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Abstract: Differently from traditional two-dimensional texture images, the depth images of 

three-dimensional (3D) video systems have significant sparse characteristics under the 

certain transform basis, which make it possible for compressive sensing to represent depth 

information efficiently. Therefore, in this paper, a novel depth image coding scheme is 

proposed based on a block compressive sensing method. At the encoder, in view of the 

characteristics of depth images, the entropy of pixels in each block is employed to represent 

the sparsity of depth signals. Then according to the different sparsity in the pixel domain, the 

measurements can be adaptively allocated to each block for higher compression efficiency. At 

the decoder, the sparse transform can be combined to achieve the compressive sensing 

reconstruction. Experimental results have shown that at the same sampling rate, the proposed 

scheme can obtain higher PSNR values and better subjective quality of the rendered virtual 

views, compared with the method using a uniform sampling rate. 
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1. Introduction 

Three-dimensional (3D) video can provide the viewers a high-quality and immersive multimedia 

experience, which has drawn increasing attention among industry and academic researchers [1]. Two 

typical 3D applications have appeared in the form of three-dimensional television (3DTV) [2] and  

free-viewpoint television (FTV) [3]. In 3DTV applications, multiple views from different viewing angles 

can be rendered for depth perception of the scene while in FTV applications, arbitrary viewpoints within 

a certain range can be selected interactively by viewers. 

The basic format of 3D video is a multiview representation which is usually captured simultaneously 

by multiple cameras with slightly displaced positions [4]. However, with an increasing number of the 

views, the huge amount of data from multiview video poses great challenge for 3D applications, such as 

data compression and transmission. In order to solve this problem, the multiview video plus depth (MVD) 

format has emerged as an efficient data representation for 3D systems. Compared to the pure multiview 

video format without depth information, the main advantage of the MVD format is that desired virtual 

views at arbitrary viewpoint positions can be conveniently synthesized via the depth-image-based 

rendering (DIBR) technique [5]. 

Depth images represent the distance information between the camera and the objects in the  

scene. The depth images are often treated as grey scale image sequences, which are similar to the 

luminance component of texture video. However, differently from the texture video, the depth image 

has its own special characteristics. Firstly, the depth image signal is much sparser than the texture video 

under certain transform basis, such as Discrete Cosine Transform (DCT) or Discrete Wavelet Transform 

(DWT), etc. It contains no texture but sharp object boundaries, since the gray levels are nearly the same 

in most regions within an object but change abruptly across the boundaries. Furthermore, the depth image 

is not directly used for display, but it plays an important role in the virtual view synthesis. The distortion 

of depth data, especially around the object boundaries, will seriously degrade the quality of the rendered 

virtual views [6]. Therefore, how to employ the depth image characteristics for efficient compression is 

an essential part in 3D systems. 

In view of the sparsity characteristics of depth images, we attempt to apply compressive sensing  

(CS) [7] to represent depth information efficiently. CS is a new method to capture and represent 

compressible signals at a rate significantly below the conventional Shannon/Nyquist rate. In the 

conventional Shannon/Nyquist sampling theorem, when capturing a signal, one must sample at least two 

times faster than the signal bandwidth in order to avoid losing information. Due to the low sampling 

rate, CS can avoid the big burden of data storage and processing at the conventional encoder. 

In recent years, CS is applied in image compression and the basic framework is shown in Figure 1. 

At the encoder, the input image can be processed block by block. For each block in the image, sparse 

transform, such as DCT or DWT, is used to produce the coefficients with sparse characteristics. Then 

compressive sensing is employed to encode the transform coefficients and generate the same amount of 

measurements for each block. At the decoder, a convex optimization method, such as the log-barrier or 

multiplier [8], can be adopted for the CS recovery. In the end, the corresponding inverse transform can 

be used for the image reconstruction. Block compressed sensing for natural images is proposed using 

the same measurement matrix, which is claimed that it can sufficiently capture the complicated 

geometric structures of natural images [9]. A new image/video coding approach is proposed, which can 
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combine the CS theory into the traditional DCT-based coding method to achieve better compression 

efficiency for spatially sparse signals [10]. Furthermore, the whole depth image can be processed by CS, 

and its performance is evaluated with rendered virtual view quality [11]. A novel compressed sensing 

framework is presented for depth image compression using adaptive graph-based transforms [12]. 

