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Abstract: It is now well established that most if not all enzymatic proteins display a slow
stochastic dynamics of transitions between a variety of conformational substates composing
their native state. A hypothesis is stated that the protein conformational transition networks,
as just as higher-level biological networks, the protein interaction network, and the metabolic
network, have evolved in the process of self-organized criticality. Here, the criticality means
that all the three classes of networks are scale-free and, moreover, display a transition from
the fractal organization on a small length-scale to the small-world organization on the large
length-scale. Good mathematical models of such networks are stochastic critical branching
trees extended by long-range shortcuts. Biological molecular machines are proteins that
operate under isothermal conditions and hence are referred to as free energy transducers.
They can be formally considered as enzymes that simultaneously catalyze two chemical
reactions: the free energy-donating (input) reaction and the free energy-accepting (output)
one. The far-from-equilibrium degree of coupling between the output and the input reaction
fluxes have been studied both theoretically and by means of the Monte Carlo simulations
on model networks. For single input and output gates the degree of coupling cannot exceed
unity. Study simulations of random walks on model networks involving more extended gates
indicate that the case of the degree of coupling value higher than one is realized on the
mentioned above critical branching trees extended by long-range shortcuts.
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1. Enzymatic Proteins–Change of the Fundamental Paradigm

Proteins are linear polymers of amino acids arranged in a sequence determined by genes. Since the
origin of molecular biology in the 1950s, a paradigm has been commonly accepted, expressed shortly in
two successive implications:

sequence→ structure→ function

It assumes implicitly that the dynamics of native proteins reduces to simple normal vibrations about a
single conformational state referred to as the “tertiary structure” of the protein. For at least two decades,
however, it becomes more and more clear that not only structure but also more complex dynamics
determine the function of proteins thus the paradigm has to be extended to [1]

sequence→ structure & dynamics→ function

Two classes of experiments imply directly that besides fast vibrations enzymatic proteins display also a
much slower stochastic dynamics of transitions between a variety of conformational substates composing
their native state. The first class includes observations of the non-exponential initial stages of reactions
after special preparation of an initial microscopic state in a statistical ensemble of biomolecules by, e.g.,
the laser pulse [2,3]. The second class concerns statistics of the dichotomous noise generated by single
biomolecules in various processes, which often displays a non-exponential time course [4,5]. The even
more convincing proof of the conformational transition dynamics of simple native proteins has been
afforded by early molecular dynamics simulations [6,7]. Research of biomolecular dynamics is being
developed faster and faster and today, even in the case of small, water-soluble proteins, one speaks about
the “native state ensemble”, and for very small proteins or protein fragments trials to reconstruct the
actual networks of conformational transitions are realized (see papers cited in Reference [8]).

Because of the slow character of the conformational dynamics, both the chemical and conformational
transitions in an enzymatic protein have to be treated on an equal footing [9] and jointly described by a
system of coupled master equations

ṗl(t) =
∑
l′

[wll′pl′(t)− wl′lpl(t)] (1)

determining the time variation of the occupation probabilities pl(t) of the individual protein’s substates
(Figure 1). In Equation (1), wl′l is the transition probability per unit time from the substate l to
l′, and the dot denotes the time derivative. The conformational transition probabilities satisfy the
detailed balance condition which, however, can be broken for the chemical transition probabilities
controlled by the concentrations of the enzyme substrates. Equations (1) are to be treated as a model
of microscopic dynamics in the stochastic theory of reaction rates [10,11] the origins of which go
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back to the Smoluchowski theory of diffusion-controlled coagulation and the Kramers one-dimensional
theory of reactions in the overdamped limit. It is the stochastic theory of reaction rates and not
the conventional transition state theory that should be applied in the description and interpretation of
biochemical processes [9,12].

