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Abstract：Very recently, several chaos-based image ciphers using a bit-level permutation 

have been suggested and shown promising results. Due to the diffusion effect introduced in 

the permutation stage, the workload of the time-consuming diffusion stage is reduced, and 

hence the performance of the cryptosystem is improved. In this paper, a symmetric chaos-

based image cipher with a 3D cat map-based spatial bit-level permutation strategy is 

proposed. Compared with those recently proposed bit-level permutation methods, the 

diffusion effect of the new method is superior as the bits are shuffled among different bit-

planes rather than within the same bit-plane. Moreover, the diffusion key stream extracted 

from hyperchaotic system is related to both the secret key and the plain image, which 

enhances the security against known/chosen plaintext attack. Extensive security analysis 

has been performed on the proposed scheme, including the most important ones like key 

space analysis, key sensitivity analysis, plaintext sensitivity analysis and various statistical 

analyses, which has demonstrated the satisfactory security of the proposed scheme. 
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1. Introduction 

In recent years, various chaos-based image encryption algorithms have been proposed to meet the 

increasing demand for real-time secure image transmission over open channels. This is because 

conventional block ciphers, such as Triple-DES, AES and IDEA, do not have high performance in 

dealing with digital images which are mainly characterized by the bulk data capacity and high 

redundancy. Chaotic maps or systems, with the characteristics of sensitivity to initial conditions and 

control parameters, ergodicity, pseudo-randomness, etc., have drawn researchers' attention because 

such features naturally satisfy the essential design principles of a cryptosystem. Making use of these 

favorable characteristics, the algorithms based on chaotic systems have shown superior properties in 

security and complexity. In 1998, Fridrich [1] and Scharinger [2] proposed the first two chaos-based 

image encryption schemes with confusion-diffusion (or permutation-substitution) architecture, which 

are two essential properties of the operation of a secure cipher as identified by Claude Shannon in his 

masterpiece Communication Theory of Secrecy Systems [3]. Under this structure, the pixels of a plain 

image are firstly rearranged in a secret order with the purpose of estimating the strong relationship 

between adjacent pixels. Three typical area-preserving invertible chaotic maps � baker map, Arnold 

cat map and Chirikov standard map � are usually employed to fulfill this goal. Then in the diffusion 

stage, the pixel values are altered sequentially and the modification made to a particular pixel usually 

depends on the accumulated effect of all the previous pixel values, so as to diffuse the influence of 

each pixel over the whole cipher image. Various discrete and continuous chaotic systems such as 

logistic map, Chebyshev map, Lorenz system and hyperchaotic system can be employed to generate 

pseudorandom keystreams for diffusion. The permutation and the whole permutation-diffusion 

operations are usually iterated multiple times so as to achieve a satisfactory security level. 

Following their pioneering work, a growing number of chaos-based image cryptosystems realized 

on variety of permutation-diffusion architectures utilizing different chaotic systems, their cryptanalysis, and 

improvements have been proposed [4–24]. We refer the readers to our recent contributions [21,23,25] for a 

brief description of those achievements. Very recently, bit-level permutation algorithms were 

suggested by some scholars [25–29]. As the permutation is performed on the bit-plane rather than the 

pixel-plane, the bit-level permutation has the effects of both confusion and diffusion. As a result, the 

workload of the time-consuming diffusion stage is reduced, and hence the cryptosystem performance 

is improved. However, those proposed schemes shuffle each bit-plane of an image independently. 

Accordingly, the bits distribution of a bit-plane significantly affects the diffusion effect, i.e., if a bit-

plane contains pixels that are nearly all 1s or 0s, the introduced diffusion effect will be negligible. To 

further enhance the diffusion effect introduced in the permutation stage, this paper proposes an 

improved bit-level permutation strategy which shuffles the bits among different bit-planes rather than 

within the same bit-plane.  

