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1. Introduction

Let (X,A) be a measurable space satisfying |A| > 2 and µ be a σ-finite measure on (X,A) . Let P
be the set of all probability measures on (X,A) which are absolutely continuous with respect to µ. For
P, Q ∈ P , let p = dP

dµ
and q = dQ

dµ
denote the Radon–Nikodym derivatives of P and Q with respect to µ.

Two probability measures P, Q ∈ P are said to be orthogonal and we denote this by Q ⊥ P if:

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at zero, i.e., f (0) = limu↓0 f (u) .

In 1963, I. Csiszár [1] introduced the concept of f -divergence as follows.
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Definition 1. Let P, Q ∈ P . Then:

If (Q,P ) =

∫
X

p (x) f

[
q (x)

p (x)

]
dµ (x) , (1)

is called the f -divergence of the probability distributions Q and P.

Remark 1. Observe that, the integrand in the formula (1) is undefined when p (x) = 0. The way to
overcome this problem is to postulate for f as above that:

0f

[
q (x)

0

]
= q (x) lim

u↓0

[
uf

(
1

u

)]
, x ∈ X. (2)

For f continuous convex on [0,∞) we obtain the ∗-conjugate function of f by:

f ∗ (u) = uf

(
1

u

)
, u ∈ (0,∞)

and:
f ∗ (0) = lim

u↓0
f ∗ (u) .

It is also known that if f is continuous convex on [0,∞), then so is f ∗.
The following two theorems contain the most basic properties of f -divergences. For their proofs we

refer the reader to Chapter 1 of [2] (see also [3]).

Theorem 1 (Uniqueness and symmetry theorem). Let f, f1 be continuous convex on [0,∞). We have:

If1 (Q,P ) = If (Q,P ) ,

for all P,Q ∈ P if and only if there exists a constant c ∈ R, such that:

f1 (u) = f (u) + c (u− 1) ,

for any u ∈ [0,∞).

Theorem 2 (Range of values theorem). Let f : [0,∞)→ R be a continuous convex function on [0,∞).

For any P,Q ∈ P , we have the double inequality:

f (1) ≤ If (Q,P ) ≤ f (0) + f ∗ (0) . (3)

(i) If P = Q, then the equality holds in the first part of (3).

If f is strictly convex at one, then the equality holds in the first part of (3) if and only if P = Q;

(ii) If Q ⊥ P , then the equality holds in the second part of (3).

If f (0) + f ∗ (0) <∞, then equality holds in the second part of (3) if and only if Q ⊥ P.

The following result is a refinement of the second inequality in Theorem 2 (see Theorem 3 in [3]).
A function f defined on [0,∞) is called normalised if f (1) = 0.
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Theorem 3. Let f be a continuous convex and normalised function on [0,∞) with f (0) + f ∗ (0) <∞.
Then

0 ≤ If (Q,P ) ≤ 1

2
[f (0) + f ∗ (0)]V (Q,P ) (4)

for any Q,P ∈ P .

For other inequalities for f -divergence see [4–15].
We now give some examples of f -divergences that are well-known and often used in the literature

(see also [3]).
(1) The class of χα-divergences. The f -divergences of this class, which is generated by the function

χα, α ∈ [1,∞), defined by:
χα (u) = |u− 1|α , u ∈ [0,∞)

have the form:

If (Q,P ) =

∫
X

p

∣∣∣∣qp − 1

∣∣∣∣α dµ =

∫
X

p1−α |q − p|α dµ. (5)

From this class only the parameter α = 1 provides a distance in the topological sense, namely the total
variation distance V (Q,P ) =

∫
X
|q − p| dµ. The most prominent special case of this class is, however,

Karl Pearson’s χ2-divergence:

χ2 (Q,P ) =

∫
X

q2

p
dµ− 1

that is obtained for α = 2.

(2) Dichotomy class. From this class, generated by the function fα : [0,∞)→ R:

fα (u) =



u− 1− lnu for α = 0;

1
α(1−α)

[αu+ 1− α− uα] for α ∈ R\ {0, 1} ;

1− u+ u lnu for α = 1;

only the parameter α = 1
2

(
f 1

2
(u) = 2 (

√
u− 1)

2
)

provides a distance, namely, the Hellinger distance:

H (Q,P ) =

[∫
X

(
√
q −√p)2 dµ

] 1
2

.

Another important divergence is the Kullback–Leibler divergence obtained for α = 1,

KL (Q,P ) =

∫
X

q ln

(
q

p

)
dµ.

(3) Matsushita’s divergences. The elements of this class, which is generated by the function ϕα,

α ∈ (0, 1] given by:
ϕα (u) := |1− uα|

1
α , u ∈ [0,∞),

are prototypes of metric divergences, providing the distances [Iϕα (Q,P )]α .

(4) Puri–Vincze divergences. This class is generated by the functions Φα, α ∈ [1,∞) given by:

Φα (u) :=
|1− u|α

(u+ 1)α−1 , u ∈ [0,∞).
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It has been shown in [16] that this class provides the distances [IΦα (Q,P )]
1
α .

(5) Divergences of Arimoto-type. This class is generated by the functions:

Ψα (u) :=



α
α−1

[
(1 + uα)

1
α − 2

1
α
−1 (1 + u)

]
for α ∈ (0,∞) \ {1} ;

(1 + u) ln 2 + u lnu− (1 + u) ln (1 + u) for α = 1;

1
2
|1− u| for α =∞.

It has been shown in [17] that this class provides the distances [IΨα (Q,P )]min(α, 1α) for α ∈ (0,∞) and
1
2
V (Q,P ) for α =∞.

In order to introduce a quantum f -divergence for trace class operators in Hilbert spaces and study its
properties we need some preliminary facts as follows.

