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Abstract: Explicit or implicit expressions of potential energy surfaces (PES) represent
the basis of our ability to simulate condensed matter systems, possibly understanding and
sometimes predicting their properties by purely computational methods. The paper provides
an outline of the major approaches currently used to approximate and represent PESs and
contains a brief discussion of what still needs to be achieved. The paper also analyses the
relative role of empirical and ab initio methods, which represents a crucial issue affecting
the future of modeling in chemical physics and materials science.
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1. Introduction

Most, if not all, of computer simulations using particles require the specification of the system
potential energy as a function of particles’ coordinates [1]. The most ab initio methods, such as those
discussed in [2], represent systems as made of electrons and atomic nuclei, and Coulomb’s law is
sufficient to account for every interaction. In all other cases, particles represent composite objects, such
as atoms or atomic nuclei, dressed by core electrons, possibly embedded into a sea of valence electrons
described at some approximate level of a many-body theory. Then, all the relevant interactions need to
be worked out on a case by case basis, and the effort required to determine inter-particle forces may
represent a sizeable fraction of the work to be done to investigate condensed matter systems [3].

The sections that follow contain an overview of modeling approaches and a discussion of their relative
merits and limitations. Needless to say, the variety of systems and methods, together with the shear size
of the knowledge accumulated over decades, impose strict limits to the scope of this presentation. First
of all, the focus is on atomistic models, i.e., models in which the number and geometry of interaction
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centers follows the distribution of atoms closely. A second major branch of modeling, concerning coarse
graining approaches, is the subject of a separate contribution (see [4]).

Moreover, again, for limitations of space, the discussion that follows mainly concerns the most
restrictive picture of interatomic interactions, based on the assumption that the potential energy
of a system of N atoms can be expressed as a single-valued function of their 3N coordinates
{Ri, i = 1, ..., N}, which represents the so-called potential energy surface (PES) of the system. This
assumption relies, first of all, on the so-called Born-Oppenheimer approximation [5], whose validity is
loosely attributed to the∼3–4 orders of magnitude difference in the mass of electrons and atomic nuclei,
giving rise to a clear separation of the characteristic energy and time scales for the motion of electrons
and atomic nuclei. Then, for any given instantaneous configuration of the atomic cores, electrons will be
able to reach their electronic ground state, justifying the single-value assumption for the system potential
energy. Experience shows that this “adiabatic assumption” is fairly well justified for a wide variety of
systems and thermodynamic conditions. To be precise, it turns out that some cases are left out of this
picture and often represent systems and phenomena of great interest. Methods suitable to deal with these
cases are discussed in [6].

Computational science and simulation, in particular, always have a practical and an algorithmic
aspect to them, and a central theme of research is the development of efficient ways to approximate
and represent PESs. The availability of simple and computationally-convenient models of inter-particle
interactions, for instance, has been instrumental in the dawning of computer simulation. Since then, the
two complementary stages of determining the relevant interactions and of working out their structural,
thermodynamic and dynamical consequences have cross fertilized each other, so much that the terms,
modeling and simulation, often appear together in the title of books, papers, conferences, workshops and
funding proposals.

Nowadays, the general perception of atomistic modeling is that of an overwhelmingly important and
successful field, steadily expanding its reach towards more complex systems, which in this context means
systems combining a wider variety of chemical bonds. In this respect, it is clear that much remains to
be done, for instance, to bring under the cover of simulation heterogeneous systems and interfaces at
which organic, semiconducting and metal phases meet each other or to model systems in which chemical
transformations take place.

During the last few decades, ab initio simulation methods have progressively come to play the
role of the elephant in the (modeling) room. Methods, such as density functional theory [7,8] and
ab initio molecular dynamics [9], could, in principle, replace all other approaches, reducing the variety
of modeling problems to just one, concerning the effective and accurate representation of the energy of
valence electrons in the field of atomic nuclei or ionic cores.

Up to now, this replacement has not been pervasive, mainly because of the size and time limitations of
ab initio methods running on present day computers and partly because the approximations that make ab
initio computations feasible still somewhat limit their accuracy on the energy scale of thermal motion,
especially for molecular systems whose properties are determined by weak interactions among closed
shell molecules. Ab initio modeling, however, is progressing and extending its reach. For what concerns
atomistic simulation, therefore, empirical and semi-empirical models might eventually be squeezed out
by the combination of ab initio methods and coarse-grained approaches. Simple models of atom-atom
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interactions, however, are likely to retain their appeal, because of their unique ability to represent and
rationalize the microscopic forces underlying the properties and behaviors of condensed matter systems.

2. The Potential Energy Surface (PES) of a Many-Atom System

From a physicist point of view, ordinary matter consists of an assembly of electrons and atomic nuclei,
evolving according to the laws of quantum mechanics. The non-relativistic limit is adequate for many
of the systems and properties of interest for the present discussion, and unless differently specified, we
shall restrict ourselves to this case.

Let us therefore consider a system made of N electrons and K nuclei, and let {ri, i = 1, ..., N} and
{Rα, α = 1, ..., K} be the coordinates of electrons and nuclei, respectively. The corresponding linear
momenta are denoted by {pi} and {Pα}. In the absence of external fields, the system Hamiltonian is:

Ĥ0 =
K∑
α=1

P2
α

2Mα

+
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p2
i
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+
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e2
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that, for the sake of simplicity, we re-write as:

Ĥ0 = Tion + Tele + Vion−ion + Vion−ele + Vele−ele (2)

with an obvious correspondence between Equations (1) and (2). The Hamiltonian does not depend on
the spin of electrons and nuclei, since we restrict ourselves to the non-relativistic limit, and we do not
include any spin-orbit interaction into our Hamiltonian. Unless differently specified, Hartree atomic
units (~ = e2 = m = 1) are used in this section.

Let us assume that the system is described by a many-body wave function,
Ψ(r1, ..., rN;R1, ...,Rk; t), whose time evolution is determined by the time-dependent
Schrodinger equation:

i~
∂Ψ({ri}; {Rα}; t)

∂t
= Ĥ0Ψ({ri}; {Rα}; t) (3)

with appropriate boundary conditions in space and in time. Since the Hamiltonian is time independent,
let us turn to the equivalent version of this same problem, concerned with the stationary states,
Ψk({ri}; {Rα}) of Ĥ0.

The first important step towards the definition of a potential energy surface for the atomic nuclei
is provided by the Born-Oppenheimer approximation (BO), which, under suitable and often verified
conditions, opens the way to a separate description of the time evolution of electrons and nuclei [5].
The intuitive justification of BO is the observation that the motion of electrons and nuclei takes place
over different time scales, since Mα/m is at least Mn/m ∼1, 800, and usually approaches 2ZαMn/m,
where Mn is the mass of a nucleon (proton or neutron). Moreover, the ratio of vibrational and rotational
excitations is again ∼

√
Mα/m. Experimental data confirm that, indeed, typical electronic excitations

are of the order of a few eV; vibrational energies reach up to a few hundred meV, and even for small
molecules, the separation of rotational levels is of the order of 1 meV. The conclusion is that the excitation
of electrons, because of vibrational or rotational motion, is very unlikely. We can therefore represent the
motion of electrons as taking place in the slowly varying field of the nuclei. Consistently with these
qualitative arguments, the BO approximation breaks down whenever the energy of relevant electronic
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excitations becomes comparable to typical vibrational energies (or, much less likely, comparable to
rotational energies). In those cases, vibrational and electronic excitations need to be considered on the
same footing.

