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Abstract: Large-scale binary integer programs occur frequently in many real-world
applications. For some binary integer problems, finding an optimal solution or even a feasible
solution is computationally expensive. In this paper, we develop a discrete meta-control
procedure to approximately solve large-scale binary integer programs efficiently. The key
idea is to map the vector of n binary decision variables into a scalar function defined over a
time interval [0, n] and construct a linear quadratic tracking (LQT) problem that can be solved
efficiently. We prove that an LQT formulation has an optimal binary solution, analogous to a
classical bang-bang control in continuous time. Our LQT approach can provide advantages
in reducing computation while generating a good approximate solution. Numerical examples
are presented to demonstrate the usefulness of the proposed method.
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1. Introduction

Many decision problems in economics and engineering can be formulated as binary integer
programming (BIP) problems. These BIP problems are often easy to state but difficult to solve due
to the fact that many of them are NP-hard [1], and even finding a feasible solution is considered
NP-complete [2,3]. Because of their importance in formulating many practical problems, BIP algorithms
have been widely studied. These algorithms can be classified into exact and approximate algorithms
as follows [4]:
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(1) Exact algorithms: The exact algorithms are guaranteed either to find an optimal solution or prove
that the problem is infeasible, but they are usually computationally expensive. Major methods for BIP
problems include branch and bound [5], branch-and-cut [6], branch-and-price [7], dynamic programming
methods [8], and semidefinite relaxations [9].

(2) Approximate algorithms: The approximate algorithms are used to achieve efficient running time
with a sacrifice in the quality of the solution found. Examples of well-known metaheuristics, as an
approximate approach, are simulated annealing [10], annealing adaptive search [11], cross entropy [12],
genetic algorithms [13] and nested partitions [14]. Moreover, many hybrid approaches that combine
both the exact and approximate algorithms have been studied to exploit the benefits of each [15].
For additional references regarding large-scale BIP algorithms, see [1,16–18].

Another effective heuristic technique that transforms discrete optimization problems into problems
falling in the control theory and information theory or signal processing domains has also been studied
recently. In [19,20], circuit related techniques are used to transform unconstrained discrete quadratic
programming problems and provide high quality suboptimal solutions. Our focus is on problems with
linear objective functions, instead of quadratic, and linear equality constraints, instead of unconstrained.

In our previous work [21], we introduced an approach to approximating a BIP solution using
continuous optimal control theory, which showed promise for large-scale problems. The key innovation
to our optimal control approach is to map the vector of n binary decision variables into a scalar function
defined over a time interval [0, n] and define a linear quadratic tracking (LQT) problem that can be
solved efficiently. In this paper, we use the same mapping, but instead of solving the LQT problem in
continuous time, we explore solving the LQT problem in discrete time, because the time index in our
reformulation of the BIP represents the dimension of the problem, {0, 1, . . . , n}, and a discrete time
approach more accurately represents the partial summing reformulation than the continuous approach.
In addition, in our previous work, the transformation into a continuous LQT problem was based on
a reduced set of constraints, and a least squares approach was used to estimate the error due to the
constraint reduction. The algorithm iteratively solved the LQT problem and the least squares problem
until convergence conditions were satisfied. In this paper, instead of iteratively solving the LQT problem
based on a reduced set of constraints, we solve the LQT problem only once for the full state space.
This approach improves the flow of information for convergence.

We have chosen a quadratic criterion for our approach because its formalism includes a measure
of the residual entropy of the dynamics of the algorithm as it computes successive approximation to a
solution. Because of the mapping used in our algorithm, the information measure is given by the inverse
of the Riccati equation that we solve. That inverse of the solution of the Riccati equation is a Fisher
information matrix of the algorithm as a dynamical system [22,23]. The information from the algorithm
in the criterion determines the quality of the solution.

The computational complexity for solving the LQT problem is polynomial in the time horizon, the
dimension of the state space and the number of control variables. In our LQT problem, the time horizon
is n, the dimension of the state space is the number of constraints m, and the number of control variables
is 1. Our meta-control approach solves the LQT problem to obtain an efficient approximate solution to
the original BIP problem.



Entropy 2013, 15 3594

In Section 2, our approach is presented in detail, and numerical results are given in Section 3.
In Section 4, we state the conclusions of this work.

2. Development of the Meta-Control Algorithm for BIP Problems

The original BIP problem is:

Problem 1.

min
uj

j=0,...,n−1

n−1∑
j=0

c̃juj (1)

s.t.
n−1∑
j=0

ãijuj = b̃i i = 1, . . . ,m (2)

uj ∈ {0, 1} j = 0, . . . , n− 1 (3)

where uj for j = 0, . . . , n − 1 are binary decision variables. We assume c̃j, ãij , and b̃i are real known
values for i = 1, . . . ,m and j = 0, . . . , n− 1 and there exists at least one feasible point.

