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Abstract: We consider the concept of generalized Kolmogorov–Sinai entropy, where instead
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1. Introduction

The Boltzmann-Gibbs entropy and the Shannon entropy are measures that lie on the foundations
of statistical physics and modern information theory, respectively. The dynamical counterparts of the
latter—the dynamical and the Kolmogorov-Sinai entropy—had a great impact on the modern theory
of dynamical systems and mathematical physics (see, e.g., [1,2]). They were extensively studied and
successfully applied, among others, to statistical physics and quantum information. It appeared to be
an exceptionally powerful tool for exploring nonlinear systems. One of the biggest advantages of the
Kolmogorov-Sinai entropies lies in the fact that they make it possible to distinguish the formally regular
systems (those with the measure-theoretic entropy equal to zero) from the chaotic ones (with positive
entropy, which implies the positivity of topological entropy [3]).

The Kolmogorov-Sinai entropy of a given transformation T acting on a probability space (X,Σ, µ)

is defined as the supremum over all finite measurable partitions P of the dynamical entropy of T with
respect to P , denoted by h(T,P). As a dynamical counterpart of Shannon entropy, the entropy of
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transformation T with respect to a given partitionP is defined as the limit of the sequence
(
1
n
H(Pn)

)∞
n=1

,
where:

H(Pn) =
∑
A∈Pn

η (µ(A))

with η being the Shannon function given by η(x) = −x log x for x > 0 with η(0) := 0, and Pn is the
join partition of partitions T−iP for i = 0, ..., n − 1. The existence of the limit in the definition of the
dynamical entropy follows from the subadditivity of η. The most common interpretation of this quantity
is the average (over time and the phase space) one-step gain of information about the initial state. Taking
the supremum over all finite partitions, we obtain an isomorphism invariant that measures the rate of
producing randomness (chaos) by the system.

Since Shannon’s seminal paper [4], several refinements of the concept of Shannon static entropy
were considered (see, e.g., Rényi [5], Arimoto [6], Wu, Verdú [7] and Csiszár’s survey article [8]).
Their dynamical and measure-theoretic counterparts were also considered by a few authors. De Paly [9]
proposed generalized dynamical entropies based on the concept of the relative static entropies.
Unfortunately, it appeared that, despite some special cases [9,10], the explicit calculation of this
invariant may not be possible. Grassberger and Procaccia proposed in [11] a dynamical counterpart
of the well-known generalization of Shannon entropy—the Rényi entropy—and its measure-theoretic
counterpart were considered by Takens and Verbitski. They showed that for ergodic transformations
with positive measure-theoretic entropy, Rényi entropies of a measure-theoretic transformation are
either infinite or equal to the measure-theoretic entropy [12]. The answer for non-ergodic aperiodic
transformations is different: for Rényi entropies of order α > 1, they are equal to the essential infimum
of measure-theoretic entropies of measures forming the decomposition of a given measure into ergodic
components, while for α < 1, they are still infinite [13]. In particular, this means that Rényi entropies of
order α < 1 are metric invariants sensitive to ergodicity. A similar generalization was made by Mesón
and Vericat [14–16] for so-called Havrda–Charvát–Tsallis entropy [17], and their results were similar to
the ones obtained by Takens and Verbitski in [12].

In this paper, we present a generalization of the concept of dynamical entropy. This was made for
few reasons. First of all, the entropy used in the theory of dynamical systems is a natural isomorphism
invariant. However, outside of the class of Bernoulli automorphisms, it is not a complete invariant, i.e.,
two systems with the same entropy need not be isomorphic. In particular, it is not applicable to a wide
class of systems with zero entropy. Moreover, we can ask whether considering of a function different than
the Shannon function (at the expense of losing its interpretations from the information theory) can give
a significantly new invariant. This can show which properties of the Shannon function are crucial for the
usage of entropy in dynamical systems. Finally, different dynamical generalizations of entropy have been
used by the physicists for years [18–22]. However, up till now, there have not been many rigorous results.
We hope that this note will help to fill in this gap.
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Our approach is based on the generalization suggested by Rényi and extended by Arimoto applied to
the dynamical case. Instead of the Shannon function η, we consider a concave function g : [0, 1] 7→ R,
such that lim

x→0+
g(x) = g(0) = 0 and define the dynamical g-entropy of the finite partition P as:

h(g, T,P) = lim sup
n→∞

1

n

∑
A∈Pn

g(µ(A)).

The behavior of the quotient g(x)/η(x) as x converges to zero appears to be crucial for our
considerations. Defining:

Ci(g) := lim inf
x→0+

g(x)

η(x)
and Cs(g) := lim sup

x→0+

g(x)

η(x)

we will prove that:
Ci(g) · h(T,P) ≤ h(g, T,P) ≤ Cs(g) · h(T,P).

In the case of Ci(g) = ∞, we will show that in every aperiodic system and for every γ ≥ 0, there
exists a finite partition P , such that h(g, T,P) ≥ γ.

