ω) ≈ 1. Therefore, the transmission and reflection operators can be
rewritten as:

t̂(ω) = t0(ω)(|R⟩⟨R| ⊗ | ↑⟩⟨↑ |+ |L⟩⟨L| ⊗ | ↓⟩⟨↓ |)
+t(ω)(|R⟩⟨R| ⊗ | ↓⟩⟨↓ |+ |L⟩⟨L| ⊗ | ↑⟩⟨↑ |)

r̂(ω) = r0(ω)(|R⟩⟨R| ⊗ | ↑⟩⟨↑ |+ |L⟩⟨L| ⊗ | ↓⟩⟨↓ |)
+r(ω)(|R⟩⟨R| ⊗ | ↓⟩⟨↓ |+ |L⟩⟨L| ⊗ | ↑⟩⟨↑ |) (162)
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We can recalculate the success probability in each concentration round as:

P ′
K = (

|t0(ω)|√
|t0(ω)|2 + |t(ω)|2

)K−1 |r(ω)|√
|r0(ω)|2 + |r(ω)|2

PK (163)

It means that if the protocol is successful in the Kth round, it will have K-1 photons, which are transmitted
from the cavity with the transmission coefficient, ( |t0(ω)|√

|t0(ω)|2+|t(ω)|2
)K−1. The total success probability is:

Pt =
∞∑

K=1

P ′
K (164)

In Figure 23, we calculate the total success probability in both the ideal case with no leakage and with
κs = 0.5κ, g = 0.5κ and γ = 0.5κ. We let K=5 as a good approximation. If the photon should pass
through two cavities one time, as shown in [101], the total success probability decreases, as shown in
Curve C. The maximally value in Curve C is about 0.75.

In a practical operation, we require a long coherent time of the quantum dot and the strong coupling
of the quantum dot with the cavity to ensure that the photon can be completely coupled with quantum
dot. The current experiment showed that the coherence time of the GaAs- or InAs-based quantum dots is
long enough [99]. Interestingly, from Equation (150), the state of the spin does not flip after the photon
passes through the cavity. It leads this ECP have the great advantage that the photon loss, and imperfect
detection does not affect the fidelity of the protocol.

5. Discussion and Conclusion

Thus far, we have briefly explained some ECPs with nonlinear optics and the ECPs encoded in other
solid qubits. Most ECPs described are different from the traditional ECPs. In the traditional ECPs, they
all require two pairs of partially entangled states to complete the protocol. After performing the protocol,
the success probability of obtaining one pair of partially entangled states is 2|αβ|2. Certainly, this kind
of ECP can be easily extended to the multipartite GHZ state. In this review, we mainly described another
way of entanglement concentration, i.e., the ECPs assisted with only single photons. This kind of ECPs
have several advantages: First, they can reach the same success probability, but only require one pair of
partially entangled states. Therefore, they are optimal. Second, only one of the parities, say Alice, needs
to perform the whole protocol, and leads Bob do nothing for Bell-state concentration. It is more useful for
concentrating the partially entangled GHZ state. In the previous ECPs, all of the parties should measure
their particles. This kind of ECP can save much practical operations during the experiments. Moreover,
in traditional ECPs, after the measurement, all of the parties should check their measurement results to
decide their remaining maximally entangled states, using classical communications. In these ECPs, only
Alice needs to ask all the other parties to retain or discard their particles. It is very economical.