2. Trace of Operators

Let (H, 〈·, ·〉) be a complex Hilbert space and {ei}i∈I an orthonormal basis of H. We say that A ∈
B (H) is a Hilbert–Schmidt operator if: ∑

i∈I

‖Aei‖2 <∞. (6)

It is well know that, if {ei}i∈I and {fj}j∈J are orthonormal bases for H and A ∈ B (H), then:∑
i∈I

‖Aei‖2 =
∑
j∈I

‖Afj‖2 =
∑
j∈I

‖A∗fj‖2 (7)

showing that the definition (6) is independent of the orthonormal basis and A is a Hilbert–Schmidt
operator iff A∗ is a Hilbert–Schmidt operator.

Let B2 (H) the set of Hilbert–Schmidt operators in B (H) . For A ∈ B2 (H) we define:

‖A‖2 :=

(∑
i∈I

‖Aei‖2

)1/2

(8)

for {ei}i∈I an orthonormal basis of H. This definition does not depend on the choice of the orthonormal
basis.

Using the triangle inequality in l2 (I), one checks that B2 (H) is a vector space and that ‖·‖2 is a norm
on B2 (H), which is usually called in the literature as the Hilbert–Schmidt norm.

Denote the modulus of an operator A ∈ B (H) by |A| := (A∗A)1/2 .

Because ‖|A|x‖ = ‖Ax‖ for all x ∈ H, A is Hilbert–Schmidt iff |A| is Hilbert–Schmidt and ‖A‖2 =

‖|A|‖2 . From (7) we have that if A ∈ B2 (H), then A∗ ∈ B2 (H) and ‖A‖2 = ‖A∗‖2 .

The following theorem collects some of the most important properties of Hilbert–Schmidt operators:

Theorem 4. We have:
(i) (B2 (H) , ‖·‖2) is a Hilbert space with inner product:

〈A,B〉2 :=
∑
i∈I

〈Aei, Bei〉 =
∑
i∈I

〈B∗Aei, ei〉 (9)
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and the definition does not depend on the choice of the orthonormal basis {ei}i∈I;
(ii) We have the inequalities:

‖A‖ ≤ ‖A‖2 (10)

for any A ∈ B2 (H) and:
‖AT‖2 , ‖TA‖2 ≤ ‖T‖ ‖A‖2 (11)

for any A ∈ B2 (H) and T ∈ B (H);
(iii) B2 (H) is an operator ideal in B (H), i.e.,

B (H)B2 (H)B (H) ⊆ B2 (H) ;

(iv) Bfin (H), the space of operators of finite rank, is a dense subspace of B2 (H);
(v) B2 (H) ⊆ K (H), where K (H) denotes the algebra of compact operators on H.

If {ei}i∈I an orthonormal basis of H , we say that A ∈ B (H) is trace class if:

‖A‖1 :=
∑
i∈I

〈|A| ei, ei〉 <∞. (12)

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis {ei}i∈I . We denote by
B1 (H) the set of trace class operators in B (H) .

The following proposition holds:

Proposition 1. If A ∈ B (H), then the following are equivalent:
(i) A ∈ B1 (H);
(ii) |A|1/2 ∈ B2 (H);
(ii) A (or |A|) is the product of two elements of B2 (H) .

The following properties are also well known:

Theorem 5. With the above notations:
(i) We have

‖A‖1 = ‖A∗‖1 and ‖A‖2 ≤ ‖A‖1 (13)

for any A ∈ B1 (H);
(ii) B1 (H) is an operator ideal in B (H), i.e.,

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) We have:
B2 (H)B2 (H) = B1 (H) ;

(iv) We have:
‖A‖1 = sup {〈A,B〉2 | B ∈ B2 (H) , ‖B‖ ≤ 1} ;

(v) (B1 (H) , ‖·‖1) is a Banach space.
(iv) We have the following isometric isomorphisms:

B1 (H) ∼= K (H)∗ and B1 (H)∗ ∼= B (H) ,

where K (H)∗ is the dual space of K (H) and B1 (H)∗ is the dual space of B1 (H) .
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We define the trace of a trace class operator A ∈ B1 (H) to be:

tr (A) :=
∑
i∈I

〈Aei, ei〉 , (14)

where {ei}i∈I an orthonormal basis of H. Note that this coincides with the usual definition of the trace if
H is finite-dimensional. We observe that the series (14) converges absolutely and it is independent from
the choice of basis.

The following result collects some properties of the trace:

Theorem 6. We have:
(i) If A ∈ B1 (H), then A∗ ∈ B1 (H) and:

tr (A∗) = tr (A); (15)

(ii) If A ∈ B1 (H) and T ∈ B (H), then AT, TA ∈ B1 (H) and:

tr (AT ) = tr (TA) and |tr (AT )| ≤ ‖A‖1 ‖T‖ ; (16)

(iii) tr (·) is a bounded linear functional on B1 (H) with ‖tr‖ = 1;

(iv) If A, B ∈ B2 (H), then AB, BA ∈ B1 (H) and tr (AB) = tr (BA);
(v) Bfin (H) is a dense subspace of B1 (H) .

Utilising the trace notation, we obviously have that:

〈A,B〉2 = tr (B∗A) = tr (AB∗) and ‖A‖2
2 = tr (A∗A) = tr

(
|A|2

)
for any A, B ∈ B2 (H) .

The following Hölder’s type inequality has been obtained by Ruskai in [18]:

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|1/α

)]α [
tr
(
|B|1/(1−α)

)]1−α
(17)

where α ∈ (0, 1) and A, B ∈ B (H) with |A|1/α , |B|1/(1−α) ∈ B1 (H) .

In particular, for α = 1
2

we get the Schwarz inequality:

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|2

)]1/2 [
tr
(
|B|2

)]1/2
(18)

with A, B ∈ B2 (H) .