Apart from performance considerations, security is the other essential issue. It has been reported 

that many proposed schemes have been successfully analyzed due to either the structural flaws or 

existence of weak keys in the algorithms. Table 1 summarizes some typical approaches to 

cryptanalysis of permutation-diffusion type image ciphers. 
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Table 1. Some typical approaches on cryptanalysis of permutation-diffusion type image ciphers. 

Approaches Cryptanalyzed by  Attacks employed 

Fridrich (1998) [1] Solak et al. (2010) [30] chosen-ciphertext 
Chen et al. (2004) [4] Wang et al. (2005) [31] chosen-plaintext 
Pareek et al. (2006) [5] Li et al. (2009) [32] known/chosen-plaintext 

Gao et al. (2008) [10] Rhouma et al. (2008) [33] 
chosen-
plaintext/ciphertext 

Tong et al. (2008) [11] Li et al. (2009) [34] chosen-plaintext 
Patidar et al. (2009) [14] Rhouma et al. (2010) [35] known-plaintext 
Zhu (2012) [22] Ozkaynak et al. (2012) [36]; Li et al. (2013) [37] known/chosen-plaintext 

As can be seen from Table 1, these cryptanalysis works almost exclusively use the known/chosen 

plaintext attack. This is because the diffusion key stream used in most schemes is solely determined by 

the key, which means that the same key stream is used to encrypt different plain images unless a 

different key is used. Unfortunately, all these cryptosystems are non one-time pad. The key stream can 

be easily determined by encrypting some special images (i.e., an all-white or all-black image) and then 

comparing them with the corresponding cipher images. To address this problem, Wang et al. [16] 

proposed a plain image related key stream generation scheme. In their scheme, the key stream 

elements are extracted from multiple times iteration of a chaotic map, and the iteration times is 

determined by plain pixel values. However, as the diffusion procedure, or more precisely, the key 

stream generation procedure is the highest cost of the whole cryptosystem, the extra iteration operation 

obviously degrades the performance. In the present paper, the key stream is associated with the plain 

image by circularly shifting each quantified element under the control of plain pixel. As the bitwise 

operations are extremely fast for the processor to handle, the execution time increment is negligible. 

Compared with ordinary chaotic systems, hyperchaotic systems, possessing more than one positive 

Lyapunov exponents, have more complex dynamical behaviors and number of system variables. This 

implies that cryptosystems built upon hyperchaotic system have stronger unpredictability and larger 

key space, which are essential for an effective cipher. 

The remainder of this paper is organized as follows: in the next section, the architecture and  

diffusion mechanism of the proposed cryptosystem are introduced and discussed. The detailed 3D cat 

map-based spatial bit-level permutation strategy is described in Section 3, followed by the 

hyperchaotic system based diffusion algorithm in Section 4. In Section 5, we analyze the security of 

the proposed image cipher and evaluate its performance through key space, statistical, key sensitivity, 

plaintext sensitivity, and speed analysis. Finally, conclusions are drawn in the last section. 

2. The Proposed Architecture 

The architecture of the proposed image encryption scheme is shown in Figure 1. As illustrated in 

this Figure the proposed cryptosystem consists of a single round spatial bit-level permutation and 

bidirectional diffusion. The plain image is firstly extended and piled up to a bit-cube. Next in the 

permutation stage, all the bits in the bit-cube are shuffled spatially by using a 3D cat map. Then the 

shuffled bit-cube is spread out back to pixel plane. In the successive bidirectional diffusion stage, the 

bit-level shuffled image is sequentially masked by a key stream extracted from hyperchaotic system in 
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order from left to right, top to bottom and bottom to top, right to left, respectively, and finally the 

output cipher image is produced. 

Figure 1. Architecture of the proposed cryptosystem. 

 

The diffusion mechanism of our cryptosystem is illustrated by Figure 2. Here we assume a worst 

case that a slight change is made to the lower right corner of the plain image at pixel (M, N). In the 

permutation stage, the change in pixel (M, N) is shuffled to pixel (M′, N′) under the control of the 3D 

cat map. Next in the first stage of bidirectional diffusion, the change is spread out to all pixels 

subsequent to (M′, N′). Then in the second stage, the diffused pixels produced in the previous step are 

spread out to the whole cipher image. The effectiveness of above diffusion mechanism will be 

qualitatively evaluated in Section 5.4. 