However, since the greedy algorithm is proposed to find the optimal edge image, which means higher 

complexity especially when the depth image block size increases. 

Figure 1. Basic framework of image compression based on CS. 

 

To address the above problems, in this paper, a novel depth image coding scheme is proposed based 

on a block compressive sensing method. The main improvements of the proposed scheme are as follows: 

(1) to ensure lower-complexity of the CS encoder, the entropy of pixels in each block is employed to 

represent the sparsity of depth signals; (2) in view of the different sparse characteristics of each block in 

the depth images, an adaptive measurement rate should be allocated for higher compression efficiency; 

(3) differently from the conventional CS, in this paper the measurements can be obtained directly in the 

pixel domain and the sparse transform is combined in the CS reconstruction, which can guarantee the 

lower-complexity of the CS encoder and the reconstructed image quality;  

(4) in order to better estimate the performance, objective and subjective quality of the rendered virtual 

views are taken into account. 

The rest of this paper is organized as follows: in Section 2, the proposed scheme is presented step by 

step. In Section 3, the performance of the proposed scheme is examined. We conclude the paper  

in Section 4. 

2. Proposed Scheme 

2.1. Overview 

Figure 2 illustrates the block diagram of the proposed scheme. N views from Cameras 1 to N can be 

processed independently and each view includes texture video and its corresponding depth image. Since 

texture video is very similar to the traditional two-dimensional (2-D) video, it can be compressed by a 

standard codec, such as High Efficiency Video Coding (HEVC), for high compression efficiency. In this 

paper, we focus on the compression of depth images. In view of the sparsity of depth images, a block 

compressive sensing method is applied to compress them. Firstly, in order to reduce the amount of 

computation, the original depth image can be down-sampled [13] and the sampling rate can be set as 0.5. 

Then the entropy of pixels in each block can be calculated to determine the sparsity in the pixel domain. 

According to the sparsity, adaptive measurements can be allocated to each block for better compression 

efficiency. It is noted that in order to reduce the complexity of the CS encoder, the sparse transform can 
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be shifted into the CS reconstruction. Therefore, at the decoder CS recovery can be obtained by solving a 

convex optimization problem combined with the sparse transform. 

Figure 2. Block diagram of the proposed scheme. 

 

2.2. Basic Idea of CS 

Firstly, we will review the basics of the CS theory [7]. If ∈ nx R  is a discrete signal and u is its 

coefficients in some orthonormal basis Ψ , then = ΨTx u . Here, x  is said to be k -sparse with respect to 

Ψ  if only k  of n  coefficients are non-zero. In CS theory, instead of encoding the k  non-zero 

coefficients, the process of CS encoder is as follows: 

= Φy x  (1) 

where Φ  is ×m n  matrix and ∈ my R . Since <m n , the original signal x  can be compressed. At the 

CS decoder u  can be reconstructed by solving the following optimization problem: 

1
min u  

subject to = ΦΨTy u  
(2)

Then according to = ΨTx u , the original signal x  can be obtained. 

In this paper, the CS encoder is utilized block by block for each frame to generate the CS frame. Each 

block can be organized to form a 1×n  vector x . Here, the rows of the matrix Φ  are samples of an 

independent identically distributed (i.i.d.) symmetric Bernoulli distribution. To be more specific, in the 

matrix Φ , the row consists of 1±  and the probabilities of +1 and −1 are both 0.5. It is noted that for low 
complexity the matrix Φ  is the same for all blocks. According to Equation (1), the measurement y  can 

be produced directly in pixel domain, whose size is 1×m . Then the measurement y can be encoded and 

transmitted to the channels. At the decoder we use a generic log-barrier algorithm to solve Equation (2). 

