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Abstract: The minimum error entropy (MEE) criterion has been successfully used in fields 

such as parameter estimation, system identification and the supervised machine learning. 

There is in general no explicit expression for the optimal MEE estimate unless some 

constraints on the conditional distribution are imposed. A recent paper has proved that if 

the conditional density is conditionally symmetric and unimodal (CSUM), then the optimal 

MEE estimate (with Shannon entropy) equals the conditional median. In this study, we 

extend this result to the generalized MEE estimation where the optimality criterion is the 

Renyi entropy or equivalently, the α-order information potential (IP). 
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1. Introduction 

Given two random variables: nX   which is an unknown parameter to be estimated, and mY   

which is the observation or measurement. The estimation of X  based on Y , is in general a measurable 

function of Y , denoted by ˆ ( )X g Y G , where G  stands for the collection of all Borel measurable 

functions with respect to the  -field generated byY . The optimal estimate *( )g Y  can be determined 
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by minimizing a certain risk, which is usually a function of the error distribution. If X  has conditional 
probability density function (PDF) ( )p x y , then:  

 * arg min ( )g

g
g p x




G
R  (1)

where ( )gp x  is the PDF of the estimate error ( )E X g Y  ,  .R  is the risk function: E  , 

where E  denotes the collection of all possible PDFs of the error. Let ( )F y  be the distribution 

function of Y , the PDF ( )gp x  will be: 

( ) ( ( ) | ) ( )
m

gp x p x g y y dF y   (2)

As one can see from Equation (2), the problem of choosing an optimal g  is actually the problem of 

shifting the components of a mixture of the conditional PDF so as to minimize the risk R . 

The risk function R  plays a central role in estimation related problems since it determines the 

performance surface and hence governs the optimal solution and the performance of the search 

algorithms. Traditional Bayes risk functions are, in general, defined as the expected value of a certain 

loss function (usually a nonlinear mapping) of the error:  

 ( ) ( ) ( )
n

g g
Bayes p x l x p x dx R  (3)

where (.)l  is the loss function. The most common Bayes risk function used for estimation is the mean 

square error (MSE), also called the squared error or quadratic error risk, which is defined by 

  2

2
( ) ( )

n

g g
MSE p x x p x dx R  (in this paper, .

p
denotes the p -norm). Using the MSE as risk, the 

optimal estimate of X  is simply the conditional mean ( ) mean (. )y p y    . The popularity of the 

MSE is due to its simplicity and optimality for linear Gaussian cases [1–3]. However, MSE is not 

always a superior risk function especially for non-linear and non-Gaussian situations, since it only 

takes into account the second order statistics. Therefore, many alternative Bayes risk functions have 

been used in practical applications. The mean absolute deviation (MAD)   1
( ) ( )

n

g g
MAD p x x p x dx R , 

with which the optimal estimate is the conditional median ( ) median (. )y p y     (here the median of 

a random vector is defined as the element-wise median vector), is a robust risk function and has been 

successfully used in adaptive filtering in impulsive noise environments [4]. The mean 0–1 loss 

 0 1 0 1( ) ( ) ( )
n

g gp x l x p x dx  R , where 0 1(.)l   denotes the 0–1 loss function (the 0–1 loss function has 

been frequently used in statistics and decision theory. If the error is a discrete variable, 
 0 1( )l x x   0 , where  . is the indicator function, whereas if the error is a continuous variable, 

0 1( )l x is defined as 0 1( ) 1 ( )l x x   , where (.) is the Dirac delta function), yields the optimal 

estimate as ( ) mode (. )y p y    , i.e., the conditional mode (the mode of a continuous probability 

distribution is the value at which its PDF attains its maximum value), which is also the maximum a 

posteriori (MAP) (the MAP estimate is a limit of Bayes estimator (under the 0–1 loss function), but 
generally not a Bayes estimator) estimate if regarding (. )p y  as the posterior density. Other important 

Bayes risk functions include the mean p-power error [5], Huber’s M-estimation cost [6] , and the  

risk-sensitive cost [7], etc. For general Bayes risk Equation (3), there is no explicit expression for the 
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optimal estimate unless some conditions on ( )l x  or/and conditional density ( )p x y  are imposed. As 

shown in [8], if ( )l x  is even and convex, and the conditional density ( )p x y  is symmetric in x , the 

optimal estimate will be the conditional mean (or equivalently, the conditional median). 