Figure 2. The diffusion mechanism of the proposed scheme. 

 

3. Spatial Bit-Level Permutation Strategy Using 3D Cat Map 

Before implementing spatial bit-level permutation, the plain image needs to be extended and piled 

up to a bit-cube. In digital imaging, color depth or bit depth is the number of bits used to indicate the 

color of a single pixel in a bitmapped image. For example, in 8-bit color mode, the color monitor uses 

8 bits for each pixel, making it possible to display 2 to the 8th power (256) different colors or shades of 

gray. Therefore, a D-bit image of size M × N can be piled up to a bit-cube with side length 
3( )cL ceil M N D   , where ceil(x) returns the value of x to the nearest integers greater than or equal to 

x. The insufficient R = Lc
3 – M × N × D bits are padded with pseudo-random binary numbers generated 

by chaotic logistic map. The logistic map is described by: 

1 (1 ),  [0,4],n n nx x x      (1)
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where μ and x are parameter and state variable, respectively, and the system shows chaotic behavior for 
μ∈[3.57, 4]. The padding bits are quantified from the current state of the map with μ = 4 according to: 

0, for  0.5,

1, for  0.5.n

x
p

x


  

 (2)

The quantified sequence pn follows Bernoulli distribution because of the symmetric property of the 

invariant density for the logistic map with μ = 4, which is described by: 

1
,  for 0 1,

(1 )( )

       0,          otherwise.

x
x xx 

    



 (3)

The padded bits are just discarded during the deciphering process. Then all the bits in the bit-cube 

are shuffled spatially by using 3D cat map. The so-call 3D cat map is a bijection of the unit cube I × I 

× I onto itself, as described by: 
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and mod(x, y) divides x by y and returns the remainder of the division. The map is invertible and area-

preserving as det |A| = 1. 

In order to incorporate the 3D cat map into the spatial permutation that operates on a 3D lattice of 

finitely many bits, it has to be discretized, while reserving some of its useful features such as the 

mixing property and the sensitivity to initial conditions and parameters. The discretized version 3D cat 

map can be obtained simply by changing the range of (x, y, z) from the unit cube I × I × I to the 

discrete 3D lattice N × N × N, as follows: 

1

1

1

 ,
n n

n n

n n

x x

y y mod N

z z







   
      
      

A  (5)

where N is the side length of a bit-cube. The combination of the six control parameters (ax, ay, az, bx, by, bz) 

and the number of iterations m are used as the permutation key. As there only exist a linear 

transformation and mod function, it is very efficient to shuffle a bit-cube by using the 3D cat map. 

The inverse transform of the 3D cat map used for deciphering is given by: 
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The application of the proposed and conventional bit-level permutation methods is demonstrated in 

Figure 3. Figure 3(a) shows the 512 × 512 pixels Lena image with 256 gray levels. Figure 3(b) shows 

the results of applying the proposed permutation method once, and the permutation key is (ax = 20, ay = 

17, az = 42, bx = 53, by = 5, bz = 20). The test images after applying the 2D cat map-based conventional 

bit-level permutation method once, two and three times are shown in Figures 3(c–e), respectively, and 

the key used for the eight bit-planes is {(a1 = 40, b1 = 9), (a2 = 35, b2 = 8), (a3 = 30, b3 = 7), (a4 = 25, 

b4 = 6), (a5 = 20, b5 = 5), (a6 = 15, b6 = 4), (a7 = 10, b7 = 3), (a8 = 5, b8 = 2)}. As can be seen from 

Figure 3, after only applying the proposed permutation strategy once, the correlation among the 

adjacent pixels in the plain image is effectively eliminated and the resultant image is completely 

unrecognizable. Meanwhile, the randomness of the resultant image produced by the proposed 

permutation method with one iteration cycle is even superior to that of the resultant image produced by 

the conventional bit-level permutation method with three iteration cycles. A thorough quantitative 

comparison will be given in Section 5.2 to demonstrate the superior diffusion effect introduced by the 

proposed permutation method. 

