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Abstract: Studies of spatial patterns of landscapes are useful to quantify human impact, 

predict wildlife effects, or describe various landscape features. A robust landscape index 

should quantify two components of landscape diversity: composition and configuration. One 

category of landscape index is the contagion index. Some landscape ecologists promote the 

use of relative contagion indices. It is demonstrated, using simulated landscapes, that 

relativized contagion indices are mathematically untenable. A new entropy contagion index 

(Γ) is developed. Distributional properties of ̂  are derived. It is shown to be asymptotically 

unbiased, consistent, and asymptotically normally distributed. A variance formula for ̂  is 

derived using the delta method. As an application, the pattern and changes in forest types 

across four soil-geologic landform strata were analyzed on the 80,000 ha Savannah River 

Site in South Carolina, USA. One-way analysis of variance was used for hypothesis testing 

of contagion among strata. The differences in contagion across the strata provide insight to 

managers to meet structural objectives.  
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1. Introduction 

Landscape diversity refers to the various ecosystems (including human, e.g., cities, farm country, 

etc.) within a large area. The structure observed in landscapes result from complex interactions 

between physical, biological, and social forces [1]. Agencies involved with natural resources have 

been expanding current management approaches to address landscape-level concerns and issues [2]. 

With the recognition of such problems as loss of biodiversity, climate change, and ecosystem 

degradation, a necessary evolution in management scale has come about, based on watersheds or other 

ecological landscape scale units rather than political boundaries. A quantitative basis for measuring 

spatial structure is a prerequisite to implementing landscape management. Without such, structural 

objectives cannot be established nor can the understanding of spatial dynamics necessary to achieve 

structural objectives be realized. 

A landscape contagion index is a quantitative metric, a single statistic applied on a broad spatial 

scale in which two distinct components are confounded: composition and configuration. Composition 

refers to both the total number of land cover categories or “patch” types and their relative proportions 

in the landscape, whereas configuration refers to the spatial pattern of patches in the landscape [3]. 

Contagion, as defined by O’Neill et al. [4], measures the extent to which landscape elements are 

aggregated or clumped. Higher values of contagion generally result from landscapes with a few large, 

contiguous patches, whereas lower values usually characterize landscapes with many small patches. 

Also, holding the number of categories more or less constant, contagion values, in general, should 

decrease as category proportions become more even. 

As a statistic, a contagion index is limited if it cannot be used in making comparisons of diversities 

among different landscapes or the same landscape through time based on sample data. If the land cover 

categories are the same between two landscapes, then contingency table analysis could be used to test 

if relative proportions of categories are the same between the landscapes. This would answer the 

composition question, but not the configuration question. Spatial sampling is typified by systematic 

sampling at lattice intersection points. As one moves along transects from point to point, transitions are 

made from patch type to patch type (Figure 1). The sequences of transitions can be regarded as 

realizations of a Markov chain. A matrix of transition probabilities can be constructed for each 

landscape and the null hypothesis that the matrices of transition probabilities are the same can be tested 

with a log likelihood ratio test [5]. However, if the number or kinds of patch types differ among 

landscapes, how then does one test for differences in landscape diversity? This same problem faced 

ecologists with species diversity indices. Hutcheson [6] devised an analysis of variance (ANOVA) 

type test for the Shannon species diversity index by investigating the distributional properties and 

sampling variance of the index. Moran [7] gives the sampling variance of a join-count statistic for 

testing spatial dependence from simple binary classifications of landscapes. The sampling properties of 

a landscape index must be known before one can construct an appropriate test. Is the index unbiased? 

Is it consistent? Can the variance be computed or approximated? Is the sample distribution normal? A 

formal investigation is necessary to answer these questions. 

This paper develops a correctly specified entropy-based contagion index and provides a statistical 

basis for its use in hypothesis testing. There were a number of specific objectives of this research. 

First, to show using simulated landscapes, that the currently used relativized contagion index possesses 
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mathematically undesirable behavior. Second, to derive an index that exhibits desirable mathematical 

behavior. Third, study the sampling properties of the new index. And fourth, apply the new index to 

forested landscapes looking at contagion of forest types on the four soil-geologic landform strata of the 

Savannah River Site in South Carolina. 

Figure 1. A four-category landscape mosaic sampled with a lattice of plots (circles) and 

overlaid with a grid to aid in computation of join counts. 