Figure 1. (a) Exemplifying realization of the model intramolecular dynamics underlying
the irreversible protein reaction M → product. Chemical state M is composed of many
substates (the white and black circles) and the dynamics involves purely stochastic transitions
between these states (the arrows). Chemical state product is represented by a single, totally
absorbing “limbo” state ∗. The reaction is realized through transitions between distinguished
substates in M, jointly forming what is called the transition state (the black circles) and the
limbo ∗; (b) Particular case of the irreversible reaction when the transition state is reduced
to a single “gate” substate 0. The shaded box represents a network of an arbitrary number of
sites and direct transitions between them. The initial substate l0 is distinguished.
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Contrary to the transition state theory, the stochastic theory of reaction rates takes into account the
very process of reaching the partial thermodynamic equilibrium in the non-chemical degrees of freedom
of the system described. In the closed reactor, the possibility of a chemical transformation of an enzyme
will proceed before the conformational equilibrium has been reached results in the presence of a transient
non-exponential stage of the process and in an essential dynamical correction to the reaction rate constant
describing the following exponential stage [9,11]. In the open reactor under stationary conditions (the
concentrations of reactants and products of the reaction kept constant), the general situation is more
complex but for the reactions gated by single transition conformational substates (Figure 1b) a simple
analytical theory was proposed [9,13]. A consequence of the slow conformational transition dynamics
is that the steady-state kinetics, like the transient stage kinetics, cannot be described in terms of the
usual rate constants. This possibility was suggested forty years ago by Blumenfeld [14]. Later on still,
we have shown that adequate physical quantities that should be used are the mean first-passage times
between distinguished transition substates [9,13]. The subject of the present paper is an application of
this formalism to elucidate the action of biological molecular machines.

2. Biological Machines as Chemo-Chemical Free Energy Transducers

The primary purpose of thermodynamics, born in the first half of the 19th century, was to explain the
action of the heat engines. The processes they are involved in are practically reversible and proceed in
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varying temperatures. As a consequence, thermodynamics being the subject of the school and academic
teaching, still deals mainly with equilibrium processes and changes of temperature. However, biological
machines as well as many other contemporary machines act irreversibly, with considerable dissipation,
but at constant temperature. Machines that operate under the condition T = const. are free energy
transducers [12]. A good example are the enzymes kinases that catalyze simultaneously two reactions,
the adenosine triphosphate (ATP) hydrolysis and a substrate phosphorylation.

From a theoretical point of view, it is convenient to treat all biomolecular machines, also pumps
and motors, as chemo-chemical machines [12], enzymes that simultaneously catalyze two chemical
reactions: the free energy-donating reaction and the free energy-accepting one. Indeed, the molecules
present on either side of a biological membrane can simply be considered to occupy different chemical
states, whereas the external load influences the free energy involved in binding the motor to its track,
which can be expressed as a change of an effective concentration of this track. Under isothermal
conditions, all chemical reactions proceed due to thermal fluctuations: a free energy needed for their
realization is borrowed from the environment and then returned to it. In fact, most biological molecular
machines are the powered Maxwell demons: their mechanical or electrical elements are “soft” and
perform work at the expense of thermal fluctuations [15–17]. Of course, Maxwell’s demon can operate
only out of equilibrium and it is a task of the free energy-donating reaction to secure such conditions.

Figure 2. Development of kinetic schemes of the chemo-chemical machine. (a) The
principle of the chemo-chemical free energy transduction. Due to proceeding on the same
enzyme, reaction R1 ↔ P1 drives reaction R2 ↔ P2 against its conjugate force determined
by steady state concentrations of the reactant and the product; (b) Assumption of a possible
short circuit or slippage of the input vs. output reaction; (c) Assumption of both the free
energy-donating and the free energy-accepting reaction to participate in a kinetic scheme
like the one shown in Figure 1b; (d) Further generalization of the kinetic scheme to involve
many input and output of gates.
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The principle of the action of the chemo-chemical machine is simple [18]. It is a protein enzyme
that catalyzes simultaneously two chemical reactions (Figure 2a). Separately, each reaction takes
place in the direction determined by the second law of thermodynamics, i.e., the condition that energy
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dissipated, determined by the product of flux and force, is positive. However, if both reactions take place
simultaneously in a common cycle, they must proceed in the same direction and the direction of the first
reaction can force a change of direction of the second. As a consequence, the first reaction transfers a
part of its free energy recovered from dissipation performing work on the second reaction.