On the other hand, the single photon can be used as an assistant to complete the concentration of the
arbitrary partially entangled W state. In the previous works of concentration of the partially entangled W
state, one cannot complete such task. One can only concentrate some special types of partially entangled
W states. From the above discussion, using the cross-Kerr nonlinearity, the ECPs for the W state can
also be repeated to reach a higher success probability.
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The key element for entanglement concentration is the parity check gate. In this way, it is similar to
the traditional ECPs. In the optical system, the parity check can be constructed by PBS or cross-Kerr
nonlinearity. However, using PBS, one cannot realize a complete parity check gate. One can only
obtain the even parity states, |HH⟩ and |V V ⟩, and lead the odd parity states, |HV ⟩ and |V H⟩, in the
different spatial modes. The QND constructed by cross-Kerr nonlinearity acts in the same role as the
parity check gate. By measuring the phase shift of the coherent state, one can decide the parity of the
two photons. In this review, we have described several QNDs, such as Figure 1, Figure 3, Figures 11
and 15. The QNDs shown in Figures 1 and 3 are used to make the parity check for the polarization
degree of freedom, and Figures 11 and 15 are used to make the parity check for spatial modes. The
QND in Figure 3 is a little different from Figure 1. To realize a complete parity check, in Figure 1, we
should require two different kinds of Kerr material. The one is to generate θ phase shift, and the other
is to generate −θ phase shift. We also should make the homodyne measurement to make the ±θ unable
to be distinguished. In Figure 3, we should resort the suitable Kerr material to obtain the π phase shift.
In the current experiment condition, large phase shift cannot be easily obtained. If we adopt the QND
in Figure 3, an effective way is to use the coherent rotation by θ [54,60]. After performing the coherent
rotation, the |αei2θ⟩ becomes |αeiθ⟩, and |α⟩ becomes |αe−iθ⟩. The |αe±iθ⟩ cannot be distinguished in
a general homodyne measurement. In the electronic system, the PBS and charge detection can also act
in the role of the complete parity check gate. It is similar to the quantum dot and optical microcavities
systems, as shown in Section 4.3. In Section 4.3, one can judge the parity of the two spin states according
to the different spatial mode of the photons.

The cross-Kerr nonlinearity provides us a powerful tool for realizing the entanglement concentration.
However, we should acknowledge that it is still a quite-controversial topic to have a clean
cross-Kerr-nonlinearity. Shapiro and Razavi performed a detailed analysis and suggested that, in fact,
the QND scheme cannot function under realistic conditions [103,104]. Moreover, there has not been
any experimental demonstration of schemes making use of the gate. Gea-Banacloche also showed
that large shifts via the giant Kerr effect with a single-photon wave packet are impossible with current
technology [105]. On the other hand, He et al. have discussed the cross-Kerr nonlinearity between
continuous-mode coherent states and single photons, and their work constitutes significant progress in
making the treatment of coherent state and single-photon interactions more realistic [106]. With the
help of weak measurement, it is possible to amplify a cross-Kerr phase shift to an observable value,
as discussed by Feizpour et al.. The phase shift is much larger than the intrinsic magnitude of the
single-photon-level nonlinearity[107]. Recently, Zhu and Huang also showed that giant cross-Kerr
nonlinearities can be obtained with nearly vanishing optical absorption, investigating the linear and
nonlinear propagation of probe and signal pulses, which are coupled in a double-quantum-well structure
with a four-level, double-type configuration [108].

The experiment of the ECPs based on the QND depends on the realization of the cross-Kerr
nonlinearity. It is not an easy task in the current experimental condition. However, the ECPs with
linear optics in this review can be completed, such as the ECP assisted with a single photon, described
in Section 2.2, the ECP for the W state in the polarization degree of freedom and the spatial modes
degree of freedom. We take the ECP in Section 2.2, for example. As shown in Figure 6, we need to
prepare one pair of partially entangled states and a single photon. It can be easily realized with the
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SPDC source. Actually, preparing both the one pair of polarization entanglement and a single polarized
photon has been realized in the early work of experimental teleportation [109]. We first prepare two
pairs of partially entangled states, like [35]. Then, we trace over one of the photons in the second pair to
prepare the single photon.

Certainly, some other ECPs were proposed [110–118]. For example, the ECPs for atoms were
proposed [110]. Recently, other ECPs, both for the Bell state and W state, were proposed. In 2012,
Deng proposed an ECP with some special polarized photons 1√

2
(|H⟩ + |V ⟩) [111]. With the help of

cross-Kerr nonlinearity, the ECPs for the W state were also proposed [112,113]. Zhou also proposed the
ECP for the W state with the help of charge detection [114].
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10. Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59,
1829–1834.

11. Karlsson, A.; Koashi, M.; Imoto, N. Quantum entanglement for secret sharing and secret splitting.
Phys. Rev. A 1999, 59, 162–168.

12. Xiao, L.; Long, G.L.; Deng, F.G.; Pan, J.W. Efficient multiparty quantum-secret-sharing schemes.
Phys. Rev. A 2004, 69, 052307.

13. Briegel, H.J.; Dür, W.; Cirac, J.I.; Zoller, P. Quantum repeaters: The role of imperfect local
operations in quantum communication. Phys. Rev. Lett. 1998, 81, 5932–5935.