2.1. Partial Summing Formulation

We start by defining partial summing variables as in [21] from the original BIP problem as

f0,j+1 = f0,j + c̃juj (4)

fi,j+1 = fi,j + ãijuj (5)

for i = 1, . . . ,m and j = 0, . . . , n− 1, with initial conditions f0,0 = fi,0 = 0.

For ease of notation, we create a new (m+ 1) × 1 vector xj = [f0,j, f1,j, . . . , fm,j]
T and the ith

element of xj is denoted xj(i) for i = 1, . . . ,m+ 1 and for j = 0, . . . , n. We also define the (m+ 1)× 1

vector aj = [c̃j, ã1j, . . . , ãmj]
T for j = 0, . . . , n − 1, and the (m+ 1) × 1 vector b =

[
0, b̃1, . . . , b̃m

]T
,

where the ith element of b is denoted b(i) for i = 1, . . . ,m + 1. We define Problem 2 as follows, with
initial conditions x0 as a vector of zeros:

Problem 2.

min
uj

j=0,...,n−1

xn(1)

s.t. xj+1 = xj + ajuj j = 0, . . . , n− 1 (6)

x0 = 0 (7)

xn(i) = b(i) i = 2, . . . ,m+ 1 (8)

uj(uj − 1) = 0 j = 0, . . . , n− 1 (9)

Proposition 1. Problem 2 exactly represents Problem 1.

The proof is straight-forward; the constraints ensure feasibility and the objective function is equivalent
to Problem 1.
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2.2. Construct the LQT Problem

We construct an LQT problem, Problem 3, by first defining an error term, as a measure of unsatisfied
constraints, an (m+ 1)× 1 vector ej for j = 0, . . . , n, as

ej = xj − b (10)

We develop the dynamics in terms of the measure ej , by combining Equation (10) with Equation (6),
yielding

ej+1 = ej + ajuj (11)

and note that e0 = −b, given initial conditions x0 = 0. The criterion is to minimize the measure of
unsatisfied constraints using a terminal penalty for infeasibility and objective function value, which is
given by

J(u) =
1

2

n−1∑
j=0

eTj Qjej +
1

2
eTnFen (12)

We also relax constraint (9) with 0 ≤ uj ≤ 1.
The parameters Qj and F are positive semi-definite and user-specified. The (m+1)× (m+1) matrix

Qj is used to penalize the unsatisfied constraints. The (m + 1) × (m + 1) matrix F is used to penalize
the terminating conditions and aid in minimizing the original objective function.

We now summarize our discrete LQT problem with the criterion in Equation (12) as follows:

Problem 3.

min
uj

j=0,...,n−1

J(u) =
1

2

n−1∑
j=0

eTj Qjej +
1

2
eTnFen (13)

s.t. ej+1 = ej + ajuj j = 0, . . . , n− 1 (14)

0 ≤ uj ≤ 1 j = 0, . . . , n− 1 (15)

e0 = −b (16)

It is known that solving Problem 3 directly is numerically unstable [24]. However, Theorem 1
suggests an algorithmic approach to solving Problem 3, by making a discrete analog to a bang-bang
control with a switching function.

Theorem 1. Analogous to a bang-bang control in continuous time, Problem 3 has an optimal binary
solution with uj ∈ {0, 1} for discrete times j = 0, 1, . . . , n− 1 with non-singular arcs.

Proof. We first construct the Hamiltonian function [24] as follows

H(ej, λj+1, uj) =
1

2
eTj Qjej + λTj+1 (ej + ajuj) (17)

where λj is the (m+ 1)× 1 costate vector, for j = 0, . . . , n− 1, and it satisfies

λj = λj+1 +Qjej and λn = Fen (18)
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Let e∗, λ∗ and u∗ be the optimal solution, by the necessary conditions for the optimality [24], we have:
H(e∗j , λ

∗
j+1, u

∗
j) ≤ H(e∗j , λ

∗
j+1, uj)

⇒ 1

2
e∗Tj Qje

∗
j + λ∗Tj+1

(
e∗j + aju

∗
j

)
≤ 1

2
e∗Tj Qje

∗
j + λ∗Tj+1

(
e∗j + ajuj

)
⇒ λ∗Tj+1aju

∗
j ≤ λ∗Tj+1ajuj, ∀uj ∈ [0, 1] (19)

Thus, we have

u∗j =


1 if λ∗Tj+1aj < 0

∈ [0, 1] if λ∗Tj+1aj = 0

0 if λ∗Tj+1aj > 0

(20)

If λ∗Tj+1aj 6= 0, binary values for u∗j are determined by Equation (20). When λ∗Tj+1aj = 0, the arc is
singular, and we may reintroduce constraint (9), uj(1− uj) = 0, to force a binary solution.