In formal terms, the chemo-chemical machine couples two unimolecular reactions: the free energy-
donating reaction R1 ↔ P1 and the free energy-accepting reaction R2 ↔ P2. Bimolecular reactions can
be considered as effective unimolecular reactions upon assuming a constant concentration of one of the
reagents, e.g., adenosine diphosphate (ADP) in the case of ATP hydrolysis. The input and output fluxes
Ji (i = 1 and 2, respectively) and the conjugate thermodynamic forces Ai are defined as [18]

Ji =
d[Pi]/dt

[E]0
(2)

and

βAi = lnKi
[Ri]

[Pi]
, Ki ≡

[Pi]
eq

[Ri]eq
(3)

Here, symbols of the chemical compounds in the square brackets denote the molar concentrations in the
steady state (no superscript) or in the equilibrium (the superscript eq). [E]0 is the total concentration of
the enzyme and β is proportional to the reciprocal temperature, β ≡ (kBT )

−1, where kB is the Boltzmann
constant. The flux-force dependence is one-to-one only if some constraints are put on the concentrations
[Ri] and [Pi] for each i. There are two possibilities. Either the concentration of one species, say Ri, in
the open reactor under consideration is kept constant: [Ri] = const., or it is the total concentration of the
enzyme substrate: [Ri] + [Pi] = const.

The free energy transduction is realized if the product J2A2, representing the output power, is
negative. The efficiency of the machine is the ratio

η = −J2A2/J1A1 (4)

of the output power to the input power. In general, the degree of coupling of both fluxes,

ε = J2/J1 (5)

being itself a function of the forces A1 and A2, can be both positive or negative. To avoid a
misconception, let us stress that the definition (5) does not coincide with the former definition of the
degree of coupling for the linear case (which usually does not apply to biomolecular processes) by
Kedem and Caplan [19]. In more details, upon introducing the Onsager kinetic coefficients Lij = Lji,
the linear approximation for Equation (5) reads

ε =
L21A1 + L22A2

L11A1 + L12A2

=

√
L22

L11

x+ q

1 + qx
(6)

where

q =
L12√
L11L22

, x =

√
L22

L11

A2

A1

(7)

are the Kedem-Caplan degree of coupling and the stoichiometric force ratio [20,21], respectively.
Usually, the assumption of tight coupling between both reactions is made (Figure 2a). It states that

the flux of the first reaction equals the flux of the second, J1 = J2, thus ε = 1. However, an additional
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reaction can take place between the two states M′ and M′′ of the enzyme-substrates complex (Figure 2b).
The latter reaction can be considered either as a short circuit, the non-productive realization of the first
reaction not driving the second reaction, or a slippage, the realization of the second reaction in the
direction dictated by its conjugate force.

The multiconformational counterpart of the scheme in Figure 2b is shown in Figure 2c. Here, as in
the scheme in Figure 1b, a network of conformational transitions within the enzyme-substrates complex
is represented by the gray box and the assumption of gating by single pairs of transition conformational
substates is made. In Reference [13], using a technique of summing up the directional diagrams proposed
by Terell L. Hill [18] who formalized a former idea of Gustav Kirchhoff, we showed how the input and
output reaction fluxes are related to the mean first-passage times between the distinguished substates.