 

2. Relative Contagion 

Li and Reynolds [3] defined relative contagion (RC) as: 

max1 /RC EE EE   (1) 

where EE denotes the entropy value. The well-known measure of entropy for categorical data, derived 
by Shannon [8], is ln( )i ip p . Based on Equation (1), Li and Reynolds gave the following index: 

1 1

ln( )

1
2ln( )

n n

ij ij
i j

p p

RC
n

  


 (2) 

where /ij i j ip p p  , ip  is the proportion in land cover i (see Figure 1) and n is the total number of land 

cover categories (patch types) in a particular landscape, / /j i ij ip N N  is the conditional probability, 

ijN  is the number of joins or adjacencies between grid cells (pixels) of patch types i and j (using the 4 

orthogonal neighbor rule, preserving the order of pixels [9]), and iN  is the total number of joins 

between pixels of patch type i and all patch types (including patch i itself). With this definition of ijp  

Li and Reynolds proved max 2 ln( )EE n . The index RC  ranges from 0 to 1. Other (relativized) 

contagion indices are reviewed in [10]. The index RC has been used to detect changes in spatial 

patterns and structure across a variety of landscapes around the globe [11-13].  
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3. The Problem with Relativizing Contagion  

For an index to be appropriate, its behavior must follow the precepts of its definition. In the case of 

relativized contagion, it is easy to demonstrate illogical behavior. Simulated landscapes can be used to 

formally investigate behavior. 

3.1. Simulated Landscapes  

We generated a series of stochastically simulated landscapes with different spatial configurations 

(random, uniform, and aggregated) and numbers of patch types (from 2 to 10), with an increasing 

gradient of evenness of the proportions of patch types (see Figure 2 for examples of simulated 

landscapes). Relative to Figure 3a, as the number of patch types were increased (2-10) the relative 

proportion of land per patch type was adjusted the same for each of the three simulated landscape 

configurations (i.e. random, uniform, and aggregated) to reflect an increasing gradient of evenness (i.e. 

with 2 patch types RE ≈ 0 and as patch types were progressively added RE ≈ 1. In Figure 3b as the 

number of patch types increased (2-10) the proportion of land per patch types remained constant, (i.e. 

RE ≈ 1). The rationale behind this scheme is to have coverage of points between the extremes of high 

contagion to low contagion. There were 27 simulated landscapes, nine for each spatial configuration. 

As a second approach, another series of landscapes were constructed for random, uniform, and 

aggregated configurations, and numbers of patch types (from 2 to 10), but with completely even 

proportions of patch types. Again, 27 landscapes were created, nine for each spatial configuration. A 

simple 0 to 1 scaled measure of evenness is given by [14]: 

2

1

ln

ln( )

n

i
i

p

RE
n


 
  

 


 (3) 

where ip  is the proportion of the landscape in patch type i and RE (relative evenness) approaching 0 means 

increasing unevenness of the n categories and RE = 1 means all categories occur in equal proportion. 

Figure 2. Examples of (A) random, (B) uniform, and (C) aggregated landscapes used to 

investigate contagion index behavior. 
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3.2. Deficiencies of Relative Contagion  

Figure 3 displays two graphs of the RC values. In (a), under the increasing gradient of evenness, the 

three spatial configurations separate out very cleanly and logically, but the values only fall between 0 

and 0.6. Thus the RC values do not cover the upper portion of the 0 to 1 range (recall the simulated 

landscapes were designed to cover high to low contagion), showing some insensitivity to composition. 

In (b), under the same degree of evenness, as before, the three spatial configurations separate out very 

cleanly, but the three lines are essentially flat, showing that RC is completely insensitive to changes in 

number of patch types on the landscape when category proportions are equal. What does this mean? 

RC is measuring something other than contagion. For each value along the x-axis RE is constant, at its 

maximum value of 1. There is a direct parallel between the constancy of RE and the constancy of RC 

for each spatial configuration. It appears RC is measuring evenness. 

Figure 3. Trend lines showing relationship between RC and the two controlled variables: 

spatial pattern and number of patch types. (a) There is an increasing gradient of evenness 

along the x-axis. (b) Relative evenness (RE) ≈ 1 means all categories occur in equal 

proportion at each point along the x-axis. 