14. Simon, C.; de Riedmatten, H.; Afzelius, M.; Sangouard, N.; Zbinden, H.; Gisin, N. Quantum
repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 2007, 98, 190503.

15. Sangouard, N.; Simon, C.; de Riedmatten, H.; Gisin, N. Quantum repeaters based on atomic
ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33–80.

16. Duan, L.M.; Lukin, M.D.; Cirac, J.T.; Zoller, P. Long-distance quantum communication with
atomic ensembles and linear optics. Nature 2001, 414, 413–418.

17. Thew, R.T.; Munro, W.J. Entanglement manipulation and concentration. Phys. Rev. A 2001, 63,
030302(R).

18. Thew, R.T.; Munro, W.J. Mixed state entanglement: Manipulating polarization-entangled
photons. Phys. Rev. A 2001, 64, 022320.

19. Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K.
Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett.
1996, 76, 722–725.

20. Pan, J.W.; Simon, C.; Zellinger, A. Entanglement purification for quantum communication.
Nature 2001, 410, 1067–1070.

21. Simon, C.; Pan, J.W. Polarization entanglement purification using spatial entanglement. Phys.
Rev. Lett. 2002, 89, 257901.

22. Sheng, Y.B.; Deng, F.G.; Zhou, H.Y. Efficient polarization-entanglement purification based on
parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 2008, 77, 042308.

23. Sheng, Y.B.; Deng, F.G. Deterministic entanglement purification and complete nonlocal Bell-state
analysis with hyperentanglement. Phys. Rev. A 2010, 81, 032307.

24. Sheng, Y.B.; Deng, F.G. One-step deterministic polarization-entanglement purification using
spatial entanglement. Phys. Rev. A 2010, 82, 044305.

25. Deng, F.G. One-step error correction for multipartite polarization entanglement. Phys. Rev. A
2011, 83, 062316.

26. Deng, F.G. Efficient multipartite entanglement purification with the entanglement link from a
subspace. Phys. Rev. A 2011, 84, 052312.

27. Li, X.H. Deterministic polarization-entanglement purification using spatial entanglement.
Phys. Rev. A 2010, 82, 044304.

28. Cao, C.; Wang, C.; He, L.Y.; Zhang, R. Atomic entanglement purification and concentration using
coherent state input-output process in low-Q cavity QED regime. Opt. Exp. 2013, 21, 4093–4105.

29. Wang, C.; Zhang, Y.; Zhang, R. Entanglement purification based on hybrid entangled state using
quantum-dot and microcavity coupled system. Opt. Exp. 2011, 19, 25685–25695.



Entropy 2013, 15 1816

30. Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement
by local operations. Phys. Rev. A 1996, 53, 2046–2052.

31. Bose, S.; Vedral, V.; Knight, P.L. Purification via entanglement swapping and conserved
entanglement. Phys. Rev. A 1999, 60, 194–197.

32. Shi, B.S.; Jiang, Y.K.; Guo, G.C. Optimal entanglement purification via entanglement swapping.
Phys. Rev. A 2000, 62, 054301.

33. Zhao, Z.; Pan, J.W.; Zhan, M.S. Practical scheme for entanglement concentration. Phys. Rev. A
2001, 64, 014301.

34. Yamamoto, T.; Koashi, M.; Imoto, N. Concentration and purification scheme for two partially
entangled photon pairs. Phys. Rev. A 2001, 64, 012304.

35. Zhao, Z.; Yang, T.; Chen, Y.A.; Zhang, A.N.; Pan, J.W. Experimental realization of entanglement
concentration and a quantum repeater. Phys. Rev. Lett. 2003, 90, 207901.

36. Yamamoto, T.; Koashi, M.; Ozdemir, S.K.; Imoto, N. Experimental extraction of an entangled
photon pair from two identically decohered pairs. Nature 2003, 421, 343–346.

37. Wang, X.B.; Heng, F. Entanglement concentration by ordinary linear optical devices without
postselection. Phys. Rev. A 2003, 68, 060302.

38. Boileau, J.-C.; Gottesman, D.; Laflamme, R.; Poulin, D.; Spekkens, R.W. Robust
polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. lett.
2004, 92, 017901.
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