4. Image Diffusion Using Hyper-Chaotic System 

In the present paper, a hyperchaotic system proposed by Jia [38] is employed to generate the key 

stream for diffusion. The system is described by: 

  ,

,

,

,

x a x y u

y xz rx y

z xy bz

u xz du

   


   


 
   






 
(7)

where a, r, b are the system parameters, and d is the control parameter. When a = 10, r = 28,  

b = 8/3 and 0.85 < d < 1.3, the system exhibits chaotic behavior, and the projections of its attractor in 

the six different planes are shown in Figure 4. The initial state values (x0, y0, z0, u0) are used as the 

diffusion key. 
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Figure 3. The application of the proposed bit-level permutation method and the conventional 

pixel-level permutation method. (a) The Lena image 512 × 512 pixels with 256 gray levels. 

(b) The Lena image after applying the proposed permutation method once. (c) The Lena 

image after applying the conventional bit-level permutation method once. (d) The Lena 

image after applying the conventional bit-level permutation method two times. (e) The 

Lena image after applying the conventional bit-level permutation method three times. 

(a) (b) 
 

  
(c) (d) (e) 

Figure 4. Projections of the attractor of the employed hyperchaotic system. (a) x-y plane. 

(b) x-z plane. (c) x-u plane. (d) y-z plane. (e) y-u plane. (f) z-u plane. 

 
(a) (b) (c) 

 
(d) (e) (f) 

The detailed diffusion procedure is described as follows: 

Step 1: The shuffled bit-cube is spread out back to pixel-plain and arranged to a vector p={p1, p2, 

…, pM×N} in the order from left to right, top to bottom. 
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Step 2: Pre-iterate Equation (7) for N0 times to avoid the harmful effect of transitional 

procedure, where N0 is a constant. The equation is solved by using fourth-order Runge-Kutta 

method, as given by: 
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where: 
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and the step h is chosen as 0.0005. 

Step 3: The hyperchaotic system is iterated continuously. For each iteration, we can obtain four key 

stream elements from the current state of the hyperchaotic system according to: 

14[ (( ( ) ( ( ))) 10 ),2 ],  { , , , },D
n n nk mod round abs floor abs x y z u        (9)

where round(x) rounds x to the nearest integers, abs(x) returns the absolute value of x, and floor(x) 

returns the value of x to the nearest integers less than or equal to x. In our scheme, all the variables are 

declared as 64-bit double-precision type, which has a 15-digit precision according to the IEEE 

floating-point standard, and therefore the decimal fractions of the variable is multiplied by 1014. 
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Step 4: Let p4×(n−1)+m (m = 1, 2, 3, 4) denote the currently operated pixel. Circularly shift kφn left 

rφ bits, as illustrated by Figure 5, where rφ is determined by the previously operated plain pixel 

according to: 

4 ( 1)

4 ( 1) 1
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4 ( 1) 3
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 (10)

One may set initial value p0 as an arbitrary constant from 0 to 2D. 

Figure 5. The circular shift of key stream element. 

 

Step 5: Calculate the cipher pixel value according to Equation (11):  
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 (11)

where c4×(n−1)+m (m = 1, 2, 3, 4) are the output cipher pixels, and ⊕ performs bit-wise exclusive OR 

operation. The initial value c0 may also be set as a constant. 

Step 6: Return to Step 3 until all the pixels in vector p are encrypted. Finally, the cipher pixel set  

c = {c1, c2, …, cM×N} is reshaped back into a M × N matrix and the cipher image is produced. 