The corresponding matlab codes can be found in [14]. Furthermore, DCT basis is adopted as the 

orthonormal basis Ψ  for simplicity. In this paper, DCT transform is not utilized at the encoder, but 

shifted into decoder. The corresponding details can be found in Section 2.4. 
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2.3. Entropy Calculation 

In information theory [15], entropy is the average amount of information contained in the source. 

Therefore, for the image source, the entropy can represent the complexity of the image contents to a 

great extent. To be more specific, if the image content is very complex, the entropy can be larger while 

if the image content is very smooth, it can be smaller. According to the essence of the entropy, in this 

paper, it can be employed to measure the sparsity of the depth image. Generally, the entropy H of a 
discrete random variable X with possible values 1 2{ , ,... ,... }i nx x x x  and probability mass function ( )P X  

can be defined as follows [15]: 

2( ) ( ) log ( )i i
i

H X P x P x= −  (3)

According to Equation (3), we can calculate the entropy of each block in the depth image. However, 

before the calculation, the background noise of the depth image should be removed first. It is noted  

that the removal of background noise aims to facilitate the accurate calculation of the entropy. Figure 3 

shows an example of an anti-ground noise filter for depth images. Due to the background noise, the 

neighboring pixel values differ slightly from one another, which results in an inaccurate description of 

the information content using entropy. To remove the background noise without high computation 

complexity, an anti-ground noise filter can be utilized here. We adopt 8 as the stepper to quantize all the 

256 pixel values of the original depth image. Finally, up to 32 (0–31) quantized values were left, which 

provided a good condition for the subsequent work. 

Figure 3. Example of the anti-ground noise filter. 

 



Entropy 2014, 16 6595 

 

 

When we calculate the entropy of all blocks in the depth image, the probability of the appearance of 

each pixel can be counted in the calculation of the entropy, which is as follows: 

( )
( ) , 0,1,...,31= =i

i i

n x
P x x

N  
(4)

Here, N is the total number of pixels in a block and ( )in x  is the number of the quantized values ix . As 

a result, the entropy of each block can be computing to measure the sparsity of the depth image. 

2.4. Adaptive Measurement Allocation 

In order to reconstruct a higher quality depth image at a lower sampling rate, we will allocate different 

sampling rates to different blocks according to their entropy, shown as the flowchart in Figure 4. For 

simplicity, the depth image can be divided into m  blocks with size n n× . Here, we can set 16=n . 

Assuming that 1=i , we can compute the entropy E  of the first block of the depth image. According to 
the relationship between E  and the threshold jE  ( 1, 2,...,5=j , and 5 4 3 2 1< < < <E E E E E ), the 

corresponding sampling rate kS  ( 1,2,...,6=k , and 6 5 4 3 2 1< < < < <S S S S S S ) can be allocated for each 

block until all the blocks have been processed. Here, 6 20%S = , 5 30%S = , 4 40%S = , 3 50%S = , 

2 60%S =  and 1 70%S = . It is noted that due to the total six decisions, three bits are required for each 

block as the overhead of the proposed scheme. 

Figure 4. Flowchart of measurement allocation. 

 

In Figure 5, a typical example for the standard test depth image Kendo is shown to explain the 

adaptive measurement allocation. Here, we use different colors to represent different sampling rates, 
such as white for 1S , red for 2S , blue for 3S , green for 4S , yellow for 5S  and black for 6S . In view of 
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the characteristics of depth images, the most smooth block marked by black can be allocated the lowest 

sampling rate while the complex texture block marked by white can be allocated the highest sampling 

rate. As shown in Figure 5, since the smooth blocks are actually a larger percentage of all the blocks, 

higher compression efficiency may be achieved using unequal sampling rates than with a uniform 

sampling rate. 

Figure 5. A typical example of measurement allocation. 