 
 

To strengthen this point, we constructed three test uniform landscapes, where landscape A has four 

categories, landscape B has five, and landscape C has six. Conceptually, as more patch types are 

included on a landscape, contagion should decrease. We changed patch type proportions on landscape 

A slightly to create landscapes B and C with one and then two additional patch types. There should be 

a small decrease in contagion from landscape A to B, and then from B to C. Table 1 lists the 

breakdown of category proportions on the three landscapes and gives the index values computed on 

these landscapes. The relative contagion index increases from A to B to C. The relativized index is not 

reflecting changes in contagion, but rather it maybe reflecting changes in evenness, as shown by RE. 
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Table 1. Illustrative example showing illogical behavior of relative contagion (RC) and 

proper behavior of the entropy index (Г). 

LANDSCAPE  PATCH TYPE PROPORTIONS INDEX VALUES 

  1 2 3 4 5 6 RE RC Г 

A   0.50 0.25 0.15 0.10   0.77 0.20 -2.22 

B   0.47 0.25 0.15 0.10 0.03  0.71 0.25 -2.41 

C   0.47 0.23 0.15 0.10 0.03 0.02 0.66 0.30 -2.51 

 

The effect of scaling contagion relative to the maximum contagion possible creates indices with 

mathematically undesirable qualities. Such indices are overly sensitive to small variation in 

composition. Sampling error could easily sway the result one direction or the other, so if contagion 

indices are to be meaningful they should be relatively insensitive to such a change. This revelation is 

not new. Quantitative ecologists [15, 16] argued against relativizing species diversity indices and they 

demonstrated that such indices are mathematically untenable. 

4. Entropy Index  

The maximum-entropy principle [8, 17] provides a means to obtain least-biased statistical inference 

under uncertainty. The rule is to choose the probabilities so as to maximize the uncertainty when one 

has only partial information about the possible outcomes. One can view the adjacency of patch type i 

and j as a general problem in waiting times [18] for the encounter of state ij, which follows a geometric 

distribution. We will show that by defining contagion as a generalized function and inserting expected 

values of random variables based on the uncertainty of the encounter of state ij, a theoretically proper 

entropy index results. 

4.1. Contagion Generalized  

In a contagious landscape the typical patch type is relatively concentrated. Therefore contagion can 

be viewed as a function of concentration: 

( ) ( )ij ijL p C p    (4) 

where ( )L  is the contagion on landscape L associated with the measure of concentration C, φ is any 

real constant, and /ij i j ip p p   (proportion of patch type i times the conditional probability). Because 

the meaning of contagion is the inverse of the meaning of species diversity, it is necessary to subtract 
the quantity ( )ij ijp C p  from some constant φ to reverse the scale and provide a contagion 

formulation. Recall that ijp  is the probability that two randomly chosen adjacent pixels belong to type 

i and j out of n patch types. Define X + 1 as the number of random picks of adjacent pixels up to and 

including the first encounter of state ij. This scheme is a general problem in waiting times. Under this 

scheme X has a geometric distribution: 

( | ) (1 ) , 0,1,2,x
ij ij ijP X x p p p x      (5) 

The ratio X/(X + 1) provides a reasonable measure of concentration. 



Entropy 2014, 16                          

 

 

1848

4.2. The New Index  

Let ( ) [ | ] [1/ ( 1) | ]ij ij ijC p E X p E X p   . Because [ | ] (1 ) /ij ij ijE X p p p   and [1/ ( 1) | ]ijE X p   

ln( ) / (1 )ij ij ijp p p   (see Appendix A for derivations), ( ) ln( )ij ijC p p  . Use of this result in Equation 

(4) with φ = 0 gives: 

1 1

ln( )
n n

ij ij
i j

p p
 

  . (6) 

The mathematical arguments used with the concentration function results in the entropy information 

value [8]. It has already been established that max 2 ln( )EE n  using the 4-neighbor double count 

adjacency rule. Therefore Г is bounded between 2ln(n) and 0. Expanding the ijp  term to its 

computational form, Equation (6) can be rewritten as:  

1 1

1 1
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n n

ij ij
i in n

i j
ij ij

j j

N N
p p

N N 

 

 
 
  
 
 
 


 

. (7) 

The index RC is readily obtained from Г by dividing by maxEE  and adding 1, thus RC is Г scaled to 

the interval [0,1]. 

4.3. Behavior of Г  

As a final check on the properties of Г, let us apply it to the three previous simulated landscapes, 

(i.e., random, uniform, and aggregated) and compare to Section 3, Figures 3(a-b). 