If A ≥ 0 and P ∈ B1 (H) with P ≥ 0, then:

0 ≤ tr (PA) ≤ ‖A‖ tr (P ) . (19)

Indeed, since A ≥ 0, then 〈Ax, x〉 ≥ 0 for any x ∈ H. If {ei}i∈I an orthonormal basis of H , then:

0 ≤
〈
AP 1/2ei, P

1/2ei
〉
≤ ‖A‖

∥∥P 1/2ei
∥∥2

= ‖A‖ 〈Pei, ei〉

for any i ∈ I. Summing over i ∈ I , we get:

0 ≤
∑
i∈I

〈
AP 1/2ei, P

1/2ei
〉
≤ ‖A‖

∑
i∈I

〈Pei, ei〉 = ‖A‖ tr (P )
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and since: ∑
i∈I

〈
AP 1/2ei, P

1/2ei
〉

=
∑
i∈I

〈
P 1/2AP 1/2ei, ei

〉
= tr

(
P 1/2AP 1/2

)
= tr (PA)

we obtain the desired result (19).
This obviously imply the fact that, if A and B are self-adjoint operators with A ≤ B and P ∈ B1 (H)

with P ≥ 0, then:
tr (PA) ≤ tr (PB) . (20)

Now, if A is a self-adjoint operator, then we know that:

|〈Ax, x〉| ≤ 〈|A|x, x〉 for any x ∈ H.

This inequality follows by Jensen’s inequality for the convex function f (t) = |t| defined on a closed
interval containing the spectrum of A.

If {ei}i∈I is an orthonormal basis of H , then:

|tr (PA)| =

∣∣∣∣∣∑
i∈I

〈
AP 1/2ei, P

1/2ei
〉∣∣∣∣∣ ≤∑

i∈I

∣∣〈AP 1/2ei, P
1/2ei

〉∣∣ (21)

≤
∑
i∈I

〈
|A|P 1/2ei, P

1/2ei
〉

= tr (P |A|) ,

for any A a self-adjoint operator and P ∈ B+
1 (H) := {P ∈ B1 (H) with P ≥ 0} .

For the theory of trace functionals and their applications the reader is referred to [19].
For some classical trace inequalities see [20–24], which are continuations of the work of Bellman [25].

For related works the reader can refer to [20,24,26–32].

3. Classical Quantum f -Divergence

On complex Hilbert space (B2 (H) , 〈·, ·〉2), where the Hilbert–Schmidt inner product is defined by:

〈U, V 〉2 := tr (V ∗U)

for A,B ∈ B+ (H) consider the operators LA : B2 (H) → B2 (H) and RB : B2 (H) → B2 (H) defined
by:

LAT := AT and RBT := TB.

We observe that they are well defined and since:

〈LAT, T 〉2 = 〈AT, T 〉2 = tr (T ∗AT ) = tr
(
|T ∗|2A

)
≥ 0

and:
〈RBT, T 〉2 = 〈TB, T 〉2 = tr (T ∗TB) = tr

(
|T |2B

)
≥ 0

for any T ∈ B2 (H), they are also positive in the operator order of B (B2 (H)), the Banach algebra of all
bounded operators on B2 (H) with the norm ‖·‖2 where ‖T‖2 = tr

(
|T |2

)
, T ∈ B2 (H) .
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Since tr
(
|X∗|2

)
= tr

(
|X|2

)
for any X ∈ B2 (H), then also:

tr (T ∗AT ) = tr
(
T ∗A1/2A1/2T

)
= tr

((
A1/2T

)∗
A1/2T

)
= tr

(∣∣A1/2T
∣∣2) = tr

(∣∣∣(A1/2T
)∗∣∣∣2) = tr

(∣∣T ∗A1/2
∣∣2)

for A ≥ 0 and T ∈ B2 (H) .

We observe that LA and RB are commutative, therefore the product LARB is a self-adjoint positive
operator on B2 (H) for any positive operators A,B ∈ B (H) .

For A,B ∈ B+ (H) with B invertible, we define the Araki transform AA,B : B2 (H) → B2 (H) by
AA,B := LARB−1 . We observe that for T ∈ B2 (H), and we have AA,BT = ATB−1 and:

〈AA,BT, T 〉2 =
〈
ATB−1, T

〉
2

= tr
(
T ∗ATB−1

)
.

Observe also, by the properties of trace, that:

tr
(
T ∗ATB−1

)
= tr

(
B−1/2T ∗A1/2A1/2TB−1/2

)
= tr

((
A1/2TB−1/2

)∗ (
A1/2TB−1/2

))
= tr

(∣∣A1/2TB−1/2
∣∣2)

giving that:
〈AA,BT, T 〉2 = tr

(∣∣A1/2TB−1/2
∣∣2) ≥ 0 (22)

for any T ∈ B2 (H) .

Let U be a self-adjoint linear operator on a complex Hilbert space (K; 〈·, ·〉) . The Gelfand map
establishes a ∗-isometrically isomorphism Φ between the set C (Sp (U)) of all continuous functions
defined on the spectrum of U , denoted Sp (U), and the C∗-algebra C∗ (U) generated by U and the
identity operator 1K on K as follows:

For any f, g ∈ C (Sp (U)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g);
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ (f)∗;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(U) |f (t)|;
(iv) Φ (f0) = 1K and Φ (f1) = U, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (U) .