The core of the so-called adiabatic approximation can be given a semi-rigorous mathematical
formulation in the following way [5]. Let us re-write Ĥ0 as:

Ĥ0 = T̂ion + Ĥele (4)

where Ĥele = T̂ele + Vion−ion + Vion−ele + Vele−ele. The energy term, Vion−ion, commutes with all other
terms in Ĥele, and its inclusion in the electronic part is just a matter of convenience.

For every choice of the nuclear coordinates, {Rα, α = 1, ..., K}, the eigenvalue problem:

Ĥeleψj({ri} | {Rα}) = Ej({Rα})ψj({ri} | {Rα}) (5)

is well defined and provides a sequence of eigenvalues, Ej({Rα}), and eigenfunctions ψj({ri} | {Rα}).
At this stage, nuclei are “clamped”, i.e., they are no longer treated as particles embodied with a mass and
a momentum, but only as sources of the potential acting on the electrons. The notation, (ri | Rα), means
that ψj is an explicit function of ri and depends parametrically on the nuclear coordinates, {Rα}.

The functions, ψj , are a basis for the Hilbert space spanned by the electron coordinates, and we can
represent Ψk as follows:

Ψk({ri}, {Rα}) =
∑
j

ψj({ri} | {Rα})χ(k)
j (Rα) (6)

where, at this stage, χ(k)
j (Rα) is simply the coefficient expressing the projection of Ψk on ψj:

χ
(k)
j ({Rα}) =

∫
ψ∗j ({ri} | {Rα})Ψk({ri}, {Rα})ΠN

i=1dri (7)

The equation for Ψk becomes:

Ĥ0Ψk({ri}, {Rα}) = (T̂ion + Ĥele)Ψk({ri}, {Rα}) (8)

=
∑
j

χ
(k)
j ({Rα})Ej(Rα)ψj({ri} | {Rα}) + ψj({ri} | {Rα})T̂ionχ(k)

j ({Rα})

+χ
(k)
j ({Rα})T̂ionψj({ri} | {Rα}) = EkΨk({ri}, {Rα})

Let us now multiply on the left by ψ∗m({ri} | {Rα}) and integrate over the electron coordinates. One
obtains in this way a set of coupled partial differential equations for the χ(k)

m ({Rα}) functions:

Em({Rα})χ(k)
m ({Rα}) + T̂ionχ

(k)
m ({Rα}) +

∑
j

χ
(k)
j ({Rα})〈ψm | T̂ion | ψj〉 = Ekχ(k)

m ({Rα}) (9)

where Ek is the eigenvalue of the full, i.e., electrons and ions Hamiltonian Ĥ0, and the relation, 〈ψm |
ψj〉 = δmj , has been used. The coupling among the equations is due to the non-diagonal part of 〈ψm |
T̂ion | ψj〉:

〈ψm | T̂ion | ψj〉 =
∑
α

1

Mα

∫ [
−i∂ψm({ri} | {Rα})

∂Rα

]∗ [
−i∂ψj({ri} | {Rα})

∂Rα

]
ΠN
i=1dri (10)
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whose computation requires the parametric dependence of χm(Rα) on the {Rα} coordinates to be
continuous and differentiable.

Neglecting these non-diagonal terms, the equations for the electronic and ionic coordinates are
decoupled, and the picture emerging from this manipulation of Equation (6) is that of nuclei evolving
on the potential energy surfaces Uj[{Rα}] = Ej({Rα}) + 〈ψj | T̂ion | ψj〉. This last expression,
corresponding to the so-called Born-Huang approximation [10], represents, in fact, an upper bound for
the system’s potential energy. A lower bound, instead, is given by the original BO approximation, i.e.,
Uj[{Rα}] = Ej({Rα}).

The nuclear motion in general is quantum mechanical, and, depending on initial conditions, it might
occur on any of the Uj potential energy surfaces (PESs). More precisely, since the equations for
different j’s are separated, it will take place on a single surface of index j, provided the starting point is
consistent with this choice. This condition, that we identify with adiabatic motion, underlies most of the
simulations that are routinely carried out in computational-condensed matter physics. Moreover, again,
in most cases, but with noticeable exceptions, the relevant PES corresponds to the electronic ground
state, and the scale of times and energies of interest allows the usage of classical dynamics instead of
quantum mechanics [6].

The following sections are devoted to the discussion of the general properties of PESs, and of
computationally tractable approaches to approximate them. Before doing that, it might be interesting to
consider briefly when the BO approximation and the conditions for adiabatic motion are no longer valid.

An estimate of the 〈ψm | T̂ion | ψj〉 terms can be obtained by perturbation theory, showing that the
strength of the non-diagonal coupling is proportional to:

〈ψm | T̂ion | ψj〉 ∝
1

Em − Ej
〈ψm | [Pα, Ĥele] | ψj〉 (11)

Moreover, the matrix element of the commutator can be shown to depend primarily on the properties
of individual atoms and to be only moderately dependent on the {Rα} coordinates. Then, the major
factor determining the coupling strength among different adiabatic surfaces is the energy gap separating
different PESs. Whenever (Em−Ej) becomes comparable to the typical energies of the atomic motion,
the BO decoupling is no longer valid, the electronic and ionic motion are intimately intertwined and
both need to be treated quantum mechanically. The range of quantum mechanical features that become
relevant in the non-BO case go beyond delocalization and diffraction, but includes the appearance of
geometric (Berry-Pancharatnam) phases [11].

Far from being the exception, violations of the BO approximation are pervasive. They occur often,
but not exclusively, at the so-called conical intersections [11], playing a major role in chemical reactions
and, for instance, challenging our ability to model catalysis [12]. Apparent non-BO effects are routinely
highlighted by clever experiments [13,14].

Metals, whose occupied states are immediately contiguous in energy to the empty states, may appear
as the most obvious candidates for large deviations from the BO picture. In the vicinity of the Fermi
surface, however, single particle excitations are the only relevant excitations, but the coupling of each of
these excitations to the nuclear motion (through Equation (11)) is vanishingly small. Collective electron
excitations, such as plasmons, couple to the atomic motion, but their energies are of the order of several
eV and, thus, are comparable to, if not higher than, those of closed shell atoms and molecules. As a
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result, vibrational properties of metals are generally well described by adiabatic dynamics. Exceptions
are represented by Kohn anomalies, resulting from the nesting of reciprocal lattice vectors with the
Fermi surface. Metals also provide the setting for a type of BO violation qualitatively different from
those considered until now, represented by superconductors, in which the coupling of the electron and
nuclear motion changes the symmetry of the ground state.

The isolated system picture underlying the BO decoupling has been generalized in [15–17] to the case
of electrons and nuclei evolving in an external time-dependent potential. It was shown, in particular,
that the full wave function can be factorized exactly into an electronic and a nuclear wave function,
again opening the way to the definition of a time-dependent PES. The picture is less simple than in
the static case, since it involves the introduction of a Berry vector potential and of Berry-Pancharatnam
geometric phases [18,19] into the problem. This approach has already provided the basis for the real-time
simulation of molecular systems in strong (laser) external fields. For completeness, I mention that some
details of the formal framework might still need to be worked out for a fully rigorous treatment [20].