The decryption procedure is similar to that of the encryption process described above, and the 

inverse of Equation (11) is given by: 

4 ( 1) 1 4 ( 1) 1 4 ( 1)

4 ( 1) 2 4 ( 1) 2 4 ( 1) 1

4 ( 1) 3 4 ( 1) 3 4 ( 1) 2

4 ( 1) 4 4 ( 1) 4 4 ( 1) 3

[ 2 ]   2 ,

[ 2 ]   2 ,

[ 2 ]   2 ,

[ 2

D D
n xn n n xn

D D
n yn n n yn

D D
n zn n n zn

D
n un n n

p k c c k mod

p k c c k mod

p k c c k mod

p k c c

       

        

        

        

    

    

    

    ]   2 .D
unk mod






 

 (12)

The overall permutation-diffusion operations are usually performed for several rounds according to 

the security requirement. Obviously, the more rounds are processed, the more secure the encryption is, 

but at the expense of computations and time delays. 

5. Security Analysis 

A good cryptosystem should resist all kinds of known attacks, such as exhaustive search attack, 

statistical attack, known/chosen plaintext attack and differential attack. In this section, a thorough 
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security analysis has been carried out to demonstrate the robustness of the proposed scheme, as 

discussed in the following. 

5.1. Key Space Analysis 

The key space is the total number of different keys that can be used in the encryption/decryption 

procedure. For an effective cryptosystem, the key space should be large enough to make the exhaustive 

search attack infeasible. As mentioned above, the key of the proposed cryptosystem is composed of 

two parts: permutation key Key-P and diffusion key Key-D. key-P consists of six integers (ax, ay, az, bx, 
by, bz)∈[1, Lc] and the iteration times m∈N+, and therefore the size of key-P is (Lc

6)m. Key-D is 

composed of four floating point numbers (x0, y0, z0, u0)∈R. As all the variables are declared as 64-bit 

double-precision type, the total number of possible values of Key-D is approximately (1015)4. The two 

parts key-P and key-D are independent of each other, thus the key space of the proposed cryptosystem is: 
6 60- - ( ) 10 .m

total cKey key P key D L     (13)

We take a 256 grayscale image of size 512 × 512 as an example, 3( 512 512 8) 128cL ceil    . If 

we choose m = 1, the key space satisfies: 
2412 ,totalKey   (14)

which is far larger than that of most well-known block ciphers such as Triple-DES (168-bit), IDEA 

(128-bit) and AES (128-bit and 192-bit versions). Furthermore, this is just for one round of the several 

iterations, the increase of round numbers will further enlarge the key space. Therefore, it can be 

concluded that the proposed scheme is robust against exhaustive search attacks. 

5.2. Statistical Analysis 

Statistical analysis is a common and effective way to analyze a cryptosystem. Consequently, a good 

cipher should be robust against any statistical attack. In order to prove the security of the proposed 

image cryptosystem, the following statistical tests are performed. 

5.2.1. Histogram 

The frequency distribution of cipher pixel values is of great importance. It should hide the 

redundancy of the plain image and should not leak any information about the relationship between the 

plain image and the cipher image. Histogram, a key tool in image processing, is a graph showing the 

number of pixels in an image at each different intensity value found in that image. It can be visualised 

as if each pixel is placed in a bin corresponding to the colour intensity of that pixel. All of the pixels in 

each bin are then added up and displayed on a graph. Figure 6(a) shows the test image, and (c) and (e) 

show its shuffled images using the conventional bit-level permutation method and the proposed spatial 

bit-level permutation method, respectively, and (g) shows its output cipher image produced by the 

proposed cryptosystem. Their corresponding histograms are shown in Figures 6(b, d, f, h), respectively. 
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Figure 6. Histograms analysis. (a) plain image. (b) histogram of (a). (c) shuffled image 

using conventional bit-level permutation method. (d) histogram of (c). (e) shuffled image 

using the proposed spatial bit-level permutation method. (f) histogram of (e). (g) ciphered 

image produced by the proposed cryptosystem. (h) histogram of (g). 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

As can be seen from Figure 6, the histogram of the output cipher image is fairly evenly distributed 

over the scale, and therefore no information about the plain image can be gathered through histogram 

analysis. Meanwhile, though the histogram of the shuffled image produced by the proposed 

permutation method is not distributed in a perfectly uniform, its uniformity is much better than that of 

the image produced by the conventional bit-level permutation method owing to the superior diffusion  

effect introduced. 