 

It is noted that the threshold jE  can be computed by statistical methods. Firstly, since five thresholds 

should be taken into account, we can divide the entropy values of all blocks into five equal intervals. 

Here, also take the standard test depth image Kendo as an example, as shown in Figure 6. Furthermore, 

we can obtain the central values of each bin which are noted by colored circles in Figure 6. These central 

values can be considered as thresholds. We have to compute the entropy for all blocks, and decide the 

thresholds. Then for a different image, the entropy thresholds have to be computed again. Currently, we 

consider six levels of thresholding. More levels means better reconstructed image quality, but it also 

increases the computing complexity. 

Figure 6. A typical example of threshold determination. 
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2.5. Improved CS Reconstruction 

Here, the sparse transform can be shifted to the decoder to reduce the complexity of the encoder. 
Here, the log-barrier algorithm can be designed to solve quadratically constrained 1L  minimization: 

1
min u  

subject to 
2

ε− ≤Au b  
(5)

Here, = ΦΨTA , u  is the coefficient of original pixel x  in some orthonormal basis Ψ , and b  is the 

vector of observation. It is noted that according to the log-barrier algorithm, some parameters should be 

updated due to the combination of sparse transform. Next the derivation is shown as follows: 

= Φ = ΦΨ =Ty x u Au  (6)

Then we will introduce the singular value decomposition (SVD) of TA : 

( ) ( )= = =T T T T TA A USV VSU  (7)

Since A  is an m n×  matrix, U  is an m m×  unitary matrix, S  is an m n×  diagonal matrix and the n n×  

unitary matrix TV denotes the conjugate transpose of the n n×  unitary matrix V . Furthermore, 

according to Equation (7), the Equation (6) can be rewritten by: 

= Ty VSU u  (8)

It also can be changed as follows: 
1− =T TS V y U u  (9)

By the comparison between Equation (5) and Equation (9), the parameters can be updated as follows: 
firstly, b in Equation (5) can be updated by 1− TS V y . Secondly, A  in Equation (5) is updated by TU . 

Finally, the initial u  can be replaced by Ub . 

3. Experimental Results 

In this paper, the standard test sequences shown in Table 1 are selected to validate the proposed 

scheme. The input for each view is the first color image frame with the corresponding depth image.  

In the practical application, the camera can process the multiviews image by image, which is like the 

intra-coding in the traditional method. Here, the experimental results are tested on a PC with a 2.67 GHz 

Intel CoreTMi5 CPU and the main scheme is implemented using MATLAB R2010a. The virtual 

viewpoint synthesis software with the version VSRS3.5 is adopted as the experimental platform.  

Table 1. Test sequences 

Sequence Resolution View 

Balloons 1024 768×  1–3 
Kendo 1024 768×  1–3 

Pantomime 1280 960×  37–39 

It can be seen from Figure 7a,c,e that the proposed scheme outperforms the uniform sampling scheme 

in PSNR values of depth map at the same ratio. Here, the ratio is the average ratio or average sampling 
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rate for adaptive measurements. In the three tested sequences, the PSNR values of the sequence 

Pantomime are higher than the two other sequences because this sequence has more smooth regions and 

better sparsity. 

Figure 7. Objective quality comparison for Balloons, Kendo and Pantomime. (a), (c) and (e): 

for depth map; (b), (d) and (f): for synthesized virtual viewpoint. 

 

Since the depth map is not directly used for display, the objective and subjective quality of the 

rendered virtual views should be taken into account. In the objective aspect, the synthesized virtual 

viewpoint image can be achieved by two original camera images. For example, for the tested sequences 

Balloons and Kendo, the depth and texture from the 1st and 3rd views can be used to synthesize the 

texture of 2nd view while for the sequence Pantomime, the depth and texture from the 37th and 39th views 
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can generate the texture of 38th view. Then we make a comparison between the uniform sampling scheme 

and the proposed one by observing the quality of the synthesized image. In Figure 7b,d,f, it can be seen at 

the same average sampling rate, the synthesized image using the proposed scheme outperforms the 

uniform sampling scheme in PSNR values. Furthermore, the encoding and decoding times of the 

proposed scheme and the uniform one have also been shown in Table 2. From Table 2, we can find that 

the proposed scheme needs more time than the uniform one due to the increasing complexity. 