3. Properties of Potential Energy Surfaces

Basic features of the PES can be anticipated even without an explicit solution of the standard
electronic problem in Equation (5). A surprisingly realistic intuition of what a PES looks like was
outlined in elegant Latin prose long before quantum mechanics [21], based on an atomistic hypothesis
and on the assumption that the still undiscovered atoms felt each other mainly at short distances.

The modern interpretation confirms this picture and adds a wealth of microscopic detail. The direct
Coulomb repulsion among nuclei, unscreened by electrons at short distances, prevents the close contact
of atoms and their eventual collapse. The kinetic energy of the electrons tightly bound to the nuclei
will provide an additional repulsive contribution, resulting from the need to preserve the Pauli principle.
On the other hand, the formation of chemical bonds gives rise to attractive potentials, binding atoms
together. Even in the case of inert species, subtle quantum mechanical effects give rise to dispersion
forces, which provide a weak, but pervasive, attraction.

Arguably, the simplest and most intuitive picture of atomic interactions is provided by pair potential
models, in which the system energy is written as:

U [{Rα}] =
1

2

∑
α,β

φαβ(| Rα −Rβ |) (12)

where the α, β label on φα,β indicates that the interaction depends on the chemical identity of particles
α and β. A spherically symmetric potential has been assumed for the sake of simplicity.

Computations and comparison with experiments have shown that an expression of this kind is suitable
for rare gases [22] and for simple ionic compounds [23]. Systems and models of this kind have been
instrumental in establishing computer simulation as a quantitative research tool in condensed matter and
in chemical physics.

Needless to say, the scope of pair potentials is very narrow, and limitations of this model were already
apparent well before the dawn of computer simulation, based on the results of lattice dynamics models
in metals and semiconductors.
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One could think of the pair potential expression as being only the lowest order approximation of the
PES into an n-body expansion of the form:

U [{Rα}] =
1

2!

∑
α,β

V2(Rα,Rβ) +
1

3!

∑
α,βγ

V3(Rα,Rβ,Rγ) + ... (13)

For a system made of a finite and constant number of particles, such an expression can always be
written down. For instance, one could define V2 as the interaction energy of two isolated atoms, V3
as the corresponding energy of trimers, minus the symmetrized combination of V2 contributions, etc.
Such an expansion, however, is useful only if it converges within a few terms, at least because the
cost of evaluating successive n body terms grows rapidly with increasing n. Moreover, it contributes
to the physical understanding of the system behavior only when its convergence is absolute, i.e., it
does not require the cancellation of contributions of alternating sign, whose amplitude is constant or
even increasing with increasing order. Model computations based on a tight binding Hamiltonian [24],
however, show that even for simple systems, the expansion in Equation (13) is not well behaved and,
thus, is seldom useful for practical computations.

More fruitful than the systematic expansion of Equation (13) has been the introduction of the cluster
potential idea [25,26], loosely and sometimes more closely based on the bond-order concept introduced
by Pauling [27]. In this approach, a fixed and low number of terms is retained; the expression looses
its character of a systematic series to become an asymptotic expansion. Each of the few terms that are
retained describe low-order potentials whose strength depends on the local environment. Approaches of
this kind have given origin to the most popular family of potentials used to simulate metals and metallic
alloys and also to some important approaches to approximate the PES of semi-conductors, which are
discussed in the following sections.

4. Many-Body Interactions: Metals and Metal Alloys

Metals and their alloys posed an early challenge to the pair or few-body potential picture, since their
basic properties manifest essential many-body interactions [28].

The successful and physically-motivated incorporation of these effects into tractable models in the
early eighties of the last century has spawned a vast simulation activity, aiming, at first, at reproducing
phase diagrams, then at analyzing in detail surfaces and interfaces and further progressing towards the
prediction of mechanical properties through multi-scale approaches. Physical metallurgy is currently
one of the most active and productive subfields of atomistic simulation [29,30].

Many-body interactions in metals were first identified by the analysis of their elastic properties.
For instance, the elastic constants of cubic materials consisting of atoms interacting via spherically
symmetric pair potentials have to satisfy the so-called Cauchy relations, stating, for instance, that
C12 = C44. The violation of this relation, known in the solid state literature as a Cauchy anomaly,
is the rule more than the exception in metals, unambiguously pointing to a deviation from the pair
potential picture.

These features were first rationalized by considering the basic representation of a metal, as made of
ions embedded into a sea of valence electrons. Since the major ingredient, i.e., the homogeneous electron
gas could be solved analytically, and, at least for sp metals, the electron-ion interaction is weak, the full



Entropy 2014, 16 329

problem could be attacked by perturbation theory [28,31]. Carried up to the second order, this approach
provides an expression for the system total energy that consists of a large volume (or, equivalently,
density) term and a pair potential contribution. The volume term is able to account for the Cauchy
anomaly. In simple metals, such as the alkalis, the pair potential is relatively soft at short distances and
oscillates at large distances, reflecting Friedel oscillations. These features explain the bccstructure of
these systems at normal conditions and provide a clue to understand more complex structures adopted
by the lighter alkali metals at very low temperature or found in slightly more complex systems, such as
alloys, or heavier sp metals, such as gallium, indium or tin.

Approaches of this kind are now mainly of historical interest, since most of the cases relevant for
applications involve transition metals, and in those systems, the valence electron-ion interaction is by
no means weak; the perturbation expansion cannot be limited to the second order and becomes rapidly
untreatable beyond that point [32]. Besides these fundamental problems, other practical difficulties
concern the definition and the zero-order solution of an electron gas problem suitable for inhomogeneous
systems and for alloys. Electron gas perturbative approaches, therefore, could not solve problems,
such as the inward relaxation of crystal surfaces, the quantitative description of stacking faults or the
overestimation by pair potentials of the vacancy formation energy in metals.

To overcome these problems, new models have been proposed in [33–35], conforming to the
cluster-potential idea [26], and representing low-order approximations to a bond-order potential. The
embedded atom model (EAM) of [33,34], loosely based on density functional theory, has the broadest
appeal, and for this reason, it is used here as a representative of a wider class of models.

According to EAM, each metal ion, i, at position Ri gains an energy,E[ρe(Ri)], upon being immersed
into the valence electron distribution at density ρe(Ri) and interacts with neighboring ions by a short
range repulsive pair potential, V2(R). The energy of N metal atoms, therefore, is:

U [{Ri}] =
1

2

N∑
i 6=j

V2(| Ri −Rj |) +
N∑
i=1

E[ρe(Ri)] (14)

The picture is completed by a prescription to compute the electron density, ρe, at the position, Ri, of
each atomic core. EAM represents such a density as the sum of contributions from every other atom:

ρe(Ri) =
∑
j 6=i

tj(| Ri −Rj |) (15)

where the tj(R) are again relatively short-range functions, mimicking the tail of the electron distribution
around an isolated atom. Since it introduces a local embedding density, this prescription overcomes most
of the limitations of the free electron models, which instead rely on a global definition of the valence
electron density.