5.2.2. Information Entropy 

Information entropy, the most important feature of randomness, is one of the fundamental criteria to 

measure the strength of a cryptosystem. To calculate the entropy H(S) of a source s, we have: 

2
1

( ) ( ) log ( ),
n

i i
i

H S P s P s


   (15)

where S is a random variable with n outcomes {s1, ..., sn} and P(si) is the probability mass function of 

outcome si. Obviously, for a random image with 256 gray levels, the entropy should ideally be H(S) = 8. 

That is, if the entropy of a ciphered grayscale image is less than 8, there exists a certain level of 

predictability, which threatens its security. 

Table 2 lists the entropies for the test image and its output cipher images produced by the proposed 

image cryptosystem, as well as its shuffled images using the conventional and proposed bit-level 

permutation methods. As can be seen from Table 2, the entropy of the output cipher image is very 

close to the theoretical value of 8. This means that there is no leakage of information from the 

proposed cryptosystem during its execution, and therefore the proposed cryptosystem is robust against 

entropy analysis. Furthermore, the entropy of the shuffled image using the proposed scheme is 



Entropy 2014, 16 781 
 

 

comparable with that of the output cipher image and significant superior to that of the shuffled image 

using the conventional scheme for the same reason discussed above. 

Table 2. Results of entropy analysis of the proposed image cryptosystem. 

Plain 
image 

Shuffled image using 
conventional scheme 

Shuffled image using 
proposed scheme 

Output cipher 
image 

7.3640 7.7620 7.9959 7.9995 

5.2.3. Correlation of Adjacent Pixels 

Pixels in an ordinary image are usually highly correlated with their adjacent pixels either in 

horizontal, vertical or diagonal direction, but the correlation of the adjacent pixels in a cipher image 

should be as low as possible so as to resist correlation analysis. The correlation of adjacent pixels can 

be visually measured by the following procedure. First, randomly select P0 pairs of adjacent pixels in 

each direction from the image, where P0 is typically larger than 2,000. Then, plot the distribution of the 

adjacent pixels by using each pair as the values of the XY coordinate. The correlation distribution of  

two vertically adjacent pixels in the test image, its shuffled images using the conventional and  

proposed permutation methods, and its output cipher image produced by the proposed cryptosystem 

are shown in Figures 7(a–d), respectively. Similar results can be obtained for horizontally and 

diagonally adjacent pixels. 

Figure 7. The visual testing of correlation of vertically adjacent pixels. (a) correlation of 

vertically adjacent pixels in the test image. (b) correlation of vertically adjacent pixels in 

the shuffled image using conventional permutation method. (c) correlation of vertically 

adjacent pixels in the shuffled image using the proposed permutation method. (d) 

correlation of vertically adjacent pixels in the output cipher image produced by the 

proposed cryptosystem. 

 
(a) (b) 

 
(c) (d) 
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To further quantify the correlations of adjacent pixels in an image, the correlation coefficient rx,y is 

calculated by using the following three formulas:  
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where xi and yi are grayscale values of the ith pair of adjacent pixels, and N denotes the total  

number of samples. 

Table 3 lists the results of the correlation coefficients for horizontal, vertical and diagonal adjacent 

pixels in the four images. It’s clear from Figure 7 and Table 3 that the strong correlation between 

adjacent pixels in the test image is completely eliminated in both the output cipher image and the 

shuffled image using the proposed permutation method. Moreover, though the correlation coefficients 

for the shuffled image produced by the conventional permutation method are comparable with that of 

the output cipher image, its visual testing results are relatively poor compared with the proposed 

permutation method. 

Table 3. Results of correlation analysis of the proposed image cryptosystem. 