Considering the supremum over all partitions, we obtain a Kolmogorov entropy-like isomorphism
invariant, which we will call the measure-theoretic g-entropy of a transformation with respect to an
invariant measure. One might ask whether this invariant may give any new information about the system.
We will prove (Theorem 5) that for g with Cs(g) < ∞, this new invariant is linearly dependent on
Kolmogorov–Sinai entropy. It shows that Shannon entropy function is the special one from the point of
view of the theory of dynamical entropies—it is the most natural one—not only does it have all of the
properties that the entropy function should have [1], but also considering different entropy functions, we
will not obtain an essentially different invariant. This result might have the other interpretation. Ornstein
and Weiss showed in [23] that every finitely observable invariant for the class of all ergodic processes has
to be a continuous function of the entropy. It is easy to see that any continuous function of the entropy
is finitely observable; one simply composes the entropy estimators with the continuous function itself.
In other words, an isomorphism invariant is finitely observable if and only if it is a continuous function
of the Kolmogorov-Sinai entropy. Therefore, our result implies that the generalized measure-theoretic
entropy is, in fact, finitely observable. It should be possible to give a more direct proof of the finite
observability of the generalized measure-theoretic entropy, but the proof cannot be easier than the proof
that entropy itself is finitely observable [24,25]. On the other hand, different entropy functions might be
still of use, e.g., in the case of zero entropy systems, where we may consider generalizations of concepts
used in this case: entropy convergence rates [26,27], generalized topological entropies [28] or entropy
dimensions [29]. The generalization of entropy convergence rates can be found in [30]. The result
implies that, from the point of view of the theory of entropy in dynamical systems, the crucial property
of the Shannon function η is its behavior in the neighborhood of zero.

The note is organized as follows: in the next section, we introduce the dynamical g-entropy
and establish its basic properties. The subsequent section is devoted to the construction of a zero
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dynamical entropy process with sufficiently large g-entropy. Finally, in the last section, we define
a measure-theoretic g-entropy of a transformation and show connections between this new invariant
and the Kolmogorov-Sinai entropy.

2. Results

2.1. Basic Facts and Definitions

Let (X,Σ, µ) be a Lebesgue space, and let g : [0, 1] 7→ R be a concave function with g(0) =

lim
x→0+

g(x) = 0 (We might assume only that g(0) = 0, but then, the idea of the dynamical g-entropy would

fail, since if Pn+1 6= Pn for every n and lim
x→0+

g(x) 6= 0, then the dynamical g-entropy of the partition P
would be infinite. Therefore, if g is not well-defined at zero, we will assume that g(0) := lim

x→0+
g(x).). By

G0, we will denote the set of all such functions. Every g ∈ G0 is subadditive, i.e., g(x+y) ≤ g(x) +g(y)

for every x, y, x + y ∈ [0, 1], and quasi-homogenic, i.e., ϕg : (0, 1] → R defined by ϕg(x) := g(x)/x is
decreasing (see [31]). If g is fixed, we will omit the index, writing just ϕ.

Any finite family of pairwise disjoint subsets of X , such that
⋃

Ai∈P
Ai = X , is called a partition. The

set of all finite partitions will be denoted by B. For a given P ∈ B, we define the g-entropy of the
partition P as:

H(g,P) :=
∑
A∈P

g (µ(A)) . (1)

For g = η, the latter is equal to the Shannon entropy of the partition P . For P ,Q ∈ B of the space
X , we define a new partition P ∨Q (the joint partition of P andQ) consisting of the subsets of the form
B ∩ C, where B ∈ P and C ∈ Q.

2.1.1. Dynamical g-Entropies.

For an automorphism T : X 7→ X and a partition P = {E1, ..., Ek}, we put:

T−jP := {T−jE1, ..., T
−jEk}

and
Pn = P ∨ T−1P ∨ ... ∨ T−n+1P .

Now, for a given g ∈ G0 and a finite partition P , we can define the dynamical g-entropy of the
transformation T with respect to P as:

hµ(g, T,P) = lim sup
n→∞

1

n
H (g,Pn) . (2)

Alternatively we will call it the g-entropy of the process (X,Σ, µ, T,P). If the dynamical system
(X,Σ, T, µ) is fixed, then we omit T , writing just h(g,P). As in the case of Shannon dynamical
entropies, we are interested in the existence of the limit of

(
1
n
H(g,Pn)

)∞
n=1

. If g = η, we obtain the
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Shannon dynamical entropy h(T,P). However, in the general case, we cannot replace an upper limit in
Equation (2) by the limit, since it might not exist. The existence of the limit in the case of the Shannon
function follows from the subadditivity of static Shannon entropy. This property has every subderivative
function, i.e., a function for which the inequality g(xy) ≤ xg(y) + yg(x) holds for any x, y ∈ [0, 1],
but this is not true in general (an appropriate example will be given in Section 2.1.3). Therefore, we
propose more general classes of functions for which this limit exists:

G00 :=

{
g ∈ G0

∣∣∣∣ lim
x→0+

g(x)

η(x)
= 0

}
or GSh0 :=

{
g ∈ G0

∣∣∣∣ 0 < lim
x→0+

g(x)

η(x)
<∞

}
.

It is easy to show that if g is subderivative, then the limit lim
x→0+

g(x)/η(x) is finite. Moreover, we will see
that values of dynamical g-entropies depend on the behavior of g in the neighborhood of zero. We will
prove that if g ∈ G00 ∪ GSh0 , then there is a linear dependence between the dynamical g-entropy and the
Shannon dynamical entropy of a given partition. Before we give the general result (Theorem 1), we will
state a few facts, which we will use in the proof of this theorem. We give the following lemmas, omitting
their elementary proofs.