Parameters and auxiliary functions, such as t(R), E[ρe] and V2(R), could be computed from first
principles [36], but this approach has been only moderately successful. Far more effective has been the
strategy of adopting the EAM potential energy expression as a general framework, relying on fitting
experimental quantities to tune a few parameters distributed into the functional form.

The success of EAM has been due to its ability to overcome the limitations of simpler models, easily
accounting for the Cauchy anomaly, the reduced value of the vacancy formation energy, the inward
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relaxation of compact metal surfaces and the reconstruction of more open ones. Its broad acceptance
relies also on the many and physically appealing properties of the model, discussed in a number of
publications, such as the ease of extending EAM to alloys or the close relation with pair potentials in the
case of homogeneous systems at constant volume.

From the computational point of view, the efficiency of EAM is due to the pair potential form of both
the repulsive contribution, V2, and the embedding density expression in Equation (15). The time required
to carry out a simulation based on EAM is expected to be twice that of a pair potential model, since a
pass on all atom pairs is required to compute the repulsive potentials and the embedding density, while
a second pass is needed to compute forces on atoms arising from the embedding energy. With suitable
lists of neighbors, and depending on the range of V2(R) and of t(R), EAM can be used to carry out
MDsimulations for systems of 104 atoms over several nanoseconds using laptops or inexpensive PCs.
Supercomputers extend these ranges to several million atoms, and µs time scales.

Needless to say, an empirical and approximate approach, such as EAM, cannot provide the final
answer to the problem of modeling metals, and transition metals, in particular. A comprehensive
discussion of inaccuracies and limitations identified during thirty years of applications is beyond the
scope of this short review, and only two examples are briefly mentioned here. Phonons in transition
metal crystals, a property routinely measured by inelastic neutron scattering, are not well reproduced
by EAM. The elastic constants usually enter the fitting of the potential, and thus, the low-frequency
acoustic phonons close to the Γ-point of the first Brillouin zone are usually well reproduced. Higher
frequency modes at the zone boundary, however, turn out to be too soft with respect to the experimental
data (see Figure 1). Transition metal clusters from a few to several thousand atoms are important for
catalysis and represent a basic ingredient of nanotechnology. EAM neglects the details of the electronic
structure of the atoms, leaving out quantum mechanical effects, such as Jahn-Teller. Thus, EAM is
unable to quantitatively reproduce the structure and cohesive properties of the very small aggregates as
provided by density functional computations. Beyond ∼100 atoms, cluster properties are expected to
evolve more continuously with size, approaching those of bulk phases beyond 104 atoms. EAM has been
used extensively to investigate clusters across this range, but a quantitative validation of the model is still
lacking and difficult to achieve, since more ab initio computations become too expensive to carry out,
and experiments find it difficult to probe this range of cluster sizes.

A step beyond EAM, needed to quantitatively model the fine details of the structure, thermodynamics
and dynamics of transition metal systems, requires the introduction of explicit angular terms into the
potential energy expression. This can be achieved through a conceptually simple extension of EAM,
known as modified EAM (MEAM) [34], or resorting to a chemically accurate bond-order potential
model, including the directionality of d and f electron orbitals, as well as the distinction of σ, π, δ, ...,
bonding, anti-bonding and non-bonding orbitals [37].

The MEAM is somewhat more complex to use than EAM, and probably for this reason, it has been
less extensively applied. Moreover, its ability to quantitatively overcome the limitations of the simpler
model is not always so apparent. The other approaches, more closely based on the bond order approach,
appear to be cumbersome to use in simulations, and the number of applications based on these models
has been limited.



Entropy 2014, 16 331

Figure 1. Phonon frequencies of fccpalladium from experiments (symbols, see [38]) and
from the embedded atom model (EAM) model of [33].
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Because of the inclusion of angularly dependent forces, the scope of MEAM could, in principle, cover
semiconductors. Successful applications have been published [34], but more specific models, described
in the following section, have received broader attention in this subfield.

5. Semiconductors and Insulators

Semiconductor materials, exemplified by silicon, germanium, gallium arsenite, etc., are characterized
by fairly open and complex structures of relatively low coordination, stabilized by sizeable angular
forces, arising from the directionality of covalent bonds. Apart from elemental systems, most inorganic
semiconductors are characterized, in fact, by a combination of covalent and ionic bonding. Several of
these systems, most notably silicon and germanium, turn into metals upon melting.

Despite the difficulty of reproducing these properties by few-body potentials, the urgency of
investigating the elements and compounds that fueled the electronic revolution stimulated the first bold
attempts. The two- and three-body potential for silicon proposed by Stillinger and Weber [39] arguably
has been the most representative example of this first generation of models.

Despite their interest, approaches of this kind have been only moderately successful, and once
again, the bond-order concept [27] proved more fruitful. Its application to semiconductors was first
discussed by Abell [25] before being used in a more empirical setting by Tersoff [40,41] and extended
by Brenner [42] to a wider class of systems and problems.

According to these models, the potential energy of an assembly of N atoms of coordinates {Ri} is
written as:

EN =
∑
i 6=j

[A exp (−λ1Rij)−Bij exp (−λ2Rij)] (16)

where Rij =| Ri −Rj |. The first term, representing the short-range repulsion, is a genuine pair
potential. The second term contains many-body contributions via the dependence of Bij on the local
environment around the interacting pair, ij.

This form has obvious analogies with the EAM case. The difference is that Bij not only counts
neighbors, as the embedding density does, but takes into account also the angular correlation among their
mutual positions. This addition is required to enforce the dominance of tetrahedral sp3 coordination, but
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also to carve a secondary role for other structures, from the sp2 bonding of graphite, to the octahedral
coordination of liquid silicon and germanium [40,41].

Parallel to the EAM case for metals, potentials of this type replaced previous models and established
a new standard in modeling semiconducting systems. Success, however, has been somewhat less
pervasive than in the case of EAM, for reasons that are relatively easy to identify. First of all,
interactions in semiconductors are more complex and propagate at a longer range, since screening is
not as effective as in metals. Moreover, semiconducting alloys and compounds give rise to partially
Coulombic interactions, whose combination with covalent bonding has seldom been modeled, even by
bond-order potentials.

Furthermore, in this case, the systematic improvement beyond the semi-empirical Tersoff and Brenner
potentials has to rely on the analytical development of chemically accurate bond-order models [43].
Work along these lines is underway and has shown promising developments, but current models still
appear fairly difficult to implement in molecular dynamics or Monte Carlo packages.

An important development of Brenner’s scheme has been the introduction of reactive force fields,
able to describe chemical transformations in the system under consideration. The majority of the
parameterizations and applications published until now concern organic systems, but potentials of this
kind are mentioned here for their similarity with models first introduced for semiconductor systems.
Prototypical examples of a reactive force field are the so-called ReaxFF [44] and the REBOpotential [45].
Both models require a massive parametrization effort, and for this reason, they appear to be fairly ad hoc
and system specific.