Table 2. The depth image encoding and decoding time of uniform and adaptive methods. 

Schemes 

Balloons Kendo Pantomime 

Ratio 

(%) 

Encoding 

Time 

Decoding 

Time 

Ratio 

(%) 

Encoding 

Time 

Decoding 

Time 

Ratio 

(%) 

Encoding 

Time 

Decoding 

Time 

Uniform 

20 0.0619 96.5081 20 0.0622 94.2078 20 0.0928 98.8772 

30 0.0709 99.7691 30 0.0709 98.1991 30 0.1072 101.4328 

40 0.0785 101.9015 40 0.0775 102.3725 40 0.1220 103.7480 

50 0.0873 105.1227 50 0.0849 107.5151 50 0.1353 106.4147 

60 0.0946 108.7454 60 0.0937 112.0063 60 0.1497 108.3903 

70 0.0980 110.1820 70 0.0965 115.0535 70 0.1513 111.1087 

Adaptive 

21.24 0.1709 98.2591 21.62 0.1710 97.6990 21.54 0.2687 100.1813 

26.94 0.1739 100.7861 27.36 0.1737 99.9364 29.76 0.2754 103.1046 

32.41 0.1772 103.5128 31.94 0.1761 103.0040 36.49 0.2849 104.7951 

41.20 0.1798 107.2502 41.60 0.1785 108.5315 45.2 0.2854 107.9946 

61.80 0.1844 109.7256 61.57 0.1837 112.2063 56.36 0.2923 109.8677 

Next, we further discuss the reconstruction quality of synthesized images. From Figure 8, it can be 

seen that the better visual quality of synthesized images has been observed with the proposed scheme 

than uniform sampling scheme, especially in some parts denoted by a yellow rectangle. 

Figure 8. Subjective quality comparison of synthesized virtual viewpoint for Balloons and 

Kendo. (a), (c), (e) and (g): uniform sampling; (b), (d), (f) and (h): proposed scheme. 
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In Table 3, the comparison with the traditional coding has been shown. Here, according to the main 

idea of JPEG or H.264 intra-coding, the traditional coding method is simulated based on a Discrete 

Cosine Transform (DCT). We decompose each block (16×16) of the original depth map by DCT and 

then perform the reconstruction using only the significant DCT coefficients. In Table 3, the traditional 

method has obtained higher PSNR values than the CS coding with more encoding time. Therefore, the 

CS method is suitable for real-time compression of high-speed camera images. 

Table 3. Comparison with the traditional method. 

Sequence Ratio 
PSNR (dB) Encoding time (s) 

Traditional Proposed Traditional Proposed 

Kendo 27.36% 45.5579 43.7066 0.9733 0.1736 
Balloons 32.41% 43.0547 40.2082 0.9713 0.1772 

Pantomime 21.54% 52.9541 49.8902 1.4823 0.2686 

In the current stage, the CS method cannot compete with the traditional method in terms of 

compression efficiency. The main reason is that at the DCT encoder can nicely remove the correlation 

in the original image so that most information of the image can be recovered by a small amount of 

transform coefficients. In contrast, the CS encoder can realize compression mainly based on random 

sampling. At the decoder, it can apply sparse transform to gain performance. In the future, it is necessary 

for us to refer to the traditional method to improve the results of the CS method. 

4. Conclusions 

In this paper, we fully consider the sparse characteristics of depth images and propose a novel scheme 

based on block compressive sensing. Since the entropy can describe the sparsity of the depth image to 

some extent, adaptive measurement allocation is designed based on the entropy of each block. The 

simulation results show that compared with uniform sampling scheme, the proposed scheme has better 

rate distortion performance for both depth maps and synthesized virtual viewpoints. 
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