Lemma 1. Let bi > 0, ai ∈ R for i = 1, . . . ,m, then

min
i=1,...,m

ai
bi
≤
∑m

i=1 ai∑m
i=1 bi

≤ max
i=1,...,m

ai
bi
.

Lemma 2. If P ∈ B, δ > 0 and g : [0, 1] 7→ R, then:

∑
A∈P, µ(A)≥δ

g(µ(A)) ≤ 1

δ
max
x∈[δ,1]

g(x). (3)

The following lemma states that the value of the dynamical g-entropy is given by the behavior of g in
the neighborhood of zero.

Lemma 3. If g1, g2 ∈ G0 and there exists c > 0, such that g1(x) = g2(x) for x ∈ [0, c], then for every

P ∈ B h(g1,P) = h(g2,P).

Proof. Let P ∈ B and g1, g2 ∈ G0, c > 0, fulfill the assumptions. Because g ∈ G0 is bounded, we have:

|H(g1,Pn)−H(g2,Pn)| =

∣∣∣∣∣∣
∑

A∈Pn: µ(A)>c

(g1(µ(A))− g2(µ(A)))

∣∣∣∣∣∣
≤ 1

c
max
x∈[c,1]

|g1(x)− g2(x)|.

Dividing by n and converging to infinity, we obtain:

h(g1,P) = h(g2,P).
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We may state now the main theorem of this section.

Theorem 1. Let P ∈ B.

(1) If g ∈ G0 is such that g′(0) <∞, then h(g,P) = 0.

(2) If g1, g2 ∈ G0 are such that g′1(0) = g′2(0) =∞,

lim inf
x→0+

g1(x)

g2(x)
<∞,

and h(g2,P) <∞, then:

lim inf
x→0+

g1(x)

g2(x)
· h(g2,P) ≤ h(g1,P).

If, additionally, lim sup
x→0+

g1(x)
g2(x)

<∞, then:

h(g1,P) ≤ lim sup
x→0+

g1(x)

g2(x)
· h(g2,P).

(3) If h(g2,P) =∞ and lim inf
x→0+

g1(x)
g2(x)

> 0, then h(g1,P) =∞.

Remark 1. Whenever g2 : [0, 1] 7→ R is a nonnegative concave function satisfying g2(0) = 0 and

g′2(0) =∞, we can have any pair 0 < a ≤ b ≤ ∞ as a limit inferior and limit superior of g1/g2 in zero,

choosing a suitable function g1. The idea is as follows: construct g1 piecewise linear. To do so, define

inductively a strictly decreasing sequence xk → 0 and a decreasing sequence of values yk = g1(xk)→ 0,

thus defining intervals Jk := [xk+1, xk], where g is affine. The only constraint to get a concave function

is that the slope of g on each interval Jk has to be smaller than yk/xk and increasing with respect to k;

this is not an obstruction to approach any limit inferior and limit superior for g1(x)/g2(x), provided that

xk+1 > 0 is chosen small enough.

Proof of Theorem 1. Let P ∈ B. Suppose that g ∈ G0 and g′(0) <∞. Then:

h(g,P) = lim sup
n→∞

1

n
H(g,Pn) ≤ lim sup

n→∞

1

n
ϕ (1 /cardPn ) ≤ lim

n→∞

g′(0)

n
= 0,

which completes the proof of Point 1. To show Point 2, let g1, g2 ∈ G0 be such that g′1(0) = g′2(0) =∞
and h(g2,P) < ∞. W.l.o.g, we can assume that g1(x), g2(x) > 0 for x ∈ (0, 1), since if there exists
x0 ∈ (0, 1), such that gi(x0) = 0 for i = 1 or i = 2, then we can define g̃i : [0, 1] 7→ R as:

g̃i(x) :=

gi(x), for x ∈ [0, si)

gi(si), for x ∈ [si, 1]

where si ∈ (0, 1] is such that max
x∈[0,1]

g(x) = g(si). Then, g̃ is strictly positive, and by Lemma 3 we have:

h(g̃i,P) = h(gi,P).
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Let us assume that:
lim sup
x→0+

g1(x)

g2(x)
<∞.

Since g is subadditive, the sequence (H(g,Pn))∞n=1 is nondecreasing, and there exists the limit of
H(g2,Pn). If it is finite, then h(g2,P) = 0, and by Equation (3) and Lemma 1, we have:∑

A∈Pn

g1(µ(A)) ≤
∑

A∈Pn: µ(A)< 1
2

g1(µ(A)) + 2 max
x∈[ 1

2
,1]
g1(x)

≤ sup
x∈(0, 1

2
)

g1(x)

g2(x)
·

∑
A∈Pn: µ(A)< 1

2

g2(µ(A)) + 2 max
x∈[ 1

2
,1]
g1(x).