A different line of attack to modeling semiconducting systems is suggested by the observation that
in many cases, force fields of the form currently used to model organic systems and consisting on
stretching, bending and torsion might indeed provide a good representation of structural and dynamical
properties of semiconductors and of network insulators, such as silica. Models of this kind, in fact,
were developed well before the age of computer simulation, and extensively used in lattice dynamics
studies of semiconductors and insulators [46]. The problem of these models is that, mainly because of
the established tradition, the topology of bonds is kept fixed, bonds are harmonic and can neither form
nor break. These models, therefore, describe only low amplitude oscillations around a pre-assigned
minimum of the potential energy surface. Removing these inessential constraints by introducing rules to
break, form and interchange bonds results in a far more realistic picture. It was shown, for instance, that
such a reactive force field model of silica undergoes melting at approximately the right conditions [47]
(see Figure 2), and the same model has been used to provide an intriguing view of the amorphous silica
surface at length and time scales unachievable by other methods [48].

Progressively increasing the electronegativity difference in compound semiconductors enhances the
charge transfer among atoms, widening the band gap and turning the system into an ionic insulator. In
the limit of strongly ionic materials, of course, pair potentials are adequate, but only a few compounds
belong to this class, such as, for instance, alkali-halides or the oxides and chlorides of Group IIA
and Group IIB metals. In between ionic insulators and polar semiconductors, there is a vast number
of systems, including technologically relevant compounds, such as ceramics, transition metal oxides,
ferroelectric and ferroid materials, minerals and bio-minerals, in particular, for which no current model
is fully satisfactory. One of the major issues for these systems is the inclusion of polarizability into ionic
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and polar models [49]. Unfortunately, simulation approaches using polarizable models require either the
minimization at every step of a polarization energy functional or the inclusion into the model of charged
shells [50]. These last represent electronic degrees of freedom and react to electric fields on a time scale
much faster than that of ionic vibrations [51]. Both methods are significantly at a disadvantage with
respect to cases in which the potential energy is an explicit function of the atomic coordinates, and the
simulation of systems bound by a combination of covalent and ionic forces appears to be split between
oversimplified pair potential models and ab initio approaches.

Figure 2. Average potential energy per atom 〈U(T )〉/KB of SiO2 computed by the force
field of [47]. kB is the Boltzmann constant, introduced to express energies in temperature
units (K). Solid dots: heating a β-cristobalite sample. Solid line: cooling the same sample
from high temperature. The potential energy contribution, Cp, to the constant pressure
specific heat computed on heating the full model is shown in the inset. The peak in Cp

and the anomaly in 〈U(T )〉 are around the same temperature point to a melting transition at
TM ∼2150 K.
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6. Force Fields for Molecular Systems

Although every material ultimately consists of atoms, many systems are more easily understood as
being made of molecules.

Modeling the PES of small and relatively unreactive species, such as N2, O2, CO, CO2, but, also,
PF6, BF4, BH4, etc., requires only a slight extension of the pair-potential picture. Each molecule is
represented by a small number of interaction centers, which may or may not coincide with atoms in
number and position. The intra-molecular configuration is enforced by constraints representing rigid
bonds or, less often, by harmonic springs, while centers on different molecules interact pair-wise.
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Because of their simplicity, models for small inorganic molecules have been used since the early days
of computer simulation. Perhaps the most remarkable observation concerning these systems is that
the quantitative details of their PES are still under investigations and require surprisingly sophisticated
models to be reproduced [52,53].

Conspicuously absent in the list of small unreactive and supposedly simple molecules is water, whose
peculiar properties and special role have motivated an extraordinary modeling effort, which is discussed
separately in Section 7.

A specialized subfield of modeling simple species concerns systems in which a weakly bound
molecular fluid is physisorbed on an inert solid surface, such as MgO, mica, graphite and flat or stepped
transition metal surfaces. In this case, the effect of the solid substrate on the molecular fluid often is
represented as an external field. In the case of crystal surfaces, the in-plane dependence of the field
strength can be expanded in plane waves, whose wave vectors reflect the periodicity and symmetry of
the surface lattice [54].

6.1. Organic Molecular Systems

In many respects, organic molecular systems are not so different from any other molecular systems,
but the range and impact of their applications together with the explosive expansion of simulation in
bio-physics and bio-chemistry amply justify a separate discussion. Systems of interest in this context
include polymers, hydrocarbons, sugars, cellulose, etc., but also the endless variety of biological
molecules, from phospholipids to proteins and nucleic acids. Other molecular organic systems of
biological interest include drugs, simple nutrients, signal molecules, such as hormones, metabolic
species, such as ATP, GTP, NADP, coenzymes, including vitamins, and prosthetic groups.

The modeling and simulation of systems of this kind arguably is the computational condensed matter
activity with the largest economic relevance, both directly via the commercialization of packages and
force fields and indirectly through the impact it has on applied research.

Despite the complexity of the structures they form, the PESs of organic systems turns out to be
approximated fairly well by simple analytic expressions. First of all, the organic and biological species
of interest are made primarily of light elements, forming strong covalent bonds through their s and p
orbitals, giving origin to closed shell molecules. Systems of this kind, therefore, can be thought of as
consisting of atoms connected by a fixed topology of bonds, with inter-molecular, i.e., non-bonded,
interactions consisting of pair-wise Coulomb and dispersion forces. Because of their sp character,
intra-molecular angular forces are relatively simple. Whenever d electron metals are involved, as in
metal centers and in prosthetic groups, modeling becomes far more challenging.

In the standard cases, the PES of organic and biological systems is written as the sum of contributions
from bonded (Ub) and non-bonded (Unb) interactions:

U = Ub + Unb (17)

The bonded energy, in turn, is given by the sum of two-, three- and four-body terms from atoms joined
by one ({ij}), two ({ijk}) and three ({ijkl}) consecutive covalent bonds:

Ub =
1

2

∑
{ij}

Ks
ij[Rij − R̄ij]

2 +
1

2

∑
{ijk}

Kb
ijb[θijk − θ̄ijk]2 +

1

2

∑
{ijkl}

Kτ
ijkl

[
1 + cos (nφijkl − φ̄ijkl)

]
(18)
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Ks
ij , K

b
ijk and Kτ

ijkl are suitable force constants; R̄ij , θ̄ijk, φ̄ijkl and n reflect the length, bending and
dihedral angles of unstrained bonds. The sub-indices, ij, etc., indicate that each of these parameters
depends on the chemical identity of the atoms involved. The form for the dihedral contribution in
Equation (18) is just one of a few different expressions used in popular force fields, while the choice
for stretching and bending terms is more uniform.

Non-bonded interactions are written as.

Unb =
1

4πε0

∑
i 6=j

′ qiqj
Rij

+
∑
i 6=j

′
4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6
]

(19)

where the {qi} are atomic charges, Coulomb forces are assumed to be acting in vacuum and σij and
εij are suitable coefficients for the dispersion interaction. The prime on each sum indicates that pairs
of atoms separated by one and two consecutive bonds are excluded, and the contribution from pairs
separated by three consecutive bonds might be reduced.

The remarkable and, to same extent, unique property of the PES of organic and biological systems
is that the bonds, whose properties are described in Equation (18), are fairly transferable, meaning
that the equilibrium length, stiffness, etc., of a given organic bond is nearly the same in a large
number of homologous compounds. Highlighting these similarities and exploiting them to endow the
model with broad transferability is the most challenging and most rewarding part of modeling organic
molecular systems.