A graph of the Г values computed on the simulated landscapes generated with an increasing 

gradient of evenness is displayed as Figure 4(a). As is readily seen, Г is sensitive to both composition 

and configuration. The three spatial configurations separate out logically with aggregated landscapes 

having the highest values, followed by uniform landscapes, and then the randomly arranged landscapes 

having the lowest values. This is expected since random landscapes have little spatial autocorrelation 

whereas uniform and aggregated landscapes have increasing spatial autocorrelation of patches. There 

is a sharp decrease in all three curves with increasing number of patch types and evenness, covering 

nearly the full range of index values. This meets with the conceptual definition of contagion. A graph 

of the Г values from the 27 landscapes with RE ≈ 1 is displayed in Figure 4(b). Again we see that Г 

distinguishes between the three spatial configurations and decreases with increases in number of land 

cover categories. Its behavior is consistent with changes in composition and configuration. Contrast 

this with the behavior of RC on the same landscapes (Figure 3(b)). The index RC failed to be sensitive 

to changing composition. 
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Figure 4. Trend lines showing relationship between Г and the two controlled variables: 

spatial pattern and number of patch types. (a) There is an increasing gradient of evenness 

along the x-axis. (b) Relative evenness (RE) ≈ 1 means all categories occur in equal 

proportion at each point along the x-axis. 

 

5. Sampling Properties of the Entropy Index  

To obtain an estimate of the contagion on the basis of a given sampling lattice, the unknown a 
priori probabilities, the sijp , are replaced by estimated probabilities. In this connection, the properties 

of the random variable: 

11 12
ˆ ˆ ˆ ˆ( , , , )nnp p p     (8) 

are what we wish to determine. 

5.1. Bias and Variance of ̂   

To estimate the first moment of Equation (8), it is necessary to expand the function in a Taylor 
series about the point 11( , , )nnp p  and take the expected value. We write the expansion as follows: 

         

     

2

11 11

3 4(4)

1
ˆ ˆ ˆ ˆ, , , ,

2
1 1

ˆ ˆ
6 24

nn nn ij ij ij ij ij ij

ij ij ij ij ij ij

p p p p p p p p p p

p p p p p p

         

      

 

 

 


 (9) 

The expectation of Equation (9) involves the central moments of the random variables ˆ ijp , which 

follow a multinomial distribution. Let T be the total number of lattice plots, and let ˆ .ij ij ijp p    The 

moment-generating function for the multinomial distribution [19] is: 

 ( / / )ij ij ij
T

x T p TE e E e          (10) 
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where ijx  takes the value 1 with probability ijp , and 0 with probability 1 ijp . Using Equation (10) to 

compute expected values of the terms in Equation (9) and simplifying, we obtain the first moment or 

mean of Equation (8): 

       

 

1 2 3
11

1

ˆ , ,

.

nnE p p o T o T o T

o T

  



        

  

 
 (11) 

From Equation (11) we can infer that ̂  is biased, but for any reasonable size T the bias is very small, 

and in fact is less than 1T  . 

The estimated ̂  equals the true Γ plus a random error ξ, i.e. ˆ   . By definition, 

 2
2 ˆE E          

, and the variance of ̂  is  2 2E E     . From Equation (11) we know that 

   1E o T  , consequently    2 2E o T  , which is negligible. Therefore, the variance of ̂  is: 

   2
2ˆ ˆvar E E           

 (12) 

A common approach for establishing the variance of a scalar statistic that is a function of many 

variables is the delta method [20,21]. The delta method uses the first order multivariate Taylor series 

expansion to produce an estimated variance, i.e., var( ̂ ). The variance derivation for ̂  is given in 

Appendix B. For ̂  we have: 

  
   

2

2

1 1 1 1

ˆ ˆ ˆ ˆln ln
ˆvar

n n n n

ij ij ij ij
i j i j

p p p p

T
   

 
  
  

 
. 

(13) 

5.2. Consistency of ̂   

The property of consistency ensures that an estimate is close to the true parameter value with a high 

probability if the sample size is sufficiently large. Let T̂  be an estimator of θ based on a sample of 

size T. Sufficient conditions for an estimator T̂  to be consistent for θ [22] are:  

ˆlim T
T

E  


     (14) 

 ˆlim var 0.T
T




  (15) 

An estimator that satisfies (14) is said to be asymptotically unbiased. Thus an estimator is consistent 

if any bias it has goes to zero as the sample size increases and if its variance goes to zero as T  . 