Because lim sup
x→0+

g1(x)
g2(x)

< ∞, there exists M > 0, such that g1(x)/g2(x) < M for x < 1/2. Therefore,

sup
x∈(0, 1

2
)

g1(x)
g2(x)

<∞, and by Lemma 1, we obtain:

0 ≤ h(g1,P) = lim sup
n→∞

1

n

H(g1,Pn)

H(g2,Pn)
H(g2,Pn)

≤ sup
x∈(0, 1

2
)

g1(x)

g2(x)
· lim sup

n→∞

1

n
H(g2,Pn) = 0.

Thus, we can assume that lim
n→∞

H(g2,Pn) =∞.
Fix ε > 0. There exists δ > 0, such that, for x ∈ (0, δ], we have:

lim inf
x→0+

g1(x)

g2(x)
− ε < g1(x)

g2(x)
≤ lim sup

x→0+

g1(x)

g2(x)
+ ε.

Lemma 1 implies that:

lim inf
x→0+

g1(x)

g2(x)
− ε ≤

∑
A∈Pn, µ(A)<δ

g1(µ(A))∑
A∈Pn, µ(A)<δ

g2(µ(A))
≤ lim sup

x→0+

g1(x)

g2(x)
+ ε. (4)

Using Equation (3) for every n > 0, we get:

∑
A∈Pn, µ(A)≥δ

gi(µ(B)) ≤ 1

δ
Gi
δ.

where Gi
δ := max

x∈[δ,1]
gi(x) for i = 1, 2. Therefore:

∑
A∈Pn: µ(A)<δ

g1(µ(A))∑
A∈Pn: µ(A)<δ

g2(µ(A)) + 1
δ
G2
δ

≤

∑
A∈Pn

g1(µ(A))∑
A∈Pn

g2(µ(A))
≤

∑
A∈Pn: µ(A)<δ

g1(µ(A)) + 1
δ
G1
δ∑

A∈Pn: µ(A)<δ
g2(µ(A))

.
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and
∑

A∈Pn: µ(A)<δ
g2(µ(A)) → ∞ (n → ∞). Dividing sums by

∑
A∈Pn: µ(A)<δ

g2(µ(A)) and from

Equation (4), we obtain:

lim inf
x→0+

g1(x)
g2(x)
− ε

1 +G2
δ

/
δ

∑
A∈Pn: µ(A)<δ

g2(µ(A))

≤

∑
A∈Pn

g1(µ(A))∑
A∈Pn

g2(µ(A))

≤ lim sup
x→0+

g1(x)

g2(x)
+ε+G1

δ

/
δ

∑
A∈Pn: µ(A)<δ

g2(µ(A))

Converging with n to infinity, we obtain:

lim inf
x→0+

g1(x)

g2(x)
− ε ≤ lim inf

n→∞

H(g1,Pn)

H(g2,Pn)
≤ lim sup

n→∞

H(g1,Pn)

H(g2,Pn)
≤ lim sup

x→0+

g1(x)

g2(x)
+ ε.

Therefore: (
lim inf
x→0+

g1(x)

g2(x)
− ε
)
h(g2,P) ≤ lim inf

n→∞

H(g1,Pn)

H(g2,Pn)
· lim sup

n→∞

1

n
H(g2,Pn)

≤ lim sup
n→∞

1

n
H(g1,Pn)

≤ lim sup
n→∞

H(g1,Pn)

H(g2,Pn)
· lim sup

n→∞

1

n
H(g2,Pn)

≤
(

lim sup
x→0+

g1(x)

g2(x)
+ ε

)
h(g2,P).

Thus, we obtain the assertion. In the case of the infinite upper limit of the quotient g1(x)/g2(x), we
can repeat the above reasoning, just omitting the upper bound for the considered expressions.

If lim inf
x→0+

g1(x)
g2(x)

> 0 and h(g2,P) =∞, then lim inf
x→0+

g1(x)
g2(x)

> ε, and using similar arguments, we obtain
Point 3.

Similar arguments lead us to the following statement:

Theorem 2. Let g1, g2 ∈ G0 be such that lim
x→0+

g1(x)/g2(x) = ∞, and let a finite partition P have

positive g2-entropy. Then, h(g1,P) is infinite.

Theorems 1 and 2 imply a few corollaries:

Corollary 1. If there exists the limit lim
x→0+

g1(x)
g2(x)

<∞, then h(g1,P) = lim
x→0+

g1(x)
g2(x)
· h(g2,P).

Let G∞0 :=

{
g ∈ G0

∣∣∣∣ lim
x→0+

g(x)
η(x)

=∞
}

. If g1 = g, g2 = η, then we have the following corollary:

Corollary 2. Let P ∈ B and g ∈ G0, then:

(1) If Ci(g) <∞, then h(g,P) ≥ Ci(g) · h(P).
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(2) If Cs(g) <∞, then h(g,P) ∈ (Ci(g) · h(P),Cs(g) · h(P)).

(3) If g ∈ G00 ∪ GSh0 , then h(g,P) = C(g) · h(P).

(4) If g ∈ G∞0 and h(P) > 0, then h(g,P) =∞.

Corollary 3. If (X,Σ, µ, T ) has positive Kolmogorov-Sinai entropy and g ∈ G0 then:

Cs(g) <∞⇒ g-entropy of any process (X,Σ, µ, T,P) is finite⇒ Ci(g) <∞.

Corollary 4. If g ∈ G00 ∪ GSh0 , then h(g,P) = lim
n→∞

1
n
H(g,Pn).