The parametrization and, especially, validation of these potentials may require sizeable computations
and are the playground of large collaborations, since it requires the convergence of several types of
complementary expertise. Any single system might be analyzed by ab initio computations to derive intra-
molecular force constants and atomic charges. These need to be complemented by suitable coefficients
for the dispersion part, which are usually obtained by fitting measured properties, such as the equilibrium
density and enthalpy per molecule or the molecular diffusion constant.

Generic potentials covering large classes of compounds and widely used by the community include
Amber [55], CHARMM [56], OPLS [57] and Gromos [58]. More specialized parameterizations, tuned
on the properties of specific families of compounds, are too many to be listed.

In many respects, the most uncertain part of the parametrization is the choice of coefficients for the
non-bonded interactions. The definition of atomic charges is not unique, and different methods provide
fairly different results. The most popular approach [59] attributes charges by fitting the electrostatic
potential outside gas-phase molecules, as provided by ab initio computations. The method is physically
sound, but the fit becomes ill conditioned whenever the molecular size exceeds ∼ 15–20 atoms or
when the geometry is compact, thus reducing the number of multipolar momenta whose modulus is
significantly different from zero. Constraints and minimum conditions on the size of individual charges
do improve the fit [60], but the choice of these parameters remains fairly uncertain. For each individual
system, the error introduced by the choice of the charge may be compensated for by the selection of
the dispersion coefficients. In fact, it has been observed many times that it was possible to accurately
reproduce the target properties of condensed phases such as the density or the molecular diffusion even
starting from the fairly different charges provided by different methods. Unfortunately, this cancellation
of errors limits the transferability of the potential, since an equivalent compensation might not occur
when a given organic molecule is transferred into a different environment.
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Especially for large biological systems, computational cost considerations have motivated
approximations and shortcuts that might reduce the size of the simulated system. One obvious saving is
obtained by representing CH2 and CH3 groups in aliphatic chains by a single particle. This united-atoms
approximation is fairly well justified, since these groups are small and and the non-bonded potential
arising from them is fairly spherical. Moreover, the motion of hydrogen in each of these groups is frozen
by quantum effects up to fairly high temperature.

A second more drastic approximation concerns systems in solution. Since, especially in biochemistry,
one is interested in the properties of the solute, implicit solvent models [61] have been developed to
replace the effect of the solvent by suitable modifications of the solute force field. In many respects,
implicit solvent models are a special case of coarse graining and, as such, are left out of our discussion.

In summary, the force field modeling of organic and biological systems is a largely successful
enterprise, validated by a vast number of applications and supporting the research of a large portion
of the simulation community. Furthermore, in this case, and almost needless to say, the vast simulation
activity has highlighted many cases of inaccuracies or outright failures. The general feeling, however, is
that the scale of most of these simulations is too large to allow, at present, the usage of significantly
more sophisticated and more expensive approaches. Polarizability is likely to be the single most
relevant missing ingredient, but the available methods to include it into simulations are still fairly
expensive, and for this reason, explicitly polarizable models have been used only for a limited number
of large-scale studies.

At present, a very active research field is the development of force fields for organo-metallic
complexes, which represent prosthetic groups in proteins or active groups in a variety of organic
opto-electronic devices and are important also for homogeneous catalysis. Peculiar difficulties are
represented by the variety of coordination numbers, sometimes corresponding to different spin states,
thus pointing to multiple PESs fairly close in energy. Moreover, the structure of organo-metallic
complexes is characterized by the importance of quantum mechanical effects, such as Jahn-Teller, or
by the so-called trans influence, defined as the “tendency of a ligand to selectively weaken the bond
trans to itself” [62]. Models to include these effects in empirical PES models might turn out to be too
complex to be used in practice. A more promising alternative is provided by QM/MMapproaches, using
classical force fields for most of the system and resorting to ab initio methods for the challenging portion
around the metal center.

An intriguing subset of mainly, but not exclusively, organic compounds is represented by the so-called
room temperature ionic liquids [63], defined as molecular ionic systems whose melting temperature is
below 100◦. Prototypical systems are made by an alkane substituted imidazolium cation, joined to an
organic or inorganic anion. Systems of this kind are relevant here, not only because of the intense
simulation activity that concerns them, but mainly because they provide a bridge between different
classes of bonding and, thus, pose special modeling problems.

The bulk of the extensive simulation work carried out at present relies on Amber-like force fields,
with specialized parameterizations (see, for instance, [64,65]). Models of this kind are fairly successful,
but issues concerning polarizability and the attribution of partial charges to atoms become particularly
important for these systems. Despite these difficulties, a number of simulations have successfully
addressed the properties of very complex systems, consisting of room temperature ionic liquids in
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combination with a variety of solvents and neutral organic compounds, including bio-molecular species
(see Figure 3).

Figure 3. Snapshot from a molecular dynamics simulation of a room temperature
ionic liquid/water solution at 0.5 M concentration in contact with a POPCphospholipid
bilayer [66]. Green balls: [Cl]−; gray-silver molecules: [bmim]+. wireframe molecules:
POPC. Water has been removed to highlight the incorporation of [bmim]+ cations into the
phospholipid bilayer.

A few carbon systems, such as fullerenes, carbon nanotubes and graphene, lie at the boundary between
inorganic and organic species and even blur the distinction between covalent and metal character. Not
surprisingly, systems of this kind have been represented by a variety of models, from Tersoff-Brenner to
a molecular force field, such as those described in this section.
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7. Water

Because of its fundamental role in life and of its widespread and generally benign presence in nature,
water has always been the object of interest and fascination. In this respect, computational physicists and
chemists are no exception, although the reasons for their interest are somewhat different from those of
the rest of humankind. A number of measurements have highlighted a wide variety of peculiarities, if not
anomalies, in the properties of water [67]. These include the surprising expansion of water upon freezing,
the density anomaly observed at 4 ◦C at ambient pressure, and, more in general, the non-monotonic
variation of several physics-chemical properties in the vicinity of this remarkable density maximum.
Other peculiar features consist in the wide temperature range of super-cooling, the high liquid-vapor
critical temperature and the large value of the latent heat of the liquid water-ice transition.

To a large extent, these anomalous behaviors are embodied into the PES of water systems and arise
from the strength and directionality of the hydrogen bond network that provides the bulk of water
cohesion. In part, however, they are due to the light mass of the water molecule, causing non-negligible
quantum effects that influence the properties of hydrogen bonds. Heavy water, for instance, is already
somewhat different from ordinary water, so much that D2O is known to have peculiar and generally
adverse biological effects. This duality of potential energy versus quantum mechanical effects poses
apparent and significant problems to modeling [68]. Potentials tuned on the exact PES of water do not
reproduce its properties when used in a classical simulation. On the other hand, potentials tuned on
experimental properties of water do not necessarily reflect the details of the exact PES.

Work to provide a quantitative and comprehensive description of water properties is still in
progress [69,70]. In the meantime, a vast number of simulations in which water is the unique or
an essential component are being carried out with a variety of simple potentials, reflecting the basic
atomistic and electronic structure of the water molecule. Two major families are in use: TIPnP [71–73],
with n = 3, 4 and 5, and SPC [74–77], both based on fixed charges (rigid ions) and centers of short range
interactions, joined by rigid or harmonic bonds.