Direction 
Plain 
image 

Shuffled image using 
conventional scheme 

Shuffled image using 
proposed scheme 

Output cipher 
image 

Horizontal 0.9869 0.0232 0.0251 0.0201 

Vertical 0.9768 0.0226 −0.0226 −0.0129 

Diagonal 0.9679 −0.0511 0.0163 0.0057 

5.3. Key Sensitivity Analysis 

Another essential property required by a cryptosystem is key sensitivity, which ensures that no data 

can be recovered from the ciphertext even though there is only a minor difference between the 

encryption and decryption keys. To evaluate the key sensitivity property of the proposed cryptosystem, 

the test image (Figure 3(a)) is firstly encrypted using a randomly selected key (ax = 73, ay = 40, az = 43, 

bx = 74, by = 47, bz = 63, x0 = 5.00835323256446, y0 = −5.76624087423199, z0 = 6.72223702603131,  

u0 = 5.26045903184283), and the resultant cipher image is shown in Figure 8(a). Then the ciphered 

image is tried to be decrypted using eleven decryption keys, as listed in Table 4. The resultant 

deciphered images are shown in Figures 8(b–l), respectively, from which we can see that even an 

almost perfect guess of the key does not reveal any information about the plain image. Therefore, it 

can be concluded that the proposed image cryptosystem fully satisfies the key sensitivity requirement. 
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Table 4. Decryption keys used for the key sensitivity test. 

Figure Decryption key 

8(b) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(c) 
(ax = 74, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(d) 
(ax = 73, ay = 41, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(e) 
(ax = 73, ay = 40, az = 44, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(f) 
(ax = 73, ay = 40, az = 43, bx = 75, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(g) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 48, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(h) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 64, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(i) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256447,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(j) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423198, z0 = 6.72223702603131, u0 = 5.26045903184283) 

8(k) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603132, u0 = 5.26045903184283) 

8(l) 
(ax = 73, ay = 40, az = 43, bx = 74, by = 47, bz = 63, x0 = 5.00835323256446,  
y0 = −5.76624087423199, z0 = 6.72223702603131, u0 = 5.26045903184284) 

Figure 8. Deciphered images using slightly different keys. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Figure 8. Cont. 

(i) (j) (k) (l) 

5.4. Plaintext Sensitivity Analysis 

To implement plaintext sensitivity analysis, an opponent may try to establish a relationship between 

the plain image and its cipher image by observing the influence of a slight change on the overall 

encryption output. With the help of other analysis methods the secret key may be obtained. This kind 

of cryptanalysis becomes practically infeasible if such a slight change can be effectively diffused to the 

whole ciphered image. To measure the diffusion property of a cryptosystem, two criteria NPCR 

(number of pixel change rate) and UACI (unified average changing intensity) are commonly used. 

The NPCR is used to measure the percentage of different pixel numbers between two images. 

Let P1(i, j) and P2(i, j) be the (i, j)th pixel of two images P1 and P2, respectively, the NPCR can be 

defined as: 

1 1
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where W and H are the width and height of P1 or P2, and D(i, j) is set to 0 if P1 (i, j) = P2 (i, j) and 1 

otherwise. The NPCR value for two random images, namely the ideal value of the criterion, is given by: 

exp

1
1 100%.

2ected D
NPCR     

 
 (20)

For instance, the expected NPCR for two random 8-bit grayscale images is 99.609%. 

The second criterion, UACI is used to measure the average intensity of differences between the two 

images. It is defined as:  
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The UACI value for two random images is given by: 
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For an 8-bit grayscale image, the expected UACI value is 33.464%. 
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To test the NPCR and UACI of the proposed cryptosystem, we assume a worst case that two plain 

images have only one bit difference at the lower-right pixel, as illustrated by Figures 9(a,b), 

respectively. The two images are encrypted with the same key and their corresponding cipher images 

are shown in Figures 9(c,d), respectively. The differential image between the two cipher images can be 

found in Figure 9(e). We obtain NPCR = 99.611% and UACI = 33.467%. The results show that a slight 

change in the original image will result in a significant change in the ciphered image, so the proposed 

scheme is robust against differential analysis. 