The flux-force dependence thus obtained for the two coupled reactions has a general functional form

Ji =
1− e−β(Ai−Ast

i )

J−1+i + J−1−i e
−β(Ai−Ast

i ) + J−10i (Ki + eβAi)−1
(8)

The parameters J+i, J−i, J0i andAst
i depend on the other force and are determined by a particular kinetic

scheme, i.e., the interior of the gray box. Ast
i have the meaning of stalling forces for which the fluxes

Ji vanish: Ji(Ast
i ) = 0. The efficiency Equation (4) is zero both for A2 = 0 and for A2 = Ast

2 . The
dependence Ji(Ai) is strictly increasing with an inflection point, determined by J0i, and two asymptotes,
J+i and J−i (Figure 3). The asymptotic fluxes J+i and J−i display the Michaelis-Menten dependence on
the substrate concentrations. The relatively simple formulas for the degree of coupling ε and the stalling
forces Ast

i are given and discussed in Reference [8].

Figure 3. Character of the functional dependence of the output flux Ji versus force Ai
determined by Equation (8). Only when the stalling force Ast

i is negative does free energy
transduction take place. The Ji(Ai) dependence in this range is marked with a bold line.
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In Reference [8], we have compared the theoretical results with the Monte Carlo simulations on
several model networks. Figure 4 shows an example of the fluxes for 5-dimensional hypercube with
constant transition probabilities. It is seen that even for such simple and small network of 32 nodes,
large fluctuations make determination of the input and the output mean fluxes in 104 iteration steps
impossible. Only by increasing the number of the iteration steps to 109 can one determine the fluxes,
thus their degree of coupling, with the error lower than 0.3%. Preliminary estimations indicate that the
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result is in a good agreement with the stationary fluctuation theorem [22–25] in the Andrieux-Gaspard
form [26]:

p(j1(t), j2(t))/p(−j1(t),−j2(t)) = exp β (A1j1(t) + A2j2(t)) t (9)

which can be equivalently rewritten as

〈exp(−
∑
i

βAiJi(t)t)〉 = 1 (10)

Above, p is the joint probability distribution function for the statistical ensamble of the fluxes, in general
being not factorized:

p(j1, j2) 6= p(j1)p(j2) (11)

and 〈. . .〉 is the average over that ensemble. Ji(t) denote the random variables of the mean net fluxes
over time t, and ji(t) denote the particular value of those fluxes (Ji in Equations (2) to (5) are the
corresponding averages for t→∞).

Figure 4. Exemplary simulated time course of the net number of the input (R1 ↔ P1) and
the output (R2 ↔ P2) external transitions for the 5-dimensional hypercube with constant
transition probabilities and the most optimally chosen input and output gates. (a) Snapshots
made every step; (b) Snapshots made every 105 steps. In this particular case, the determined
value of the degree of coupling was 0.39.
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3. Networks of Conformational Transitions and Critical Branching Trees

The essential motive of our studies is a trial to answer the intriguing question of whether is it possible
for the degree of coupling Equation (5) to have a value higher than unity. A dogma in the physical
theory of, e.g., biological molecular motors, is the assumption that for making a single step along its
track the motor molecule has to hydrolyze at least one molecule of ATP [27]. Several years ago this
assumption was questioned by a group of Japanese biophysicists from the Yanagida laboratory who,
joining a specific nanometry technique with the microscopy fluorescence spectroscopy, shown that the
myosin II head can make several steps along the actin filament per ATP molecule hydrolyzed [28,29].
The structure of the myosin II is similar to that of small G proteins, e.g., the protein Ras (rat sarcoma)
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p21, both classes of proteins having a common ancestor [30]. Both in the G proteins [31] and in the
myosin II [32,33] one of the α helices unwinds in part after binding the nucleotide triphosphate, which
makes the neighboring region partly disordered, highly flexible, thus fluctuating. The detachment of
the motor molecule from its track corresponds to the attachment of the signal transducting G protein to
its effector. As a consequence, taking several steps per ATP molecule hydrolyzed by myosin II could
correspond to the activation of many effectors per GTP molecule hydrolyzed by a malignantly mutated
oncogene Ras protein. Also in the transcription factor p53, the DNA binding core domain is partly
disordered [34]. The commonly assumed model of facilitated, alternating three- and one-dimensional
passive diffusion, does not explain all the known facts concerning the search for a proper biding site on
DNA [35], so a hypothesis that this search can be active, using the free energy of a single ATP molecule
hydrolysis many times, seems reasonable.