Models of this kind allow the routine simulation by MD of systems of 50 × 103 water molecules
solvating whole proteins, covering times well in excess of 100 ns. Results are generally good, and a
large number of successful applications clearly validate these models, at least up to the accuracy needed
for these large-scale applications. However, it is fair to say that no single model of the rigid ion type
is able to provide a uniformly satisfactory account of water properties over a wide range of regimes
and thermodynamic conditions. Several of these models, in particular, do not display the experimental
density maximum of water or place it at (P, T)conditions far from the experimental ones [69,70].
The liquid-vapor coexistence curve is also poorly predicted by rigid ion models, unless the potential
parameters are explicitly adjusted for this purpose. In such a case, however, the accurate description of
some other quantity might need to be sacrificed. The description of critical properties, that are accurately
known from measurements, are only moderately well reproduced [78].

Water clusters and droplets are another, distinct subfield of water research. Thermodynamic and
spectroscopic data are available from experiments, but are not sufficiently detailed to provide a full
description of structural and dynamical properties. In this case, state-of-the-art quantum chemistry
computations supplement the experimental information [79]. Once again, it turns out that rigid ion
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models are only moderately successful in predicting their properties and usually fail to reproduce the
reduced binding of very small clusters. The oxygen-oxygen equilibrium distance in the water dimer,
for instance, is greatly underestimated by popular models, and its cohesive energy is correspondingly
overestimated. These discrepancies decrease in importance with increasing cluster size, but the
convergence to the bulk cohesive properties, reliably described by current DFTmodels of water, is fairly
slow (See Table 1). In these small systems, the rigid-ion assumption, or, in other terms, the lack of
polarizability, again seems to be the major problem. The molecular dipole moment of water, for instance,
changes from µ = 1.855 D in the gas phase molecule, to nearly µ = 3 D in ice and in liquid water, but
rigid ion models cannot reproduce this change. Moreover, within rigid-ion models, hydrogen bonds have
only a Coulombic origin, contradicting the results of experiments and quantum chemistry computations
showing that both Coulomb and covalent contributions are important [80] and change in slightly different
ways upon changing the aggregation state of water.

Table 1. Cohesive energy (kJ/mol per water molecule) of (H2O)2, of cyclic water clusters
(H2O)n, n = 3, 4, 5, 6, and of the cubic D2d form of (H2O)8 computed by an SPC, rigid ion
model (SPC/Fw, [77]). Deviations from dispersion-corrected [81] DFT [82] results are given
in parentheses. Data are from [83].

n 2 3 4 5 6 8

PBE+vdW 12.06 25.95 34.48 36.09 36.82 45.28
SPC/Fw 14.35 26.66 33.44 35.10 35.67 40.69

[18.99%] [2.7%] [−3.0%] [−2.7%] [−3.1%] [−10.1%]

Somewhat surprisingly, the inclusion of polarizability into simple models has not resulted yet into the
systematic improvement of the description of the properties for extended water systems [84], while it
has been more successful for clusters.

All these difficulties have stimulated a large number of new attempts. It might be worth mentioning
the representation of electron polarizability via classical [85] and quantum [86] Drude oscillators, the
application to water [87] of the empirical valence band (EVB) theory [88] and the usage of polarizable
Thole models [89].

Ab initio modeling, discussed in more detailed below, will eventually provide the method of choice
to study water [90]. Until now, however, approaches of this kind using standard approximations for the
exchange-correlation energy (see next section) have given rather mixed results [91].

8. The Ab initio Route

Over the last twenty years, the art of representing PES as a function of atomic coordinates has seen
its role increasingly challenged by the explosive growth of ab initio simulation methods.

As discussed in Section 2, the exact PES of a system made by N electrons evolving in the field of K
nuclei can be determined point by point by computing the energy eigenvalues of the Ĥele Hamiltonian:

Ek({Rα}) =
Ĥeleψk({ri} | {Rα})
ψk({ri} | {Rα})

(20)
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For any single choice of the {Rα} coordinates, a fairly extended array of quantum chemistry ab initio
methods, such as configuration interaction, Møller-Plesset perturbation theory or coupled clusters, are
available to find all or a few of the lowest energy eigenvalues and eigenvectors of this so-called standard
problem in electronic structure computations.

For what concerns the direct application of ab initio methods to simulation, however, progress
came primarily through the advent of density functional theory, whose recognized theoretical and
practical foundation is provided by the Hohenberg-Kohn (HK) theorem [92] and by the seminal paper
by Kohn and Sham (KS) [93]. In a very schematic way, density functional theory in the popular
Kohn-Sham formulation represents the ground state electron density, ρ(r), in terms of an auxiliary set of
non-interacting electron orbitals {φi(r), i = 1, ..., K}, generally known as the Kohn-Sham orbitals:

ρ(r) =
K∑
i=1

| φi(r) |2 (21)

To reproduce the exact density, the (unspecified) potential acting on the non-interacting electrons has to
be different from the one acting on their interacting counterpart. The properties of such a potential and,
in particular, its local, i.e., multiplicative nature are a corollary of the HKtheorem.

Then, according to KS, the system ground state energy is the minimum of the unique and
universal functional:

EKS[ρ | {Rα}] = −1

2

K∑
i=1

〈φi | ∇2 | φi〉+
1

2

∫
ρ(r)ρ(r′)

| r− r′ |
drdr′ −

K∑
α=1

Zα

∫
ρ(r)dr

| r−Rα |
+UXC [ρ] (22)

where UXC [ρ] is the so-called exchange correlation energy, a functional of the electron density, ρ(r),
which also contains a small fraction of the kinetic energy of the interacting electrons. Minimization
of Equation (22) under the constraint of ortho-normality for the Kohn-Sham orbitals results in a set of
coupled partial differential equations for {φi}.

Methods to solve this problem have been developed and discussed in a vast numbers of papers and
textbooks [7,8]. The accuracy of the solution depends on the functional used to approximate UXC [ρ], and
on the choice of the basis used to represent the orbitals. Popular choices for the exchange-correlation
energy are generalized gradient corrections, such as PBE [82], or hybrid functionals, such as
B3LYP [94]. Basis sets range from atomic orbitals to wavelets, but plane waves [95,96] and Gaussian
functions [97] are probably the most widely used choice for implementations tuned on molecular
dynamics applications.

The solution of the standard problem in Equation (5) obtained through Equation (22) is restricted to
the ground state PES. Even within this limited scope, the PES itself can only be determined point by
point. Nevertheless, the KS energy expression can be used to evolve the atomic positions in time, thus
opening the way to MD, provided one can: (i) minimize Equation (22) fast enough; and (ii) evaluate
forces on the atoms through:

Fβ = −∇Rβ
EKS[ρ | {Rα}] (23)

Towards this goal, the work of Car and Parrinello [9] has truly represented the single most important
breakthrough, whose major innovation consisted of the introduction of direct minimization approaches
for Equation (22), exploiting the close similarity of the electronic configuration at two successive steps
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of MD. Evaluation of forces, moreover, was greatly eased by the choice of plane waves as the basis
set to represent KS orbitals, whose unbiased coverage of the entire space allows the application of the
Hellmann-Feynman theorem in its simplest form to compute gradients of the ground state energy [95,98].