Figure 9. NPCR and UACI test. (a) and (b) are two plain images with only one bit 

difference at the lower-right pixel. (c) cipher image of (a). (d) cipher image of (b). (e) 

differential image between (c) and (d). 

73

 
74

 

(a) (b) 
 

   

(c) (d) (e) 

5.5. Speed Performance 

Apart from the security considerations, computational efficiency is another important issue for a 

good cryptosystem, particularly for real-time Internet applications. Table 5 shows the time required for 

encrypting a 256 × 256 image with 256 grey levels by using the proposed and some typical block and 

chaos-based ciphers. 

The number of permutation/diffusion rounds indicate the minimum number of iterations required to 

achieve a satisfactory diffusion effect, i.e., NPCR > 0.996 and UACI > 0.334. As the operation 

mechanism of the chaos-based encryption algorithms is quite different from that of block algorithms, 

the comparison of iteration times is made only between chaos-based approaches. All the algorithms 

have been implemented using Code::Blocks and the tests have been done on a personal computer with 

an Intel Core i3-2100 CPU and 2 GB RAM. As we know, the speed performance of an algorithm may 

be influenced by many factors, including the compiler used and even the programming level. To 

estimate the efficiency of an image cryptosystem more precisely, a more objective criterion, number of 

basic assembly instructions needed to cipher a pixel, is employed, and the analysis results for the 

proposed and the comparative schemes are also listed in Table 5. As can be seen from Table 5, the 

proposed scheme outperforms other listed schemes with respect to either security or computational 
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complexity. Therefore, our image cryptosystem is quite suitable for Internet applications over 

broadband networks, where the encryption and decryption time should be short relative to the 

transmission time. 

Table 5. Comparison between the performance and security of the proposed and some  

typical block and chaos-based ciphers. 

Approaches 
Total 

cites 

Permutati

on rounds 

Diffusio

n rounds
Key size 

Known/chosen-

plaintext attack

Encrypti

on time 

(ms) 

Number of basic

instructions per 

pixel 

DES N/A N/A N/A 56 Robust (CBC) 104.4 N/A 

AES N/A N/A N/A 
128,192,

256 
Robust (CBC) 75.5 N/A 

Chen et al (2004) [4] 1024 4 4 128 Weak 54.7 2203 

Wong et al (2008) [12] 176 2 2 256 Robust 52.3 1858 

Patidar (2009) [14] 132 2 2 157 Weak 45.2 1629 

Our scheme N/A 1 2 241 Robust 30.7 1208 

6. Conclusions 

This paper has proposed an improved bit-level permutation approach for chaos-based image cipher 

with permutation-diffusion architecture. In the permutation stage, a significant diffusion effect is 

introduced through a 3D cat map-based spatial bit-level shuffling algorithm. As the pixel value mixing 

effect is contributed by both stages, the number of iteration rounds required by the time-consuming 

diffusion procedure is reduced, and hence the performance of the cryptosystem is improved. Compared 

with other recently proposed bit-level permutation algorithms, the diffusion effect of the proposed 

method is superior as the bits are shuffled among different bit-planes rather than within the same bit-

plane. In the diffusion stage, the key stream elements extracted from the hyperchaotic system are 

circularly shifted under the control of plain pixel. As a result, the key stream is related to both the 

secret key and the plain image, which enhances the security against known/chosen plaintext attack. 

Moreover, compared with low dimensional chaotic maps, the hyperchatic system has more 

complicated dynamical property and number of state variables, which further enhance the security of 

the cryptosystem. Both theoretical analyses and experimental results indicate the new image 

cryptosystem has a high security level, which can effectively resist all common attacks such as brute 

force attacks, differential attacks, various statistical attacks, and known/chosen plaintext attacks. 

Therefore the proposed scheme has excellent potential for practical online image encryption applications. 
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