With this notation we define:

f (U) := Φ (f) for all f ∈ C (Sp (U))

and we call it the continuous functional calculus for a self-adjoint operator U.
If U is a self-adjoint operator and f is a real valued continuous function on Sp (U), then f (t) ≥ 0 for

any t ∈ Sp (U) implies that f (U) ≥ 0, i.e., f (U) is a positive operator on K. Moreover, if both f and g
are real valued functions on Sp (U), then the following important property holds:

f (t) ≥ g (t) for any t ∈ Sp (U) implies that f (U) ≥ g (U) (P)

in the operator order of B (K) .
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Let f : [0,∞) → R be a continuous function. Utilising the continuous functional calculus for the
Araki self-adjoint operator AQ,P ∈ B (B2 (H)) we can define the quantum f -divergence for Q,P ∈
S (H) := {P ∈ B1 (H) , P ≥ 0 with tr (P ) = 1} and P invertible, by:

Sf (Q,P ) :=
〈
f (AQ,P )P 1/2, P 1/2

〉
2

= tr
(
P 1/2f (AQ,P )P 1/2

)
.

If we consider the continuous convex function f : [0,∞)→ R, with f (0) := 0 and f (t) = t ln t for
t > 0, then for Q,P ∈ S (H) and Q,P invertible, we have:

Sf (Q,P ) = tr [Q (lnQ− lnP )] =: U (Q,P ) ,

which is the Umegaki relative entropy.
If we take the continuous convex function f : [0,∞) → R, f (t) = |t− 1| for t ≥ 0, then for

Q,P ∈ S (H) with P invertible, we have:

Sf (Q,P ) = tr
(
P 1/2

∣∣AQ,P − 1B2(H)

∣∣P 1/2
)

= tr (|Q− P |) =: V (Q,P ) ,

where V (Q,P ) is the variational distance.
If we take f : [0,∞) → R, f (t) = t2 − 1 for t ≥ 0, then for Q,P ∈ S (H) with P invertible, we

have:
Sf (Q,P ) = tr

(
Q2P−1

)
− 1 =: χ2 (Q,P ) , (23)

which is called the χ2-distance.
Let q ∈ (0, 1) and define the convex function fq : [0,∞)→ R by fq (t) = 1−tq

1−q . Then:

Sfq (Q,P ) =
1− tr (QqP 1−q)

1− q
,

which is Tsallis relative entropy.
If we consider the convex function f : [0,∞)→ R by f (t) = 1

2

(√
t− 1

)2
, then:

Sf (Q,P ) = 1− tr
(
Q1/2P 1/2

)
=: h2 (Q,P ) ,

which is known as Hellinger discrimination.
If we take f : (0,∞)→ R, f (t) = − ln t, then for Q,P ∈ S (H) and Q,P invertible, we have:

Sf (Q,P ) = tr [P (lnP − lnQ)] = U (P,Q) .

In the important case of finite dimensional space H and the generalized inverse P−1, numerous
properties of the quantum f -divergence have been obtained in the recent papers [33–36] and the
references therein. We omit the details.
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4. A New Quantum f -Divergence

In order to simplify the writing, we denote by S1 (H) the set of all density operators which are
elements of B+

1 (H) having unit trace.
We observe that, if P,Q are self-adjoint with P,Q ≥ 0 and P is invertible, then P−

1
2QP−

1
2 ≥ 0.

Let f : [0,∞) → R be a continuous convex function on [0,∞). We can define the following new
quantum f -divergence functional:

Df (Q,P ) := tr
[
Pf
(
P−

1
2QP−

1
2

)]
(D)

for Q,P ∈ S1 (H) with P invertible. The definition can be extended for any continuous function.
If we take the convex function f (t) = t2 − 1, t ≥ 0, then we get:

Df (Q,P ) := tr

[
P

[(
P−

1
2QP−

1
2

)2

− 1

]]
= tr

(
Q2P−1

)
− 1 =: χ2 (Q,P ) ,

for Q,P ∈ S1 (H) with P invertible, which is the Karl Pearson’s χ2-divergence version for trace class
operators. This divergence is the same as the one generated by the classical f -divergence, see (23).

More general, if we take the convex function f (t) = tn−1, t ≥ 0 and n a natural number with n ≥ 2,
then we get:

Df (Q,P ) := tr
[
P
[(
P−

1
2QP−

1
2

)n
− 1
]]

= tr
(
Q
(
QP−1

)n−1
)
− 1

=: Dχ̃n (Q,P )

for Q,P ∈ S1 (H) with P invertible.
If we take the convex function f (t) = t ln t for t > 0 and f (0) := 0, then we get:

Df (Q,P ) = tr
[
P
[
P−

1
2QP−

1
2 ln

(
P−

1
2QP−

1
2

)]]
= tr

[
P

1
2QP−

1
2 ln

(
P−

1
2QP−

1
2

)]
=: DKL (Q,P )

for Q,P ∈ S1 (H) with P and Q invertible. We observe that this is not the same as Umegaki relative
entropy introduced above.

If we take the convex function f (t) = − ln t for t > 0, then we get:

Df (Q,P ) = − tr
[
P ln

(
P−

1
2QP−

1
2

)]
= tr

[
P ln

(
P−

1
2QP−

1
2

)−1
]

= tr
[
P ln

(
P

1
2Q−1P

1
2

)]
=: D̃KL (Q,P )

for Q,P ∈ S1 (H) with P and Q invertible.
If we take the convex function f (t) = |t− 1| , t ≥ 0, then we get:

Df (Q,P ) = tr
[
P
∣∣∣P− 1

2QP−
1
2 − 1H

∣∣∣] =: DV (Q,P )

for Q,P ∈ S1 (H) with P invertible.
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If we consider the convex function f (t) = 1
t
− 1, t > 0, then:

Df (Q,P ) = tr

[
P

[(
P−

1
2QP−

1
2

)−1

− 1H

]]
= tr

[
P
(
P

1
2Q−1P

1
2

)]
− 1 = χ2 (P,Q)

for Q,P ∈ S1 (H) with P and Q invertible.
If we take the convex function f (t) = fq (t) = 1−tq