Besides the traditional Bayes risk functions, the error entropy (EE) can also be used as a risk 

function in estimation problems. Using Shannon’s definition of entropy [9], the EE risk function is: 

 ( ) ( ) log ( )
n

g g g
S p x p x p x dx R  (4)

As the entropy measures the average dispersion or uncertainty of a random variable, its minimization 

makes the error concentrated. Different from conventional Bayes risks, the “loss function” of the EE 

risk (4) is log ( )gp x , which is directly related to the error’s PDF. Therefore, when using the EE risk, 

we are nonlinearly transforming the error by its own PDF. In 1970, Weidemann and Stear published a 

paper entitled Entropy Analysis of Estimating Systems [10] in which they studied the parameter 

estimation problem using the error entropy as a criterion functional. They proved minimizing the error 

entropy is equivalent to minimizing the mutual information between error and observation, and also 

proved that the reduced error entropy is upper-bounded by the amount of information obtained by 

observation. Later, Tomita et al. [11] and Kalata and Priemer [12] studied the estimation and filtering 

problems from the viewpoint of information theory and derived the famed Kalman filter as a special 

case of minimum-error-entropy (MEE) linear estimators. Like most Bayes risks, the EE risk (4) has no 

explicit expression for the optimal estimate unless some constraints on the conditional density ( )p x y  

are imposed. In a recent paper [13], Chen and Geman proved that, if ( )p x y  is conditionally symmetric 

and unimodal (CSUM), the MEE estimate (the optimal estimate under EE risk) will be the conditional 

median (or equivalently, the conditional mean or mode). Table 1 gives a summary of the optimal 

estimates for several risk functions. Since the entropy of a PDF remains unchanged after shift, the 

MEE estimator is in general restricted to be an unbiased one (i.e., with zero-mean error).  

Table 1. Optimal estimates for several risk functions. 

Risk function  ( )gp xR  Optimal estimate 

Mean square error (MSE) 
2

2
( )

n

gx p x dx  *( ) ( ) mean (. )g y y p y     

Mean absolute deviation 
(MAD) 1

( )
n

gx p x dx  *( ) ( ) median (. )g y y p y     

Mean 0–1 loss 0 1( ) ( )
n

gl x p x dx  *( ) ( ) mode (. )g y y p y     

General Bayes risk ( ) ( )
n

gl x p x dx  If ( )l x  is even and convex, and ( )p x y  is 
symmetric in x , then *( ) ( ) ( )g y y y    

Error entropy (EE) ( ) log ( )
n

g gp x p x dx
If ( )p x y  is CSUM, then 
*( ) ( ) ( ) ( )g y y y y      

In statistical information theory, there are many extensions to Shannon’s original definition of 

entropy. Renyi’s entropy is one of the parametrically extended entropies. Given a random variable X  

with PDF ( )p x ,  -order Renyi entropy is defined by [14]: 

    1
log ( )

1 n
H X p x dx


 


   (5)
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where 0  , and 1  . The entropy definition (5) becomes the usual Shannon entropy as 1  . 

Renyi entropy can be used to define a generalized EE risk: 

    1
( ) log ( )

1 n

g gp x p x dx


 


 R  (6)

In recent years, the EE risk (6) has been successfully used as an adaptation cost in information 

theoretic learning (ITL) [15–22]. It has been shown that the nonparametric kernel (Parzen window) 

estimator of Renyi entropy (especially when 2  ) is more computationally efficient than that of 
Shannon entropy [15]. The argument of the logarithm in Renyi entropy, denoted by V  

(  ( )
n

V p x dx


   ), is called the  -order information potential (IP) (this quantity is called 

information potential since each term in its kernel estimator can be interpreted as a potential  

between two particles (see [15] for the physical interpretation of kernel estimator of information 

potential) [15]. As the logarithm is a monotonic function, the minimization of Renyi entropy is 

equivalent to the minimization (when 1  ) or maximization (when 1  ) of information potential. 

In practical applications, information potential has been frequently used as an alternative to Renyi 

entropy [15]. 

A natural and important question now arises: what is the optimal estimate under the generalized EE 

risk (6)? We do not know the answer to this question in the general case. In this work, however, we 

will extend the results by Chen and Geman [13] to a more general case and show that, if the 
conditional density ( )p x y is CSUM, the generalized MEE estimate will also be the conditional 

median (or equivalently, the conditional mean or mode). 