No conventional chemical kinetics approach is able to explain such behaviors. In References [13]
and [12], basing on approximations carried too far, we suggested that the far-from-equilibrium degree of
coupling can exceed unity already for reactions proceeding through single pairs of transition substates.
In Reference [8], we proved the theorem that the value of the degree of coupling (5) should be lower than,
or at the most equal to, unity, but only when the input and output reactions proceed through single pairs
of transition conformational substates. It is reasonable to suppose that the chance of a higher degree of
coupling is possible if the output gate is extended to two or more pairs of transition substates (Figure 2d).
Unfortunately, even in the case of only two output gates the analytical formulas are so complex and not
transparent that serious approximations are needed to be made from the very beginning. Not being able
to formulate presently such approximations, we decided to apply computer experiment for a preliminary
study of the problem.

Since the formulation by Bak and Sneppen a cellular automaton model of the Eldredge and
Gould punctuated equilibriums [36], the biological evolution is more and more often considered as a
self-organized criticality phenomenon [37,38]. There are grounds to suppose that the conformational
transition networks, as just as the two networks of the systems biology, the protein interaction network,
and the metabolic network, have evolved to reach a scale-free, thus critical structure [8]. A controversy
emerges if this structure is simulaneously fractal or small-world. The topological structure of a flow (of
probability, metabolites, energy or information) through a network is characterized by a spatial spanning
tree composed of the most conducting links not involved in cycles. It is referred to as the skeleton [39]
of the network, all the rejected links being considered as shortcuts. The skeleton of the scale-free and
fractal network is also scale-free and fractal. For the scale-free fractal trees a criticality feature appears
important that denotes the presence of a plateau equal to unity in the mean branching number dependence
on the distance from the skeleton root. The critical trees can be completed to fractal scale-free
networks [39]. Only recently has an apparent contradiction between fractality and small-worldness been
explained by the application of the renormalization group technique [40]. It appears that, upon adding
shortcuts with the distance r distribution fulfilling the power law r−α to an original fractal network, a
transition to the small world network occurs below some critical value of the exponent α. Close to this
critical value the network can be fractal in a small length-scale, simultaneously having the small-world
features in the large length-scale and this is the case of the protein interaction network, the metabolic
network and, probably, the protein conformational transition network as well.
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Figure 5. (a) Exemplifying realization of a scale-free fractal tree with N = 200 nodes
constructed following the algorithm described in Reference [39]. The single input and output
gates are distinguished, chosen for the Monte Carlo simulations; (b) Tree from the upper
figure extended by 200 shortcuts with the distance distribution fulfilling the power law r2

which makes the network a scale free small world. Four output gates are distinguished,
chosen for the Monte Carlo simulations; the unlabeled largest hub is the fourfold degenerated
complement gate 2′′.
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Figure 5a shows a scale-free fractal tree with N = 200 nodes constructed following the algorithm
described in Reference [39], and Figure 5b shows an extension of this tree by 200 shortcuts with the
distance distribution fulfilling the power law r2, with negative α, which makes the network a scale-free
small world. To provide the network with a stochastic dynamics described by Equation (1), we assume
the probability of changing a node to any of its neighbors to be the same in each random walk step.
Consequently, the transition probability from the node l to the neighboring node l′ per the computer
step is

wl′l = 1/kl (12)

where kl is the number of links (the degree) of the node l. The network with such a dynamics cannot be
isoenergetic and following the detailed balance principle the equilibrium occupation probability of the
node l is

peql = kl/
∑
l′

kl′ (13)

For the system of gates as shown in Figure 5a, we performed a series of Monte Carlo simulations for
A2 = 0, and found ε = 0.99 for mean times of external transitions τ1 = τ2 = 40 computer steps, those
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times being one order of magnitude shorter than the internal relaxation time τrx = 400 which means that
the input and output reactions were controlled, though not completely, by intramolecular dynamics. The
case of multiple output gates needs more systematic studies. For the system of gates shown in Figure 5b
and τ1 = τ2 = 40 we found ε = 1.40, a value larger than unity. Random search for more optimal
configuration of gates indicates a possibility of obtaining much higher value of the degree of coupling.