Atoms evolve on the adiabatic PES implicitly defined by Equation (22) classically or quantum
mechanically. The validity of a classical time evolution for the atoms according to Newton’s equations
relies on conditions discussed in detail in Chapter [6]. Outside these conditions, one could resort to a
path integral approach, as done, for instance, in [99].

The method can be extended to simulate the atomic dynamics on the single PES of an electronically
excited state [100], provided the different symmetry of the ground and excited state allows a meaningful
definition of both PESs by density functional methods. As apparent from the discussion of the
Born-Oppenheimer approximation, multiple PESs close in energy make it impossible to disentangle the
ionic and electron dynamics, and in these cases, resorting to semiclassical or to more accurate quantum
mechanical approaches [6] is mandatory.

Somewhat simplified versions of the density-functional-based MD, resorting to localized bases and
relying on a self-consistent tight-binding approach have been developed [101,102] and provide a cheaper
and popular alternative to unrestricted DFT methods. The price to be paid is a slight limitation in the
quality of the solution, as well as occasional failures of the method.

The amazing success of density-functional-based simulation methods is due to the fact that they
represent the only method endowed with truly predictive power, which can be used for systems of
several hundred atoms, with up to a few thousand valence electrons. ab initio simulation, therefore,
is the method of choice whenever we cannot guess a suitable representation of the PES or when we need
an accuracy that cannot be provided by the empirical models that are available. Ab initio simulation is
also strictly required for systems whose structure is affected by electronic effects, such as Jahn-Teller,
and also enjoys a clear advantage in describing spin-polarization effects or systems undergoing chemical
transformations and non-stoichiometric compounds exhibiting different valence states.

Well known drawbacks are represented by the computational cost that limits the size and especially
the time scale of ab initio simulations, even though the reach of the method is constantly expanding.
At present, large computations running on state-of-the-art facilities may involve ∼ 1, 000 atoms
and ∼4, 000–5, 000 valence electrons. Early problems with metals have been progressively eased
by approaches relying on the accurate step-by-step minimization of the KS energy functional.
Problems, however, remain with transition and, especially, rare-earth metals, for which standard
exchange-correlation approximations give unsatisfactory results, and quantum chemistry hybrid methods
fail fairly spectacularly [103]. Progress is being achieved with methods incorporating strong correlation
at some approximate level, such as LSD+U [104].

Difficulties remain also in the limit of weakly interacting molecular systems. Furthermore, in this
case, early methods lacked essential components, such as the dispersion interaction, which in molecular
systems provide a good portion of cohesion. Dispersion interactions are now increasingly included in
ab initio simulations [81], especially for molecular systems and for water, in particular. Results are
encouraging, although not yet in full quantitative agreement with experiments. However, the accuracy,
reliability and computational efficiency of these methods are improving rapidly.
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The major problem in current MD applications of ab initio methods arguably is that achieving accurate
results for difficult systems, such as transition metals and oxides or molecular systems, still require an
extensive preliminary calibration stage and system-specific exchange correlation approximations [105],
effectively spoiling the ab initio character of these methods. Perhaps more importantly, these adjustments
of the model decrease their reliability for systems exhibiting different bonding types, since the
improvement on one type might worsen the description of the other type.

Most of the cost of KS-DFT computations is due to the representation of the density in terms of KS
orbitals. Approaches relying on genuine density functional formalism, such as a refined Thomas-Fermi
method, could enjoy a huge computational advantage, but no successful scheme has emerged during the
years, and only very idealized Gordon-Kim approaches [106] have been used with some success.

9. Conclusions

Explicit or implicit expressions of the PES of condensed matter systems represent the basis of
our ability to simulate them, possibly understanding and sometimes predicting their properties by
purely computational methods. For this reason, the development of approximations and efficient
representations of PES is the focus of an intense research effort, involving a sizable portion of the
computational community.

Such a modeling activity is an art as much as a science. It is a science in the systematic derivation
of interatomic forces from more fundamental interactions. It is an art in the invention of effective
ways to incorporate new ideas in physically transparent and computationally efficient mathematical
expressions. Like many other forms of art, it relies on a big deal of craftsmanship, required in the stage of
parameterizing force fields, validating them and incorporating them into widely used computer packages,
using sophisticated programming techniques, tuned on state-of-the-art computational hardware.

It should be apparent from the discussion of the previous sections that the last thirty years have seen
an amazing enhancement of our ability to model a wide variety of systems at the atomistic level, fueling
the explosive growth of simulation studies, while, at the same time, being driven by it. Equally amazing,
however, is the extent of what we are still unable to model satisfactorily. Interfaces between different
materials, for instance, are intrinsically difficult to describe by simple approaches. Excluding ab initio,
no reliable, general and widely accepted model is available to simulate water and electrolyte solutions
in contact with neutral or charged electrodes, organic and biological molecules on solid surfaces or the
junction of metal and semiconducting phases. Even homogeneous phases, such as non-stoichiometric
oxides, still represent a formidable challenge for models suitable for simulating 104 atoms over 100 ns or
more. Systems undergoing chemical transformations are another sore point, even though methods, such
as ReaxFF and REBO, are achieving progress in this direction.

At this stage, strategic decisions on the directions and aims of the modeling effort have to take into
account the rapid growth of ab initio methods, which easily account for the intermixing of different
bonding categories, cover electrostatic polarizability, provide information on excited state PES and may
include magnetic interactions and spin effects through their approximate description of exchange.

The rapid progress of methods and computational equipment implies that the foreseeable future spans
at most ten to fifteen years from now. Over this time, empirical models of PES will continue to play an
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important and useful role in the atomistic simulation of large systems (N & 104 atoms) over times in
excess of 100 ns. Most biochemistry and biophysics simulations fall into this class.

On the longer run, however, the general picture of modeling might indeed change. First of
all, the domain proper to atomistic modeling concerns the investigation of the microscopic details
underlying larger-scale phenomena. In this context, the scales of interest rarely exceed ∼ 104 atoms
and correspondingly short times of less than ∼ 10 ns. Beyond this range, simulation may become
the exclusive domain of coarse graining and multi-scale approaches, provided refined versions of these
methods are developed over the next few years.

Ab initio methods already represent the method of choice for systems for which we do not have
reliable approximations of their PES, for phenomena that can be represented by 100 to 1, 000 atoms and
that take place within a 50–100 ps time span. Mixed QM/MM approaches extend this reach and represent
the most appealing method to treat systems, such as protein reaction centers, organometallic catalysts,
etc., in which a small portion of a large system needs to be represented in full chemical detail.

The parallel development of ab initio and of refined coarse graining and multi-scale methods,
therefore, could greatly shrink the role of empirical PES approximations in atomistic simulation.
Even these likely developments, however, might not mark the end of atomistic potential models,
since simple and transparent representations of PES will continue to provide the conceptual basis to
rationalize the properties of condensed matter systems in terms of atoms, of molecules and of their
microscopic interactions.
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