2.1.2. Case of g ∈ G∞0

We will show that for every g ∈ G∞0 , any aperiodic automorphism T and every γ ∈ R, there exists
a partition P ∈ B such that h(g,P) ≥ γ. Since we omit the assumption of ergodicity, we will use
different techniques, mainly based on the well-known Rokhlin Lemma, which guarantees the existence
of so-called Rokhlin towers of a given height, covering a sufficiently large part of X . Using such towers,
we will find lower bounds for the g-entropy of a process.

We will assume that we have an aperiodic system, i.e., (X,Σ, µ, T ) for which

µ ({x ∈ X : ∃n ∈ N T nx = x}) = 0.

If M0, . . . ,Mn−1 ⊂ X are pairwise disjoint sets of equal measure, then τ = (M0,M1, . . . ,Mn−1) is
called a tower. If additionally Mk = T−(n−k−1)Mn−1 for k = 1, . . . , n − 1, then τ is called a Rokhlin
tower (It is also known as a Rokhlin–Halmos or Rokhlin–Kakutani tower.). By the same bold letter τ ,
we will denote the set

⋃n−1
k=0 Mk. Obviously µ(τ ) = nµ(Mn−1). Integer n is called the height of tower τ .

Moreover, for i < j, we define a sub-tower:

τ ji := (Mi, . . . ,Mj) and τ ji =

j⋃
k=i

Mk.

In aperiodic systems, there exist Rokhlin towers of a given length that cover a sufficiently large
part of X:

Lemma 4 ([32]). If T is an aperiodic and surjective transformation of Lebesgue space (X,Σ, µ), then

for every ε > 0 and every integer n ≥ 2, there exists a Rokhlin tower τ of height n with µ(τ ) > 1− ε.

Our goal is to find a lower bound for the dynamical g-entropy of a given partition. For this purpose,
we will use Rokhlin towers, and we will calculate dynamical g-entropy with respect to a given Rokhlin
tower. This leads to the following quantity: Let P be a finite partition of X and F ∈ Σ; then, we define
the (static) g-entropy of P restricted to F as:

HF (g,P) :=
∑
B∈P

g(µ(B ∩ F )).

The following lemma gives the estimation for H(g,P) from below by the value of the g-entropy
restricted to a subset of X .
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Lemma 5. Let g ∈ G0. Let P be a finite partition, such that there exists a set E ∈ P with 0 < µ(E) < 1.

If F ∈ Σ, then:

H(g,P) ≥ HF (g,P)− 3dmax,

where dmax := max
x,y∈[0,1]

|g(x)− g(y)|.

Proof. Let A ∈ P . Three-slope inequality implies that:

g(µ(A))− g(µ(A ∩ F ))

µ(A)− µ(A ∩ F )
≥ g(1)− g(µ(A))

1− µ(A)
.

Thus, for sets of measure µ(A) ≤ 1
2
, we have:

g(µ(A))− g(µ(A ∩ F )) ≥ −µ(A)− µ(A ∩ F )

1− µ(A)
· dmax

≥ −2(µ(A)− µ(A ∩ F )) · dmax.

Therefore, we obtain:∑
A∈P: µ(A)≤1/2

(g(µ(A))− g(µ(A ∩ F ))) ≥ −2dmax ·
∑

A∈P: µ(A)≤1/2

µ(A\F ) ≥ −2dmax

and: ∑
A∈P: µ(A)>1/2

(g(µ(A))− g(µ(A ∩ F ))) ≥ −dmax,

which implies that:
H(g,P)−HF (g,P) ≥ −3dmax.

The following lemma will play an important role in the proof of the main theorem of this section.

Lemma 6. Let n ∈ N, E ∈ Σ. Let PE := {E,X\E}. Suppose that g ∈ G0 is nonnegative in [0, α],

where α is some positive number. Then, there exist δ > 0 and s ∈ (0, α), such that:

∣∣H(g,PEn )−H(g,PFn )
∣∣ ≤ 1 +

2

s
dmax

for every F ∈ Σ s.t. µ(E4F ) < δ (4 denotes the symmetric difference), where dmax := max
x,y∈[0,1]

|g(x)− g(y)|.

Proof. It is easy to show that for every n ∈ N, E ∈ Σ, ε > 0, there exists δ > 0, such that:

min
π

∑
Ai∈PEn ,Bπ(i)∈PFn

µ(Ai4Bπ(i)) < ε for F ∈ Σ such that: µ(E4F ) < δ.
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W.l.o.g., we may assume that
2n∑
i=1

µ(Ai4Bi) < ε (adding empty sets if necessary). The nonnegativity

of g for x ∈ [0, α] and its concavity imply that there exists s ∈ (0, α), such that g is nondecreasing in
[0, s]. Fix n ∈ N and E ∈ Σ. There exists ε ∈ (0, s/2), such that:

g(ε) < 2−n. (5)

It is easy to see that for x ∈ [0, s], the monotonicity and subadditivity of g implies that:

|g(y)− g(x)| ≤ g(|y − x|). (6)