The limit of Equation (11) is Г so condition (14) is met; and the limit of Equation (13) is zero so 

condition (15) is met. Thus ̂  is a consistent estimator. 

var( ̂ ) 
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5.3. Asymptotic Normal Distribution of ̂   

To prove that as T   the distribution of ̂  converges to the normal distribution with mean value 

as in Equation (11) and variance in Equation (13), write the Taylor expansion shown in Equation (9) in 

the form: 

       
 

2
ˆ

ˆ1
1
2

ˆ ˆ 1 ln ij ij

ij ij

p p

ij ij ij p p
T T p p p  



 
          
  , (16) 

where 0 < θ < 1, and apply the convergence in distribution theorem (see definition 4.1 in [23], also see 

theorem 28.4 in [24]) to the random variable  ˆT  . The theorem as stated in [24] says that if you 

have a function  ,H m m   of two central moments, then “If, in some neighbourhood of the point 

,m m      , the function  ,H m m   is continuous and has continuous derivatives of the first 

and second order with respect to the arguments m  and m , the random variable  ,H m m   is 

asymptotically normal, . . . .” It follows from this theorem that any sample characteristic based on 

moments is, for large values of T, approximately normally distributed about the corresponding 

population characteristic. 

6. Hypothesis Testing with the Entropy Index  

We have just computed the mean value and variance for the statistical estimate ̂  of the contagion 

of a landscape. The estimate was shown to be asymptotically unbiased, consistent, and asymptotically 

normal. A direct and very important use of the asymptotic normality and variance of the given 

estimator is in hypothesis testing. Tests against an a priori null can be accomplished via a one-sample 

t-test or construction of a confidence interval about the point estimate. Likewise, two point estimates 

can be compared using a two-sample t-test. Three or more estimates can be compared using analysis of 

variance. For the entropy index, a simple one-way ANOVA can be constructed as follows: let ˆ
i  = 

contagion value for the ith group, t = number of groups, and iT  = number of observations or patches 

for the ith group, then:  
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(17) 

Often, hypotheses of interest can be expressed in terms of linear combinations of the estimates as 
ˆ R r  where R and r are a matrix and a vector of known elements that specify the hypotheses of 

interest. For example, if the hypothesis is that the elements of ̂  sum to unity, [1,1, ,1]R   and r = 1. 
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The Wald, Lagrange multiplier, and quasi-likelihood ratio tests can be used to test the null hypothesis 
ˆ R r  versus the alternative ˆ R r . 

7. Application: Analysis of Contagion of Forest Types on a South Carolina Landscape 

7.1. Study Site and Data 

The landscape under study was The United States Department of Energy Savannah River Site 

(SRS), an 80,000 ha National Environmental Research Park located on the Upper Coastal Plain and 

Sandhills physiographic provinces in South Carolina, USA (Figure 5). The Site naturally groups into 

four major strata based on a gradient in soil-geologic landform conditions from the northeast 

representing the Sandhills to the southwest representing the Savannah River swamp. The tail extending 

from the southeast was aggregated with the Savannah River swamp as these areas occupy bottomlands 

and wetlands containing bottomland hardwood stands and bald-cypress-tupelo (Taxodium distichum-

Nyssa aquatic) stands. The SRS today contains approximately 74,000 ha of forested landscape divided 

into over 8,800 stands or management units. When the SRS was established in 1951, approximately 

33,000 ha were in old-fields and the balance consisted of cutover forest land with low stocking [25]. 

The old fields and cutover forests were planted with loblolly pine (Pinus taeda), longleaf pine (P. 

palustris) and slash pine (P. elliottii).  

Seven species of federally threatened or endangered plants and animals occur on the SRS. The Site 

supports populations of 44 plant species designated as “sensitive.” These are species that are not 

federally protected but are of local concern. In addition, the SRS has designated 32 species of animals 

as sensitive–one insect, eight mollusks, one fish, seven reptiles and amphibians, eight birds, and seven 

mammals [25]. Management for the endangered red-cockaded woodpecker (Picoides borealis) 

predominates on 67,000 acres in the eastern portion of the Site. The species requires large pine trees 

and an open understory. Many aspects of management on the SRS are geared toward providing nesting 

and foraging habitat for red-cockaded woodpeckers (RCW) [25]. Areas suitable for RCW would have 

reasonably high contagion and be predominantly composed of pine forests. Other species of concern, 

such as the reptiles and amphibians, generally prefer wetter more diverse habitats and should do well 

in moderate to low contagion areas [26]. Many mammals and some birds are generalists that can adapt 

to a variety of conditions that exhibit a range of contagion. The investigation of contagion will provide 

insight about structural conditions [27]. 