To get an intuitive understanding of the singularity issue, suppose all Qj = 0, and the element at
row 1, column 1 of matrix F equals zero. Then Problem 3 reduces to minimize the infeasibility penalty

term, 1
2

m∑
i=1

[(
n−1∑
k=0

ãikuk − b̃i
)2

Fi

]
. If this term equals zero, then en = 0, satisfying all of the original

constraints (2), and λn = 0 from Equation (18), and because Qj = 0, all λj = 0. Then λ∗Tj+1aj = 0

for all j. However, if Qj and the first element of F have positive values, then λ∗Tj+1aj may be positive or
negative and Equation (20) is useful. An auxiliary problem to determine values forQj and F that resolve
the singularity will be explored in future research.

To create an LQT problem that is practical to solve, we introduce a penalty term uj(uj − 1)Rj in the
criterion, where Rj is a Lagrangian multiplier associated with constraint (9):

Problem 4.

min
uj

j=0,...,n−1

1

2

n−1∑
j=0

(
eTj Qjej + uj(uj − 1)Rj

)
+

1

2
eTnFen (21)

s.t. ej+1 = ej + ajuj j = 0, . . . , n− 1 (22)

e0 = −b (23)

The optimal control for Problem 4 ûj can be solved by the standard dynamic programming
method [25] (see appendix for details). The computation associated with solving Problem 4 is O(nm3).
We then obtain an approximate binary solution to the original BIP problem as follows:

u∗j =

{
0 for ûj < 0.5

1 for ûj ≥ 0.5
(24)

for j = 0, 1, . . . , n− 1.
Motivated by the successive overrelaxation method [26], we introduce a weighting factor ω to improve

the stability of our proposed method. Rather than applying quantization at the final step as shown in
Equation (24), we did quantization at each step and propagate the binary value ūj during the dynamic
programming procedure (see appendix for details). At the final step, we then replace ûj in Equation (24)
with ωûj + (1− ω)ūj to get the approximate binary solution.
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3. Numerical Results

We explore the limits of the algorithm with some test problems obtained from MIPLIB [27]. MIPLIB
is a standard and widely used benchmark for comparing the performance of various mixed integer
programming algorithms, and most of the problems in the MIPLIB arise from real-world applications.
We have presented 6 tests in our numerical result section, where air01, air03, air04, air05 and nw04

are airline crew scheduling type problems. The dimensions and the optimal solutions for the test
problems and the numerical results are shown in Table 1. The CPU time is given for a single run with
branch-and-cut with CPLEX, branch-and-bound in MATLAB, and our method in MATLAB. In Table 1,
the feasibility measure is the summation of the absolute differences of feasibility over all constraints,
and the optimality measure is defined as f̂−f∗

fW−f∗ [28], where f ∗ denotes the true objective function value,
f̂ denotes the function value found by our proposed method and fW denotes the worst (largest) function
value. All tests are done on an Intel(R) Core(TM) i3 CPU @2.4 GHz machine under 64bit Windows7
with 4 GB RAM.

Table 1. Test Problems from MIPLIB.

Time(sec) with Time(sec) with Time(sec) with
Problem n m branch-and-cut branch-and-bound our method Feasibility Optimality

in CPLEX in MATLAB in MATLAB measure measure (%)

enigma 21 100 0.23 4.02 0.03 18 0
air01 771 23 0.28 2.86 0.22 13 2.55%
air03 124 10,757 1.05 17.64 34.00 138 -11.68%
air04 8,904 823 34.35 too large to run 3231.5 811 1.43%
air05 426 7,195 26.66 too large to run 698.6 322 -0.55%
nw04 87,482 36 9.83 too large to run 37.9 19 1.36%

In the numerical tests, we experimented with different values for parameters Qj , Rj and F on the
small problems enigma and air01. The diagonal elements of Qj were set to 0, 1 and 10, and we found
that smaller values were better, so we report results with Qj = 0 in Table 1. We also tested values for
parameter Rj set to 1, 10, 100 and 1000, and there was not much difference in performance, so we set
Rj = 10. As for parameter F , we found that bigger values were better, so we set the diagonal elements
of F to 100, 000. The parameters Qj penalize the intermediate error values whereas the parameter F
penalizes the terminal error at n. Since the terminal error better reflects the original BIP optimality and
infeasibility measures, intuitively, it makes sense to set Qj = 0 and F large.

Values for the weighting factor ω ranged between 0.5 to 0.9 in our exploratory tests, and the best
results were typically for ω between 0.5 and 0.6.