2. Main Theorem and the Proof 

In this section, our focus is on the  -order information potential (IP), but the conclusions drawn 

can be immediately transferred to Renyi entropy. The main theorem of the paper is as follows. 

Theorem 1: Assume for every value my , that the conditional PDF ( | )p x y  is conditionally 

symmetric (rotation invariant for multivariate case) and unimodal (CSUM) in nx , and let 

( ) median (. )y p y     . If  -order information potential ( ( ))V X Y     ( 0  , 1  ), then: 

( ( )) ( ( ))      0 1

( ( )) ( ( ))         1

V X Y V X g Y if

V X Y V X g Y if
 

 

 
 

    
    

 (7)

for all : m ng    for which ( ( ))V X g Y    . 

Remark: As ( | )p x y  is CSUM, the conditional median ( )y  in Theorem 1 is the same as the 

conditional mean ( )y  and conditional mode ( )y . According to the relationship between 

information potential and Renyi entropy, the inequalities in Equation (7) are equivalent to:  

   ( ) ( )H X Y H X g Y     (8)

Proof of the Theorem: In this work, we give a proof for the univariate case ( 1n  ). A similar proof can 

be easily extended to the multivariate case ( 1n  ). In the proof we assume, without loss of generality, 
that y , ( | )p x y  has median at 0x  , since otherwise we could replace ( | )p x y by ( ( ) | )p x y y  
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and work instead with conditional densities centered at 0x  . The road map of the proof is similar to 

that contained in [13]. There are, however, significant differences between our work and [13]: (1) we 

extend the entropy minimization problem to the generalized error entropy; (2) in our proof, the Holder 

inequality is applied, and there is no discretization procedure, which simplifies the proof significantly. 

First, we prove the following proposition: 

Proposition 1: Assume that ( | )f x y (not necessarily a conditional density function) satisfies  

(1) non-negative, continuous and integrable in x for each my ; 

(2) symmetric (rotation invariant for 1n  ) around 0x  and unimodal for each my ; 

(3) uniformly bounded in ( , )x y ; 

(4) 0( ) V f   , where  0 0( ) ( )V f f x dx


   , and 0 ( ) ( | ) ( )
m

f x f x y dF y  . 

Then for all : mg    for which ( ) gV f   , we have 

0

0

( ) ( )      0 1

( ) ( )         1

g

g

V f V f if

V f V f if

 

 





   


 
 (9)

where  ( ) ( )g gV f f x dx


   , ( ) ( ( ) | ) ( )
m

gf x f x g y y dF y  . 

Remark: It is easy to observe that  0
( , )supg
x yf dx f dx f x y     (not necessarily 0 1f dx  ). 

Proof of the Proposition: The proof is based on the following three lemmas. 

Lemma 1[13]: Let non-negative function  : 0,h    be bounded, continuous, and integrable, and 

define function ( )hO z  by: 

 ( ) : ( )hO z x h x z   (10)

where   is Lebesgue measure. Then the following results hold: 

(a) Define  ( ) sup : ( )h
hm x z O z x  ,  0,x  , and (0) sup ( )h

xm h x . Then ( )hm x  is 

continuous and non-increasing on  0, , and ( ) 0hm x  as x  . 

(b) For any function  : 0,G    with  ( )G h x dx   : 

   
0

( ) ( )hG h x dx G m x dx


 
 (11)

(c) For any  0 0,x   : 

0

0
0 : ( )

( ) sup ( )
x h

AA A x
m x dx h x dx

 
   (12)

Proof of Lemma 1: See the proof of Lemma 1 in [13]. 

Remark: The transformation hh m  in Lemma1 is also called the “rearrangement” of h  [23]. By 

Lemma 1, we have ( ) ( )  
gf gV m V f    and 

0 0( ) ( )fV m V f     (let ( )G x x ). Therefore, to 

prove Proposition 1, it suffices to prove:  
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0

0

( ) ( )      0 1

( ) ( )         1

g

g

f f

f f

V m V m if

V m V m if

 

 





   


 
 (13)

Lemma 2: Denote 
gg fm m , 

00 fm m . Then: 

(a) 

0

0 0
( ) ( )gm x dx m x dx

 
     (14)

(b) 

 0 0 0
00 0

( ) ( ) ,   0,
x xgm x dx m x dx x      (15)

Proof of Lemma 2: See the proof of Lemma 3 in [13].  