Let F ∈ Σ be such that µ(E4F ) ≤ δ. Define Dns = {i ∈ {1, . . . , 2n} | max{µ(Ai), µ(Bi)} < s}.
From Equations (5) and (6) and the monotonicity of g in [0, s], we obtain:

|H(g,PEn )−H(g,PFn )| ≤
∑
i∈Ds

|g(µ(Ai))− g(µ(Bi))|+
2

s
dmax

≤
∑
i∈Ds

g(|µ(Ai)− µ(Bi)|) +
2

s
dmax

≤
∑
i∈Ds

g(µ(Ai4Bi)) +
2

s
dmax

≤
m∑
i=1

g(µ(Ai4Bi)) +
2

s
dmax

≤ 2ng(δ) +
2

s
dmax ≤ 1 +

2

s
dmax

To find the lower bound for the g-entropy of a partition, we will use so-called independent sets.
We construct the independent set in the following way: Let τ be a tower of height m. We divide the
highest level of this tower (Mm−1) into two sets of equal measure, let us say I(m−1) and Mm−1\I(m−1).
Next, we consider T−1I(m−1) and T−1(Mm−1\I(m−1)). We divide each of them into two sets of equal
measure, obtaining sets I(m−2)1 , I

(m−2)
2 , I

(m−2)
3 , I

(m−2)
4 , and define set I(m−2) as the algebraic sum of two

of those sets—one subset of T−1I(m−1) and one of T−1(Mm−1\I(m−1)). We perform this algorithm,

until we achieve the lowest level of the tower — M0 (see Figure 1). Eventually, we define I :=
m−1⋃
j=0

I(j).

We call this set an independent set in τ .
We can make this construction, because every aperiodic system does not have atoms of positive

measure, and in every non-atomic Lebesgue space for every measurable set A and every α ∈ [0, α],
there exists B ⊂ A, such that µ(B) = α.

We are able to give an explicit formula for the g-entropy of the partition generated by the independent
set in τ .
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Figure 1. Set I (with dashes) in a tower a height of five.

Lemma 7. Let τ = (M,TM, . . . , T 2n−1M) be the Rokhlin tower of height 2n and I ∈ Σ be an

independent set in τ . If g ∈ G∞0 , then:

Hτn−1
0

(
g,PIn

)
=
µ(τ )

2
ϕ

(
µ(τ )

2n+1

)
,

where ϕ(x) = g(x)/x for x > 0.

Proof. The independence of I in τ implies that the partition:

PIn ∩ τ n−10

is a partition of τ n−10 into 2n sets of equal measure 2−nµ(τ n−10 ). Therefore:

Hτn−1
0

(
g,PIn

)
=

∑
A∈PIn

g
(
µ(A ∩ τ n−10 )

)
= 2ng

(
µ(τ n−10 )

2n

)
= µ

(
τ n−10

)
ϕ

(
µ(τ n−10 )

2n

)
=

µ(τ )

2
ϕ

(
µ(τ )

2n+1

)
.

Theorem 3. Let g ∈ G∞0 and T be an aperiodic, surjective automorphism of a Lebesgue space (X,Σ, µ),

and let γ ∈ R, then, there exists a partition P ∈ B, such that:

h(g,P) ≥ γ.

Proof. We will prove that for any γ > 0, there exists a partition PE = {E,X\E}, such that
h(g,P) ≥ γ. We define recursively a sequence of sets En ∈ Σ. Let:

E0 := ∅, N0 := δ0 := 1.

Let n > 0, and assume that we have already defined En−1, Nn−1 and δn−1. Using Lemma 6, we can
choose δn > 0, such that:

δn <
1

2
δn−1 (7)
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∣∣∣H (g,PEn−1

Nn

)
−H

(
g,PFNn

)∣∣∣ < 1 +
2

s
dmax. (8)

for any F ∈ Σ, for which µ(En−14F ) < 2δn.
Since:

lim
x→0+

g(x)

η(x)
=∞,

we can choose such Nn ∈ N that:

ϕ
(
δn2−Nn−1

)
ϕη (δn2−Nn−1)

>
2γ

δn log 2
. (9)

By Lemma 4, there exists Mn ∈ Σ, such that τn =
(
Mn, TMn, . . . , T

2Nn−1Mn

)
is a Rokhlin tower

of measure µ(τn) = δn. Let In ⊂ τn be an independent set in τn and:

En := (En−1\τn) ∪ In.

Then:
µ(En−14En) ≤ µ(τn) = δn.

for all positive integers n. By Equation (7), we have δn < 2−n, and we conclude that (1En)∞n=0 is a
Cauchy sequence in L1(X). Therefore, there exist E ∈ Σ, such that 1En converges to 1E . For this set,
we have:

µ (En4E) ≤
∞∑

k=n+1

µ (Ek4Ek−1) ≤
∞∑

k=n+1

δk < 2δn+1.

Since En ∩ τn = In, applying Equation (8) and Lemmas 5 and 7, we obtain that for Nn, such that
δn · 2−Nn−1 < s:

H(g,PENn) ≥ H(g,PEnNn )− 1− 2

s
dmax

≥ H(τn)
Nn−1
0

(
g,PEnNn

)
−
(

2

s
+ 3

)
dmax − 1

≥ H(τn)
Nn−1
0

(
g,PInNn

)
−
(

2

s
+ 3

)
dmax − 1

≥
[
µ(τn) ln 2

2
(Nn + 1)− µ(τn) lnµ(τn)

2

]
·
ϕ
(
µ(τn)2−Nn−1

)
− ln (µ(τn)2−Nn−1)

−
(

2

s
+ 3

)
dmax − 1

≥ ln 2

2
· δn · (Nn + 1) ·

ϕ
(
δn2−Nn−1

)
ϕη (δn2−Nn−1)

−
(

2

s
+ 3

)
dmax − 1.