Figure 6. (a) Probability distribution functions of the input fluxes J (t) averaged over the
time period t = 5 × 103 computer steps, determined for the input force βA1 = 0.3 and the
output force βA2 = 0. The circles represent data for the fractal tree network (Figure 5a)
and the squares, for the small-world network (Figure 5b). The continuous lines represent fits
to the normal distributions; (b) Fulfilment of the linear relation (14) for both the fractal tree
(the circles) and the small-world network (the squares).
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To end of the paper, it is worth presenting the scale of fluctuations for the dynamics discussed.
Figure 6a shows the probability distribution functions for the statistical ensambles of the input fluxes
J (t) for both the networks in Figure 5, averaged over the time period t = 5 × 103 computer steps, and
determined for the input force βA1 = 0.3 and the output force βA2 = 0. For the zero output force, the
fluctuation theorem (9) simplifies to

ln p(j(t))/p(−j(t)) = βAj(t)t (14)

Figure 6a shows that, up to a numerical error, the steady-state fluctuation theorem is satisfied for both
networks. The deviation from the second law of thermodynamics increases with a decrease of the time
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period t of the flux averaging, the distance βA from the equilibrium, and the number N of the network
nodes. The number of links (compare Figure 5a with Figure 5b does not influence that deviation but
increases only a dispersion of the fluctuations.

4. Summary

It is now well established that most if not all enzymatic proteins display a slow stochastic dynamics
of transitions between a variety of conformational substates composing their native state. This makes
the possibility of chemical transformations to proceed before the conformational equilibrium has been
reached in the actual chemical state. In the closed reactor, it results in the presence of transient,
non-exponential stages of the reactions. In the open reactor, a consequence is the necessity of
determining the steady-state reaction fluxes by the mean first-passage times between transition
conformational substates of the reactions rather than by conventional reaction rate constants. A hypothesis
is stated that, as just as higher level biological networks, the protein interaction network, and the
metabolic network, the protein conformational transition networks have evolved in a process of
self-organized criticality. All the three classes of networks are scale-free and, probably, display a
transition from the fractal organization on a small length-scale to the small-world organization on a
large length scale. Good mathematical models of such networks are stochastic critical branching trees
extended by long-range shortcuts.

Biological molecular machines are proteins that operate under isothermal conditions and hence are
referred to as free energy transducers. They can be formally considered as enzymes that simultaneously
catalyze two chemical reactions: the free energy-donating (input) reaction and the free energy-accepting
(output) one. The far-from-equilibrium degree of coupling between the output and the input reaction
fluxes have been studied both theoretically and by means of the Monte Carlo simulations on model
networks. In the steady state, upon taking advantage of the assumption that each reaction proceeds
through a single pair (the gate) of transition conformational substates of the enzyme-substrates complex,
the degree of coupling between the output and the input reaction fluxes has been expressed in terms of
the mean first-passage times on a conformational transition network between the distinguished substates.
The theory has been confronted with the results of random walk simulations on various model networks.

For single input and output gates, the degree of coupling cannot exceed unity. As some experiments
for the myosin II motor suggest such exceeding, looking for the conditions for increasing the degree of
coupling value over unity (realization of a “molecular gear”) challenges the theory. Probably it holds also
for the G-proteins and transcription factors, mutations of which can result in the cancerogenesis. Study
simulations of random walks on several model networks involving more extended gates indicate that the
case of the degree of coupling with the value higher than one is realized in a natural way on critical
branching trees extended by long-range shortcuts. For short-range shortcuts, the networks are scale-free
and fractal, and represent reasonable models for biomolecular machines displying tight coupling, i.e.,
the degree of coupling value close to unity.
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