1−q , q ∈ (0, 1), then we get:

Dfq (Q,P ) =
1

1− q

(
1− tr

[
P
(
P−

1
2QP−

1
2

)q])
,

which is different, in general, from the Tsallis relative entropy introduced above.
Other examples may be considered by taking the convex functions from the introduction. The details

are omitted.
Suppose that I is an interval of real numbers with interior I̊ and f : I → R is a convex function

on I . Then, f is continuous on I̊ and has finite left and right derivatives at each point of I̊ . Moreover,
if x, y ∈ I̊ and x < y,, then f ′− (x) ≤ f ′+ (x) ≤ f ′− (y) ≤ f ′+ (y) which shows that both f ′− and f ′+ are
nondecreasing function on I̊ . It is also known that a convex function must be differentiable except for at
most countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f is the set of all functions
ϕ : I → [−∞,∞], such that ϕ

(
I̊
)
⊂ R and:

f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I. (24)

It is also well known that if f is convex on I , then ∂f is nonempty, f ′−, f ′+ ∈ ∂f and if ϕ ∈ ∂f , then:

f ′− (x) ≤ ϕ (x) ≤ f ′+ (x) for any x ∈ I̊ .

In particular, ϕ is a nondecreasing function.
If f is differentiable and convex on I̊ , then ∂f = {f ′} .

Theorem 7. Let f be a continuous convex function on [0,∞) with f (1) = 0. Then, we have:

0 ≤ Df (Q,P ) (25)

for any Q,P ∈ S1 (H) with P invertible.
If f is continuously differentiable on (0,∞), then we also have:

Df (Q,P ) ≤ D(·)f ′(·) (Q,P )−Df ′ (Q,P ) . (26)

Proof. For any x ≥ 0, we have from the gradient inequality (24) that:

f (x) ≥ f (1) + (x− 1) f ′+ (1)

and since f is normalised, then:
f (x) ≥ (x− 1) f ′+ (1) . (27)
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Utilising the property (P) for the positive operator A = P−
1
2QP−

1
2 where Q,P ∈ S1 (H) with P

invertible, then we have the inequality in the operator order:

f
(
P−

1
2QP−

1
2

)
≥
(
P−

1
2QP−

1
2 − 1

)
f ′+ (1) . (28)

Utilising the property (20) for the inequality (28), we have:

tr
[
Pf
(
P−

1
2QP−

1
2

)]
≥ tr

[
P
(
P−

1
2QP−

1
2 − 1

)
f ′+ (1)

]
= f ′+ (1)

[
tr
(
PP−

1
2QP−

1
2

)
− tr (P )

]
= f ′+ (1) [tr (Q)− tr (P )] = 0

and the inequality (25) is proven.
From the gradient inequality, we also have for any x ≥ 0:

(x− 1) f ′ (x) + f (1) ≥ f (x)

and since f is normalised, then:
(x− 1) f ′ (x) ≥ f (x)

which, as above, implies that:(
P−

1
2QP−

1
2 − 1H

)
f ′
(
P−

1
2QP−

1
2

)
≥ f

(
P−

1
2QP−

1
2

)
. (29)

Making use of the property (20) for the inequality (29), then we get:

tr
[
P
(
P−

1
2QP−

1
2 − 1H

)
f ′
(
P−

1
2QP−

1
2

)]
≥ tr

[
Pf
(
P−

1
2QP−

1
2

)]
, (30)

which is the required inequality (26).

Remark 2. If we take f (t) = − ln t, t > 0 in Theorem 7, then we get:

0 ≤ D̃KL (Q,P ) ≤ χ2 (P,Q) (31)

for any Q,P ∈ S1 (H) with P and Q invertible.
If we take the convex function ε (t) = et−1 − 1, then:

Dε (Q,P ) = tr
[
P exp

(
P−

1
2QP−

1
2 − 1H

)]
− 1,

where Q,P ∈ S1 (H) with P invertible.
By Theorem 7, we get:

0 ≤ Dε (Q,P ) ≤ tr
[
P
(
P−

1
2QP−

1
2 − 1H

)
exp

(
P−

1
2QP−

1
2 − 1H

)]
, (32)

where Q,P ∈ S1 (H) with P invertible.
The inequality in (32) is equivalent to:

0 ≤ Dε (Q,P ) ≤ 1

2

[
tr
[
P

1
2QP−

1
2 exp

(
P−

1
2QP−

1
2 − 1H

)]
+ 1
]
,

where Q,P ∈ S1 (H) with P invertible.
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The following lemma is of interest in itself:

Lemma 1. Let S be a self-adjoint operator such that γ1H ≤ S ≤ Γ1H for some real constants Γ ≥ γ.

Then, for any P ∈ B+
1 (H) \ {0}, we have:

0 ≤ tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2

(33)

≤ 1

2
(Γ− γ)

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣)

≤ 1

2
(Γ− γ)

[
tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2
]1/2

≤ 1

4
(Γ− γ)2 .

Proof. Observe that:

1

tr (P )
tr

(
P

(
S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

))
(34)

=
1

tr (P )
tr

(
PS

(
S − tr (PS)

tr (P )
1H

))
− Γ + γ

2

1

tr (P )
tr

(
P

(
S − tr (PS)

tr (P )
1H

))
=

tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2

since, obviously:

tr

(
P

(
S − tr (PS)

tr (P )
1H

))
= 0.

Now, since γ1H ≤ S ≤ Γ1H , then: ∣∣∣∣S − Γ + γ

2
1H

∣∣∣∣ ≤ 1

2
(Γ− γ) .