From Equation (9), we obtain that:

lim
n→∞

H(g,PENn)

Nn

≥ ln 2

2
lim
n→∞

δn ·
Nn + 1

Nn

·
ϕ
(
δn2−Nn−1

)
ϕη (δn2−Nn−1)

≥ γ.
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Thus,
lim sup
n→∞

1

n
H(g,Pn) ≥ γ.

2.1.3. Bernoulli Shifts

Let A = {1, . . . , k} be a finite alphabet. Let X = {x = {xi}∞i=−∞ : xi ∈ A} and σ be a left shift:

σ(x)i = xi+1.

For any s ≤ t and block [ω0, . . . , ωt−s] with ai ∈ A, we define a cylinder:

Ct
s(ω0, . . . , ωt−s) = {x ∈ X : xi = ωi−s for i = s, . . . , t}.

We consider a Borel σ-algebra with respect to the metric, which is given by d(x, y) = 2−N , where
N = min{|i| : xi 6= yi}. Let p = (p1, . . . , pk) be a probability vector. We define a measure ρ = ρ(p)

on A by setting ρ({i}) = pi. Then, µp is a corresponding product measure on X = AZ. Thus, the static
g-entropy of a partition PA = {[1], [2], . . . , [k]} is equal to:

Hµp

(
g,PAn

)
=
∑
ω∈An

g
(
µ(Cn−1

0 (ω0, . . . , ωn−1))
)

=
∑
ω∈An

g
(
pω0 · · · pωn−1

)
,

where ω = (ω0, . . . , ωn−1). By the concavity of g, we have:

Hµp(g,PAn ) ≤ ϕ (1 /kn )

where equality holds only when p = p∗ =
(
1
k
, . . . , 1

k

)
. Before calculating the dynamical g-entropy of

PA with respect to µp∗ , we give the following lemma, the proof of which will be given later:

Lemma 8. If g ∈ G0, then:

Cs(g) = lim sup
n→∞

g(κ−n)

η(κ−n)
and Ci(g) = lim inf

n→∞

g(κ−n)

η(κ−n)

for any κ > 1.

Therefore, applying Lemma 8 for the partition PA and κ = k, we obtain:

hµp∗
(
g,PA

)
= lim sup

n→∞

1

n
ϕ

(
1

kn

)
=

{
Cs(g) · log k, if Cs(g) <∞;

∞, otherwise.
(10)

Remark 2. If we consider the lower limit instead of the upper limit, we would obtain:

lim inf
n→∞

1

n
ϕ

(
1

kn

)
=

{
Ci(g) · log k, if Ci(g) <∞;

∞, otherwise.
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Therefore, we cannot replace an upper limit by the limit in the definition of the dynamical g-entropy.

Proof of Lemma 8. We will show just the equality for the upper limit, since the equality for the lower
limit may be obtained analogously. Let (xn)∞n=1 and (mn)∞n=1 be such that lim sup

n→∞
g(xn)/η(xn) = c

and xn ∈ (κ−mn , κ−mn+1) for every n ∈ N. Then, − log xn ≥ − log κ−mn+1. Every g ∈ G0 is
quasi-homogenic; so, for every positive integer n occurs:

g(xn)

xn
<
g(κ−mn)

κ−mn
.

Therefore:

g(xn)

η(xn)
=

g(xn)

xn

1

− log xn
≤ g(κ−mn)

κ−mn
1

(mn − 1) log κ

=
g(κ−mn)

η (κ−mn)
· mn

mn − 1
,

and:
lim sup
x→0+

g(x)

η(x)
= lim sup

n→∞

g(κ−n)

η(κ−n)
.

2.2. Kolmogorov-Sinai Entropy-Like Invariant

The basic tool considered in the ergodic theory is the Kolmogorov–Sinai entropy, which is
a supremum of Shannon dynamical entropies over all finite partitions:

hµ(T ) = sup
P∈B

h(T,P).

It is invariant under metric isomorphism. Following the Kolmogorov proposition, we take the
supremum over all partitions of the dynamical g-entropy of a partition. For a given system (X,Σ, µ, T ),
we define:

hµ(g, T ) = sup
P∈B

h(g, T,P) (11)

and call it the measure-theoretic g-entropy of transformation T with respect to measure µ.
It is easy to see that it is an isomorphism invariant. Ornstein and Weiss [23] showed the striking

result that measure-theoretic entropy is the only finitely observable invariant for the class of all ergodic
processes. More precisely, every finitely observable invariant for a class of all ergodic processes is a
continuous function of entropy. Of course, in the case of g ∈ G00 ∪ GSh0 by Corollary 2, we have:

hµ(g, T ) = lim
x→0+

g(x)

η(x)
· hµ(T ).
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We will show that for a wider class of functions, namely for those for which:

Cs(g) = lim sup
x→0+

g(x)

η(x)
<∞

we have:
hµ(g, T ) = Cs(g) · hµ(T )

for any ergodic transformation T . This shows that the measure-theoretic g-entropy is, in fact, finitely
observable: one might simply compose the entropy estimators [25] with the linear function itself. Our
proof will be similar to the proof of ([12], Theorem 1.1) where Takens and Verbitski showed that for
ergodic transformations, the supremum over all finite partitions of dynamical Rényi entropies of order
α > 1 are equal to the measure-theoretic entropy of T with respect to measure µ.