The Site maintains a forest stands database recording species composition, age, fire history and 

other relevant information. Stand composition is determined from operational records, field 

observations, infrared color photography and periodic surveys. The last survey was completed in 2010 

and looked at 1,680 points in the field. This information was used to update the stands database. For 

analysis purposes, stands are assigned to one of seven broad forest types [28]. Forest types and their 

proportions on each stratum are given in Table 2. Stands of the same forest type were colored the same 

to create a landscape level view of forest types (Figure 5). 
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Table 2. Proportion of each forest type by strata. 

FOREST TYPE 
STRATA 

1 2 3 4 

Loblolly pine 0.3016 0.3287 0.3400 0.2232 

Longleaf pine  0.3776 0.2804 0.1665 0.0733 

Slash pine 0.0381 0.0571 0.1045 0.0243 

Pine-Hardwood 0.0615 0.0609 0.0495 0.0633 

Hardwood-Pine 0.0336 0.0311 0.0364 0.0327 

Hardwoods 0.1521 0.1202 0.1516 0.3423 

Baldcypress-Tupelo – 0.0036 0.0039 0.1856 

Non forest 0.0356 0.1181 0.1475 0.0553 

Figure 5. The Savannah River Site in South Carolina, southeastern USA. Major forest 

vegetation groups are shown within each of the four large scale strata corresponding to soil-

geologic landform gradients. 

 
 

7.2. Results and Discussion 

We used FRAGSTATS [29] to compute the adjacency matrices for each stratum based on a 10-m 

image resolution. The forest type adjacencies counted in stratum 3 are shown in Table 3. The 

adjacency values, along with the proportion values in Table 2, were used to compute contagion 

[Equation (7)] and its concomitant variance [Equation (13)] for each stratum. Table 4 lists the strata ̂  
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values, their variances, the number of patches, the results of the ANOVA using Equation (17), and 

how the index values separated out using Tukey’s multiple comparison procedure. The ANOVA was 

highly significant with P < 0.001. We see that stratum 1 has a significantly larger contagion than the 

other strata, with stratum 2 being significantly larger than strata 3 and 4. Strata 3 and 4 were not 

significantly different from each other. 

Table 3. Adjacency matrix of forest types for stratum 3. 

FOREST TYPE 1 2 3 4 5 6 7 8 

1- Loblolly pine  3281710 14774 11181 7147 7389 35207 542 44300

2- Longleaf pine 14774 1596132 3981 3281 2069 11488 336 21094

3- Slash pine 11181 3981 995896 2045 1045 9231 540 19003

4- Pine-Hardwood 7147 3281 2045 469776 1358 6787 365 6316

5- Hardwood-Pine 7389 2069 1045 1358 345660 4172 251 3210

6- Hardwoods 35207 11488 9231 6787 4172 1433772 833 11910

7-Baldcyp.-Tupelo 542 336 540 365 251 833 36088 222

8- Non forest 44300 21094 19003 6316 3210 11910 222 1305048

Table 4. Contagion values, variances, ANOVA F-test, and Tukey’s test on the four large 

scale strata corresponding to soil-geologic landform gradients on the Savannah River Site. 

STRATA ̂ (*) var( ̂ ) T ANOVA 

1 -1.760a 0.000718 2140 F = 24.15 

2 -1.927b 0.000888 1659 P < 0.001 

3 -2.020c 0.000468 2983  

4 -2.038c 0.000754 2122  

(*) Tukey’s test, values followed by the same letter are not 

significantly different using α = 0.05. 

Recall that contagion is bounded between -2ln(n) and 0. Three of the strata have eight forest type 

categories, and stratum 1 has seven categories, meaning the minimum contagion is about -4.2 to -3.9. 

Thus the contagion values in Table 4 are a little above the midrange telling us contagion is generally 

moderate on this landscape. A number of forest types, such as the Pine-Hardwood and Hard-Pine types 

which range from 3% to 6% (Table 2), are minor components interspersed on the landscape (Figure 5). 