Taking the modulus in (34) and using the properties of trace, we have:

tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2

(35)

=
1

tr (P )

∣∣∣∣tr(P (S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

))∣∣∣∣
≤ 1

tr (P )
tr

(
P

∣∣∣∣(S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

)∣∣∣∣)
≤ 1

2
(Γ− γ)

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣) ,
which proves the first part of (33).
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By Schwarz inequality for trace, we also have:

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣) (36)

≤

[
1

tr (P )
tr

(
P

(
S − tr (PS)

tr (P )
1H

)2
)]1/2

=

[
tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2
]1/2

.

From (35) and (36), we get:

tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2

≤ 1

2
(Γ− γ)

[
tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2
]1/2

,

which implies that: [
tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2
]1/2

≤ 1

2
(Γ− γ) .

By (36), we then obtain:

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣)

≤

[
tr (PS2)

tr (P )
−
(

tr (PS)

tr (P )

)2
]1/2

≤ 1

2
(Γ− γ)

that proves the last part of (33).

Corollary 1. Let Q,P ∈ S1 (H) with P invertible and such that there exists 0 < r ≤ 1 ≤ R satisfying
the condition (38). Then:

0 ≤ χ2 (Q,P ) ≤ 1

2
(R− r)DV (Q,P ) ≤ 1

2
(R− r)χ (Q,P ) (37)

≤ 1

4
(R− r)2 .

Proof. Utilising the inequality (33) for S = P−
1
2QP−

1
2 , we have:

(0 ≤)χ2 (Q,P ) ≤ 1

2
(R− r) tr

(
P
∣∣∣P− 1

2QP−
1
2 − 1H

∣∣∣)
≤ 1

2
(R− r)χ (Q,P ) ≤ 1

4
(R− r)2 ,

and the inequality (37) is proved.

We observe that if Q,P ∈ S1 (H) with P invertible and there exists r, R > 0 with:

r1H ≤ P−
1
2QP−

1
2 ≤ R1H , (38)
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then by the property (20), we get:

r tr (P ) ≤ tr
(
PP−

1
2QP−

1
2

)
≤ R tr (P )

showing that r ≤ 1 ≤ R.

The following result provides a simple upper bound for the quantum f -divergence Df (Q,P ) .

Theorem 8. Let f be a continuous convex function on [0,∞) with f (1) = 0. Then, we have:

0 ≤ Df (Q,P ) ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
DV (Q,P ) (39)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]
χ (Q,P )

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
for any Q,P ∈ S1 (H) with P invertible and satisfying the condition (38).

Proof. Without loosing the generality, we prove the inequality in the case when f is continuously
differentiable on (0,∞) .

We have:

tr
[
P
(
P−

1
2QP−

1
2 − 1H

) [
f ′
(
P−

1
2QP−

1
2

)
− λ1H

]]
(40)

= tr
[
P
(
P−

1
2QP−

1
2 − 1H

)
f ′
(
P−

1
2QP−

1
2

)]
for any λ ∈ R and for any Q,P ∈ S1 (H) with P invertible.

Since f ′ is monotonic nondecreasing on [r, R], then:

f ′+ (r) ≤ f ′ (x) ≤ f ′− (R) for any x ∈ [r, R] .

This implies in the operator order that:

f ′+ (r) 1H ≤ f ′
(
P−

1
2QP−

1
2

)
≤ f ′− (R) 1H ,

therefore: ∣∣∣∣f ′ (P− 1
2QP−

1
2

)
−
f ′− (R) + f ′+ (r)

2
1H

∣∣∣∣ ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
1H . (41)

From (30) and (40), we have:

0 ≤ tr
[
Pf
(
P−

1
2QP−

1
2

)]
≤ tr

[
P
(
P−

1
2QP−

1
2 − 1H

)
f ′
(
P−

1
2QP−

1
2

)]
= tr

[
P
(
P−

1
2QP−

1
2 − 1H

)[
f ′
(
P−

1
2QP−

1
2

)
−
f ′− (R) + f ′+ (r)

2
1H

]]
=

∣∣∣∣tr [P (P− 1
2QP−

1
2 − 1H

)[
f ′
(
P−

1
2QP−

1
2

)
−
f ′− (R) + f ′+ (r)

2
1H

]]∣∣∣∣
≤ tr

[
P

∣∣∣∣(P− 1
2QP−

1
2 − 1H

)[
f ′
(
P−

1
2QP−

1
2

)
−
f ′− (R) + f ′+ (r)

2
1H

]∣∣∣∣]
= tr

[
P
∣∣∣(P− 1

2QP−
1
2 − 1H

)∣∣∣ ∣∣∣∣f ′ (P− 1
2QP−

1
2

)
−
f ′− (R) + f ′+ (r)

2
1H

∣∣∣∣]
≤ 1

2

[
f ′− (R)− f ′+ (r)

]
tr
[
P
∣∣∣P− 1

2QP−
1
2 − 1H

∣∣∣]
=

1

2

[
f ′− (R)− f ′+ (r)

]
V (Q,P ) ,
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which proves the first inequality in (39).
The rest follows by (37).

Example 1. 1) If we take f (t) = − ln t, t > 0 in Theorem 8, then we get:

0 ≤ D̃KL (Q,P ) ≤ R− r
2rR

DV (Q,P ) (42)

≤ R− r
2rR

χ (Q,P ) ≤ (R− r)2

4rR

for any Q,P ∈ S1 (H) with P,Q invertible and satisfying the condition:

r1H ≤ P−
1
2QP−

1
2 ≤ R1H , (43)

with r > 0.

2) With the same conditions as in 1) for Q,P and if we take f (t) = t ln t, t > 0 in Theorem 8, then
we get:

0 ≤ DKL (Q,P ) ≤ 1

2
ln

(
R

r

)
DV (Q,P ) (44)

≤ 1

2
ln

(
R

r

)
χ (Q,P ) ≤ 1

4
(R− r) ln

(
R

r

)
.