CPLEX ran very quickly and always found an optimal solution; branch-and-bound in MATLAB
was slower and only found a feasible solution for enigma, air01 and air03; our method in MATLAB
ran slower than CPLEX, but generally faster than branch-and-bound in MATLAB. Even though our
numerical results are “worse” than CPLEX, our methodology has a potential for extension with
polynomial computational complexity.
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4. Summary and Conclusion

The meta-control algorithm for approximately solving large-scale BIPs shows much promise because
the computational complexity is linear in n (the number of variables) and polynomial in m (the number
of constraints), specifically on the order of O(nm3). An LQT approach is suggested by the result in
Theorem 1, which proves the existence of an optimal binary solution to the LQT problem. We provide
numerical results with experimentally chosen parameter values that demonstrate the effectiveness of
our approach.

In our future research, we will develop an auxiliary iterative method that can provide an explicit
algorithm for detecting valid parameter values automatically and investigate other ways to integrate the
quantization into the meta-control algorithm to improve the performance of this algorithm. We will also
develop a stochastic decomposition method to reduce the computation time.
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Appendix

We solve for ûj in Problem 4 using a dynamic programming approach. We write the cost-to-go
equation as:

V (ej, j) = min
uj

{
1
2
eTj Qjej + 1

2
uj(uj − 1)Rj + V (ej+1, j + 1)

}
(25)

with V (en, n) = 1
2
eTnFen, and equate it to the Riccati form

V (ej, j) =
1

2
eTj Σjej + eTj Ψj + Ωj (26)

where Σj represents a symmetric positive-definite (m+ 1)×(m+ 1) matrix, Ψj is a positive (m+ 1)×1

vector, and Ωj is a positive scalar.
Combining the Equations (25), (26) and the dynamics in Equation (22), we have

V (ej, j) = min
uj

{
1

2
eTj Qjej +

1

2
uj(uj − 1)Rj +

1

2

(
ej + ajuj

)T
Σj+1

(
ej + ajuj

)
+
(
ej + ajuj

)T
Ψj+1 + Ωj+1

}
(27)

In order to minimize this expression we isolate the terms with uj in them

1

2
uj(uj − 1)Rj +

1

2
u2ja

T
j Σj+1aj + uja

T
j Σj+1ej + uja

T
j Ψj+1
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and take the derivative with respect to uj and set the value to 0,

(uj −
1

2
)Rj + aTj Σj+1ajuj + aTj Σj+1ej + aTj Ψj+1 = 0

This yields the solution uj for the optimal control

ûj =
1
2
Rj − aTj Σj+1ej − aTj Ψj+1

Rj + aTj Σj+1aj
(28)

In order to simplify notation, we let

Sj =
−aTj Σj+1

Rj + aTj Σj+1aj
(29)

δj =
1
2
Rj − aTj Ψj+1

Rj + aTj Σj+1aj
(30)

and we can now write
ûj = Sjej + δj (31)

We equate the Riccati form Equation (26) with the value function in Equation (27) evaluated at ûj
from Equation (31), yielding

1

2
eTj Σjej + eTj Ψj + Ωj =

1

2
eTj Qjej +

1

2
(Sjej + δj)(Sjej + δj − 1)Rj

+
1

2

(
ej + aj(Sjej + δj)

)T
Σj+1

(
ej + aj(Sjej + δj)

)
+
(
ej + aj(Sjej + δj)

)T
Ψj+1 + Ωj+1

We now solve for Σj and Ψj by separating the quadratic terms from the linear terms in ej . Isolating
the quadratic terms in ej , we have

1

2
eTj Σjej =

1

2
eTj Qjej +

1

2
eTj S

T
j RjSjej +

1

2
eTj
(
I + ajSj

)T
Σj+1

(
I + ajSj

)
ej

which yields the Riccati equation corresponding to Σj

Σj = Qj + ST
j RjSj +

(
I + ajSj

)T
Σj+1

(
I + ajSj

)
(32)

Isolating the linear terms in ej , we have

eTj Ψj = eTj S
T
j (δj −

1

2
)Rj + eTj

(
I + ajSj

)T
Σj+1ajδj+1 + eTj

(
I + ajSj

)T
Ψj+1

and factoring out eTj , the tracking equation for Ψj is

Ψj =ST
j (δj −

1

2
)Rj +

(
I + ajSj

)T
Σj+1ajδj +

(
I + ajSj

)T
Ψj+1 (33)

Therefore, Σj and Ψj can be found backwards in time by Equations (32) and (33) from initial
conditions Σn = F,Ψn = 0.
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Given Σj and Ψj , we can calculate ûj from Equations (28), (22) and (23). To calculate ūj for our
implementation with quantization, we use the same Σj and Ψj , but introduce rounding to the nearest
integer in Equations (28), (22) and (23) to obtain:

ūj = int

[
1
2
Rj − aTj Σj+1êj − aTj Ψj+1

Rj + aTj Σj+1aj

]
(34)

and
ēj+1 = int[ēj + ajūj] (35)

with ē0 = −int[b].
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