Lemma 3: 0  , let n be a non-negative integer such that 1n n   . Then  0 0,x   :  

(a) 

    0 010 0

0 0
( ) ( ) ( )

x xn ngm x m x dx m x dx
   

   (16)

(b) 

    
0 0

10( ) ( ) ( )
n ng g

x x
m x m x dx m x dx

    
   (17)

Proof of Lemma 3: According to Holder inequality [23], we have  0,  : 

         110 0( ) ( ) ( ) ( )
n nn ng gm x m x dx m x dx m x dx

       

  
    (18)

By Lemma 2, 
0 0 0

0 0
( ) ( )

x xgm x dx m x dx  , it follows that: 

        
   

0 0 0

0 0

0

110 0

0 0 0

1
0 0

0 0

0

0

( ) ( ) ( ) ( )

                                                   ( ) ( )

                                                   ( )

n nx x xn ng g

n nx x

x

m x m x dx m x dx m x dx

m x dx m x dx

m x dx

  

 

    

  







  

 



 
(19)

Further, since 0

0 0
( ) ( )gm x dx m x dx

 
  , we have

0 0

0( ) ( )g

x x
m x dx m x dx

 
  , and hence: 

        
   

0 0 0

0 0

0

110 0

1

( ) ( ) ( ) ( )

                                                  ( ) ( )

                                                  ( )

n nn ng g

x x x

n n
g g

x x

g

x

m x m x dx m x dx m x dx

m x dx m x dx

m x dx

  

 

      

   









  

 



 
(20)

Q.E.D. (Lemma 3) 

Let  sup : ( ) 0g
gS x m x  , which is finite or infinite, Equation (17) can be rewritten as: 

    
0 0

10( ) ( ) ( )
g gS Sn ng g

x x
m x m x dx m x dx

   
   (21)
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Now we are in position to prove Equation (13): 

(1) 0 1  : In this case, we have: 

   
 

   
 

1

1

1

0 0

( )

0 0

1

0 0

0 inf : ( )

( ) ( ) ( )

                       ( )

                       ( ) ( )

                       ( )

g

g
g

g

g

g

Sg g g

S m xg

S g g

S g

x m x y

m x dx m x m x dx

m x dy dx

m x y m x dy dx

m x dx dy





 







 

 



  
 



 
  

 

 

 
  

 

 

 

 





    

       
     

1

1

( ) 1 0

0 inf : ( )

1 10

0 0

( )1 0

0

                       ( ) ( )

                       ( ) ( ) ( )

                       ( ) ( )

g

g

g

g

A S g

x m x y

S g g

m xg

m x m x dx dy

m x m x m x y dx dy

m x m x dy d





 

  

 





 

  
 

  



    
  

 

 
  

 



 

 





 

   

 

0

0

0

( )
0 0

0

0

0

                       ( )

                       ( ) ( )

                       ( )

g

g

g

g

S

S

B S

S

x

m x dx

m x dx m x dx

m x dx



 









 







 



 

(22)

where (A) follows from Equation (21), and (B) is due to  0 ( ) 0
gS

m x dx


 , since 

0

0

0 ( ) ( ) 0

      ( ) 0

g g

g

g

S S

S

m x dx m x dx

m x dx

 



  

 

 


 (23)

(2) 1  : First we have 

   
 

   
 

10

10

10 0 0

0 0

( )0

0 0

10 0

0 0

sup : ( ) 0

0 0

( ) ( ) ( )

                       ( )

                       ( ) ( )

                       ( )

   

m x

x m x y

m x dx m x m x dx

m x dy dx

m x y m x dy dx

m x dx dy





 







  



  

   
 



 
  

 

 

 
  

 

 

 

 

 



    

       
     

10

10

( ) sup : ( ) 10

0 0

1 10 0

0 0

( )10

0

                    ( ) ( )

                       ( ) ( ) ( )

                       ( ) ( )

C x m x y n ng

n ng

m xn ng

m x m x dx dy

m x m x m x y dx dy

m x m x dy





 

  

 





      
 

     

  

    
  

 




 

 





   
0

0

0
                       ( ) ( )

n ng

dx

m x m x dx




 


 
 





  

(24)

where (C) follows from Equation (16). Further, one can derive: 
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10

0

( ) ( )0 0

0 0 0

10 0

0 0

sup : ( ) ( ) 0

0

( ) ( ) ( )

                                         ( ) ( ) ( )