3) If we take in (39) f (t) = fq (t) = 1−tq
1−q , then we get:

0 ≤ Dfq (Q,P ) ≤ q

2 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
V (Q,P ) (45)

≤ q

2 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
χ (Q,P )

≤ q

4 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
(R− r)

provided that Q,P ∈ S1 (H), with P, Q invertible and satisfying the condition (43).

We have the following upper bound, as well:

Theorem 9. Let f : [0,∞)→ R be a continuous convex function that is normalized. If Q,P ∈ S1 (H),
with P invertible, and there exists R ≥ 1 ≥ r ≥ 0 such that the condition (38) is satisfied, then:

0 ≤ Df (Q,P ) ≤ (R− 1) f (r) + (1− r) f (R)

R− r
. (46)

Proof. By the convexity of f , we have:

f (t) = f

(
(R− t) r + (t− r)R

R− r

)
≤ (R− t) f (r) + (t− r) f (R)

R− r

for any t ∈ [r, R] .

This inequality implies the following inequality in the operator order of B (H):

f
(
P−

1
2QP−

1
2

)
≤

(
R1H − P−

1
2QP−

1
2

)
f (r) +

(
P−

1
2QP−

1
2 − r1H

)
f (R)

R− r
, (47)
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for Q,P ∈ S1 (H), with P invertible, and R ≥ 1 ≥ r ≥ 0 such that the condition (38) is satisfied.
Utilising the property (20), we get from (47) that:

tr
[
Pf
(
P−

1
2QP−

1
2

)]
(48)

≤ f (r)

R− r
tr
[
P
(
R1H − P−

1
2QP−

1
2

)]
+
f (R)

R− r
tr
[
P
(
P−

1
2QP−

1
2 − r1H

)]
=

(R− 1) f (r) + (1− r) f (R)

R− r
,

and the inequality (46) is thus proven.

Remark 3. If we take in (46) f (t) = t2 − 1, then we get:

0 ≤ χ2 (Q,P ) ≤ (R− 1) (1− r) R + r + 2

R− r
(49)

for Q,P ∈ S1 (H), with P invertible and satisfying the condition (38).
If we take in (46) f (t) = t ln t, then we get the inequality:

0 ≤ DKL (Q,P ) ≤ ln
[
r

(R−1)r
R−r R

R(1−r)
R−r

]
(50)

provided that Q,P ∈ S1 (H), with P, Q invertible and satisfying the condition (38).
With the same assumptions for P,Q, if we take in (46) f (t) = − ln t, then we get the inequality:

0 ≤ D̃KL (Q,P ) ≤ ln
[
r

1−R
R−rR

r−1
R−r

]
. (51)

5. Further Upper Bounds

We also have:

Theorem 10. Let f : [0,∞)→ R be a continuous convex function that is normalized. If Q,P ∈ S1 (H),
with P invertible, and there exists R > 1 > r ≥ 0 such that the condition (38) is satisfied, then:

0 ≤ Df (Q,P ) ≤ (R− 1) (1− r)
R− r

Ψf (1; r, R) (52)

≤ (R− 1) (1− r)
R− r

sup
t∈(r,R)

Ψf (t; r, R)

≤ (R− 1) (1− r)
f ′− (R)− f ′+ (r)

R− r

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
where Ψf (·; r, R) : (r, R)→ R is defined by:

Ψf (t; r, R) =
f (R)− f (t)

R− t
− f (t)− f (r)

t− r
. (53)
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We also have:

0 ≤ Sf (Q,P ) ≤ (R− 1) (1− r)
R− r

Ψf (1; r, R) (54)

≤ 1

4
(R− r) Ψf (1; r, R)

≤ 1

4
(R− r) sup

t∈(r,R)

Ψf (t; r, R)

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

Proof. By denoting:

∆f (t; r, R) :=
(t− r) f (R) + (R− t) f (r)

R− r
− f (t) , t ∈ [r, R]

we have:

∆f (t; r, R) =
(t− r) f (R) + (R− t) f (r)− (R− r) f (t)

R− r
(55)

=
(t− r) f (R) + (R− t) f (r)− (T − t+ t− r) f (t)

R− r

=
(t− r) [f (R)− f (t)]− (R− t) [f (t)− f (r)]

M −m

=
(R− t) (t− r)

R− r
Ψf (t; r, R)

for any t ∈ (r, R) .

From the proof of Theorem 9 and since f (1) = 0, we have:

tr
[
Pf
(
P−

1
2QP−

1
2

)]
≤ (R− 1) f (r) + (1− r) f (R)

R− r
− f (1)

= ∆f (1; r, R) =
(R− 1) (1− r)

R− r
Ψf (1; r, R)

for any Q,P ∈ S1 (H), with P invertible, and R > 1 > r ≥ 0 such that the condition (38) is valid.
Since:

Ψf (1; r, R) ≤ sup
t∈(r,R)

Ψf (t; r, R) (56)

= sup
t∈(r,R)

[
f (R)− f (t)

R− t
− f (t)− f (r)

t− r

]
≤ sup

t∈(r,R)

[
f (R)− f (t)

R− t

]
+ sup

t∈(r,R)

[
−f (t)− f (r)

t− r

]
= sup

t∈(r,R)

[
f (R)− f (t)

R− t

]
− inf

t∈(r,R)

[
f (t)− f (r)

t− r

]
= f ′− (R)− f ′+ (r) ,

and, obviously:
1

R− r
(R− 1) (1− r) ≤ 1

4
(R− r) , (57)

then by (55)–(57), we have the desired result (52).
The rest is obvious.