These minor interspersed components have the effect of lowering the contagion.  

To understand the differences in contagion across the strata let us examine composition and 

configuration. From Table 2 it is apparent that the Pine-Hardwood and Hardwood-Pine types are 

consistently minor components of all the strata. Slash pine is also a minor component on strata 1, 2 and 

4, but occupies 10% of stratum 3. Loblolly pine is a major component of all strata but is much lower in 

stratum 4. Longleaf is a major component in strata 1 and 2, a prominent component in stratum 3, but a 

small component in stratum 4. Hardwood stands are a prominent feature along the riparian areas and 

lowlands of strata 1, 2, and 3 but is the largest component of stratum 4 which has substantial 

bottomlands along the Savannah River swamp. Non forest areas occupy lakes and facilities and vary in 

proportion across the strata. 
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In examining Figure 5, we see large aggregates of longleaf and loblolly pine stands, with high 

proportions of these forest types, in strata 1 and 2. This is why these two strata have the largest 

contagion. Strata 3 and 4 have a bit more intermixing of categories compared to strata 1 and 2, hence 

their lower contagion. Compositionally strata 3 and 4 have similar proportional makeup but in different 

categories. For example, 34% of stratum 3 is loblolly but 34% of stratum 4 is hardwoods; 17% of 

stratum 3 is longleaf whereas about 19% of stratum 4 is in bald-cypress-tupelo. This is indicative of 

why strata 3 and 4 did not have significantly different contagion. It is no accident that the RCW has its 

greatest concentration of cluster sites in strata 1 and 2, with the high compositional abundance of 

longleaf and loblolly stands and the high aggregation of these types, ideal nesting and  

foraging conditions. 

8. Concluding Remarks  

The concept of diversity links the notions of richness and evenness [30]. It is well established in the 

ecological literature that the evenness or equitability component of diversity can be measured 

independent from richness in two ways which converge for large sample sizes: maxevenness /D D  

and min max minevenness ( ) / ( )D D D D    where minD  and maxD  refer to the minimum and maximum 

value that a diversity index D can attain [31, 32]. Hence an index of evenness is a relativized diversity 

index. Contagion subsumes richness, evenness, and spatial pattern. Relativizing contagion has the 

effect of creating an evenness index while retaining the configuration component (see Figure 3b and 

Table 1). Even Li and Reynolds [3] state: “RC is in essence a function of an evenness index, 

max/ ;EE EE  thus, it has all the advantages and disadvantages of an evenness index.” Apparently they 

were not fully aware of the mathematical implications of relativizing contagion. Since RC is not a true 

measure of contagion, and evenness is better quantified using RE, there seems little justification for use 

of relative contagion. The relationship between Г and RC is now clear. The entropy-based Shannon 

species diversity index, when scaled by its maximum possible value, becomes an index of evenness, 

and is no longer an index of diversity. The contagion analogue of the diversity index is Г. Therefore, 

the true entropy index of contagion is Г; and RC, the scaled or relativized version of Г, is its 

corresponding “evenness/configuration” index. 

In examining landscapes, for whatever purpose, it is important to consider the objectives of the 

examination and to design the analysis to provide the needed information. This typically will involve 

many metrics, never just a single one. In this paper, we focused on contagion because of its extensive 

use in landscape analysis and the need for a course correction to steer users away from relative 

contagion. This paper was not meant to be a thorough landscape ecological analysis of the Savannah 

River Site, only a demonstration of the use of the entropy contagion index. For a recent perspective 

paper on the use and misuse of landscape metrics see [33]. 
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Appendices 

Appendix A: Expected Value Calculations 

The contagion formula for Г [Equation (6)] comes from particular expected values based on a 
geometric random variable (see Equation (5)]. Let 1ij ijq p  , the required expected values are: 
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Appendix B: Delta Method for Variance of ̂  

Let  ˆij ij ijp p    and  
ˆ|

/
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   be the partial derivative of Γ with respect to ijp  evaluated at 

ˆij ijp p . The first order multivariate Taylor series expansion of ̂  is 
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The Taylor series expansion in Equation (20) provides the following linear approximation: 
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By squaring Equation (21) we get 
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From Equations (12) and (22), the  ˆvar   is estimated as 
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The covariances ij klE      in Equation (23) can be determined using Equation (10). Resolving the 

covariances and partial derivatives and simplifying gives 
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