                                         ( )

n ng

ng

m x m xn ng

n ng

x m x m x

m x m x dx m x dy dx

m x y m x m x dy dx

m x dx









 



 

   

 
  

 

 



  

  

   

     

1

10

0

( ) sup : ( ) ( )

0 0

10

0 0

                                         ( )

                                         ( ) ( ) ( )

n

n ng

y

D x m x m x y g

n ng g

dy

m x dx dy

m x m x m x y dx dy







 

   
 

   
 

   

  
 
  
    
  

 

 

 

 

   

   

1 10

0

2 20

0

                                         ( ) ( )

                                         

                                         ( ) ( )

                           

n ng

n ng

m x m x dx

m x m x dx





   

   












 
0

              

                                         ( )gm x dx


 


 

(25)

where (D) is because 
0 0 0

0 0
( ) ( )

x xgm x dx m x dx  ,  0 0,x   . Combining Equations (24) and (25),  

we get    0

0 0
( ) ( )gm x dx m x dx

  
   (i.e., 0( ) ( )gV m V m  ). 

Up to now, the proof of Proposition 1 has been completed. Let us come back to the proof of 

Theorem 1. The remaining task is just to remove the conditions of continuity and uniform boundedness 
imposed in Proposition 1. This can be easily accomplished by approximating ( | )p x y  by a sequence of 

functions  ( | )nf x y , 1,2,n   , which satisfy the conditions of Proposition 1. Then similar to [13], 

we define: 

   
 

(1 )
min , ( | )     0,

( | )
( | )       ,0

x n

x
n

n

n n p z y dz x
f x y

f x y x

    
   

  
(26)

It is easy to verify that for each n , ( | )nf x y  satisfies all the conditions of Proposition 1. Here we 

only give the proof for condition 4). Let 0 ( ) ( | ) ( )
mn nf x f x y dF y  , we have: 

 

 
   

 

0 0

(1 )

(1 )

, (1 )

( )

( ) ( )

            ( | ) ( )

            2 min , ( | ) ( )

            2 sup ( | ) ( )

            2 ( | )

m

m

m

n n

n

x n

x

x n

x z x x n

E

x

V f f x dx

f x y dF y dx

n n p z y dz dF y dx

n p z y dz dF y dx

n p x y dz



















 







  
   

  





 

  

  



 

 

 

  
 

(1 )

0

( )

            2 ( | ) ( )

            ( )

m

m

x n
dF y dx

p x y dF y dx

V p















 

  

 

 

 

 

(27)

where (E) comes from the fact that y , ( | )p x y is non-increasing in x over  0, , since it is CSUM.  
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According to Proposition 1, we have, for every n : 

0

0

( ) ( )      0 1

( ) ( )         1

g
n n

g
n n

V f V f if

V f V f if

 

 





   


 
 (28)

where ( ) ( ( ) | ) ( )
m

g
n nf x f x g y y dF y  . In order to complete the proof of Theorem 1, we only need 

to show that 0 0( ) ( )nV f V p  , and ( ) ( )g g
nV f V p  . This can be proved by the dominated convergence 

theorem. Here we only show 0 0( ) ( )nV f V p  , the proof for ( ) ( )g g
nV f V p  is identical. First, it is 

clear that 0 0( ) ( )nf x p x , x , and hence    0 0( ) ( )nf x p x
 
 , x . Also, we can derive: 

0 0( ) ( ) 0nf x p x dx   (29)

As  0 0( ) ( )V p p x


    , then by dominated convergence theorem, 0 0( ) ( )nV f V p  . 

Q.E.D. (Theorem 1) 

Remark: The condition of the CSUM in Theorem 1 is a little strong, but it can be easily relaxed to just 
requiring that the conditional PDF ( | )p x y is generalized uniformly dominated (GUD) in nx   

(see [24] for the definition of GUD).  

3. Conclusions 

The problem of determining a minimum-error-entropy (MEE) estimator is actually the problem of 

shifting the components of a mixture of the conditional PDF so as to minimize the entropy of the 

mixture. It has been proved in a recent paper that, if the conditional distribution is conditionally 

symmetric and unimodal (CSUM), the Shannon entropy of the mixture distribution will be minimized 

by aligning the conditional median. In the present work, this result has been extended to a more 

general case. We show that if the conditional distribution is CSUM, the Renyi entropy of the mixture 

distribution will also be minimized by aligning the conditional median.  
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