Entropy 2014, 16 5871

Remark 4. If we consider the convex normalized function f (t) = t2 − 1, then:

Ψf (t; r, R) =
R2 − t2

R− t
− t2 − r2

t− r
= R− r, t ∈ (r, R)

and we get from (52) the simple inequality:

0 ≤ χ2 (Q,P ) ≤ (R− 1) (1− r) (58)

for Q,P ∈ S1 (H), with P invertible and satisfying the condition (38), which is better than (49).
If we take the convex normalized function f (t) = t−1 − 1, then we have:

Ψf (t; r, R) =
R−1 − t−1

R− t
− t−1 − r−1

t− r
=
R− r
rRt

, t ∈ [r, R] .

Furthermore:
Df (Q,P ) = χ2 (P,Q) .

Using (52), we get:

(0 ≤)χ2 (P,Q) ≤ (R− 1) (1− r)
Rr

(59)

for Q,P ∈ S1 (H), with Q invertible and satisfying the condition (38).
If we consider the convex function f (t) = − ln t defined on [r, R] ⊂ (0,∞), then:

Ψf (t; r, R) =
− lnR + ln t

R− t
− − ln t+ ln r

t− r

=
(R− r) ln t− (R− t) ln r − (t− r) lnR

(M − t) (t−m)

= ln

(
tR−r

rR−tM t−r

) 1
(R−t)(t−r)

, t ∈ (r, R) .

Then, by (52), we have:

(0 ≤) D̃KL (Q,P ) ≤ ln
[
r

1−R
R−rR

r−1
R−r

]
≤ (R− 1) (1− r)

rR
(60)

for Q,P ∈ S1 (H), with P, Q invertible and satisfying the condition (38).
If we consider the convex function f (t) = t ln t defined on [r, R] ⊂ (0,∞), then:

Ψf (t; r, R) =
R lnR− t ln t

R− t
− t ln t− r ln r

t− r
, t ∈ (r, R) ,

which gives that:

Ψf (1; r, R) =
R lnR

R− 1
− r ln r

1− r
.

Using (52), we get:

(0 ≤)DKL (Q,P ) ≤ ln
[
R

(1−r)R
R−r r

(1−R)r
R−r

]
(61)

≤ (R− 1) (1− r) ln

[(
R

r

) 1
R−r
]

for Q,P ∈ S1 (H), with P, Q invertible and satisfying the condition (38).
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We also have:

Theorem 11. Let f : [0,∞)→ R be a continuous convex function that is normalized. If Q,P ∈ S1 (H),
with P invertible, and there exists R > 1 > r ≥ 0 such that the condition (38) is satisfied, then:

0 ≤ Df (Q,P ) (62)

≤ 2 max

{
R− 1

R− r
,

1− r
R− r

}[
f (r) + f (R)

2
− f

(
r +R

2

)]
≤ 2

[
f (r) + f (R)

2
− f

(
r +R

2

)]
.

Proof. We recall the following result (see for instance [37]) that provides a refinement and a reverse for
the weighted Jensen’s discrete inequality:

n min
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
(63)

≤ 1

Pn

n∑
i=1

pif (xi)− f

(
1

Pn

n∑
i=1

pixi

)

≤ n max
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
,

where f : C → R is a convex function defined on the convex subset C of the linear space X,

{xi}i∈{1,...n} ⊂ C are vectors and {pi}i∈{1,...n} are nonnegative numbers with Pn :=
∑n

i=1 pi > 0.

For n = 2, we deduce from (63) that:

2 min {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
(64)

≤ sf (x) + (1− s) f (y)− f (sx+ (1− s) y)

≤ 2 max {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
for any x, y ∈ C and s ∈ [0, 1] .

Now, if we use the second inequality in (64) for x = r, y = R, s = R−t
R−r with t ∈ [r, R], then we have:

(R− t) f (r) + (t− r) f (R)

R− r
− f (t) (65)

≤ 2 max

{
R− t
R− r

,
t− r
R− r

}[
f (r) + f (R)

2
− f

(
r +R

2

)]
≤ 2

[
f (r) + f (R)

2
− f

(
r +R

2

)]
for any t ∈ [r, R] .
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This implies that:

tr
[
Pf
(
P−

1
2QP−

1
2

)]
≤ (R− 1) f (r) + (1− r) f (R)

R− r

≤ 2 max

{
R− 1

R− r
,

1− r
R− r

}[
f (r) + f (R)

2
− f

(
r +R

2

)]
≤ 2

[
f (r) + f (R)

2
− f

(
r +R

2

)]
and the proof is completed.

Remark 5. If we take in (62) f (t) = t−1 − 1, then we have:

0 ≤ χ2 (P,Q) ≤ max {R− 1, 1− r} R− r
rR (r +R)

(66)

for Q,P ∈ S1 (H), with P invertible and satisfying the condition (38).
If we take in (62) f (t) = − ln t, then we have:

0 ≤ D̃KL (Q,P ) ≤ max

{
R− 1

R− r
,

1− r
R− r

}
ln

(
(R + r)2

4rR

)
(67)

≤ ln

(
(R + r)2

4rR

)
for Q,P ∈ S1 (H), with P invertible and satisfying the condition (38).

From (42), we have the following absolute upper bound:

0 ≤ D̃KL (Q,P ) ≤ (R− r)2

4rR
(68)

for Q,P ∈ S1 (H), with P invertible and satisfying the condition (38).
Utilising the elementary inequality lnx ≤ x− 1, x > 0, we have that:

ln

(
(R + r)2

4rR

)
≤ (R− r)2

4rR
,

which shows that (67) is better than (68).

6. Conclusions

In this paper we have introduced a new quantum f -divergence for trace class operators in Hilbert
Spaces. It is shown that for normalised convex functions it is nonnegative. Some upper bounds are
provided. Applications for some classes of convex functions of interest are also given.
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