Let us introduce necessary definitions and facts. Let Ti be automorphisms of Lebesgue space
(Xi,Σi, µi) for i = 1, 2, respectively. Then, we say that T2 is a factor of transformation T1, if there
exists a homomorphism φ : X1 7→ X2, such that:

φT1 = T2φ µ1 a.e. on X1.

Suppose that T2 is a factor of T1 under homomorphism φ. Then, for an arbitrary finite partition P of
X2, we have:

H

(
g,

k−1∨
i=0

T−i2 P

)
= H

(
g,

k−1∨
i=0

φ−1T−i2 P

)
= H

(
g,

k−1∨
i=0

T−i1 φ−1P

)
.

Hence, h(g, T2,P) = h(g, T1, φ
−1P). Therefore:

hµ(g, T2) = sup
P−finite

h(g, T2,P) = sup
P−finite

h(g, T1, φ
−1P) ≤ h(g, T1).

This implies the following proposition:

Proposition 1. If T2 is a factor of T1, then for every function g ∈ G0:

hµ(g, T2) ≤ hµ(g, T1).

2.2.1. Measure-Theoretic g-Entropies for Bernoulli Automorphisms

An automorphism T on (X,Σ, µ) is called Bernoulli automorphism if it is isomorphic to some
Bernoulli shift. The crucial role in the proof of the main theorem of this section (Theorem 5) will
be played by a well-known Sinai theorem:

Theorem 4 (Sinai [33]). Let T be an arbitrary ergodic automorphism of some Lebesgue space (X,Σ, µ).

Then, each Bernoulli automorphism with hµ(T1) ≤ hµ(T ) is a factor of the automorphism T .

We start proving the following proposition:
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Proposition 2. Let T be an arbitrary ergodic automorphism with hµ(T ) ≥ logM for some integer

M ≥ 2. Then, for every g ∈ G0:
hµ(g, T ) ≥ Cs(g) · logM.

Proof. Consider a shift σ over the alphabet A = {0, 1 . . . ,M − 1} with the corresponding Bernoulli
measure generated by p1 = . . . = pM = 1

M
. It is easy to see that hµ(σ) = logM . From Theorem 4, we

conclude that σ is a factor of T . Therefore, applying formula (10), we obtain:

hµ(g, T ) ≥ hµ(g, σ) ≥ h(g, σ,PA) = lim sup
n→∞

1

n
ϕ
(
M−n) = logM · lim sup

n→∞

ϕ (M−n)

ϕη (M−n)
.

Applying Lemma 8 completes the proof.

2.2.2. Main Theorem

Our goal in this section is the following result:

Theorem 5. Let T be an ergodic automorphism of Lebesgue space (X,Σ, µ), and g ∈ G0 be such that

Cs(g) ∈ (0,∞). Then:

hµ(g, T ) =

{
Cs(g) · hµ(T ), if hµ(T ) <∞,
∞, otherwise.

If g ∈ G00 , then hµ(g, T ) = 0. If g ∈ G0 is such that Cs(g) =∞ and T has a positive measure-theoretic

entropy, then hµ(g, T ) =∞.

Moreover, for g ∈ G∞0 from Theorem 3, we have:

Corollary 5. Let g ∈ G∞0 . If (X,T ) is aperiodic and surjective, then hµ(g, T ) =∞.

To prove Theorem 5, we need the first few preliminary lemmas.

Lemma 9. If T is an automorphism of the Lebesgue space (X,Σ, µ), then for every g ∈ G0:

hµ(g, Tm) ≤ mhµ(g, T ).

Proof. Let P ∈ B, m ∈ N. We have:

h(g, T,P) = lim sup
k→∞

1

k
H(g,P ∨ T−mP ∨ . . . ∨ T−m(k−1)P)

= lim
n→∞

sup
k≥n

1

k
H(g,P ∨ T−mP ∨ . . . ∨ T−m(k−1)P).
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Fix k ∈ N. Then,
n−1∨
i=0

T−iP is a refinement ofP∨T−mP∨. . .∨T−m(k−1)P for n = km, . . . , k(m+1)−1.

Therefore:

1

k
H(g,P ∨ T−mP ∨ . . . ∨ T−m(k−1)P) ≤ 1

k
H(g,Pn−1) =

n

k

1

n
H(g,Pn−1)

≤ km+m− 1

k

1

n
H(g,Pn−1)

≤ m

(
1 +

1

k

)
1

n
H(g,Pn−1) (12)

for n = km, . . . , k(m+ 1)− 1. Let us introduce the following notation:

ck :=
1

k
H(g,P ∨ T−mP ∨ . . . ∨ T−m(k−1)P), an :=

1

n
H(g,Pn−1).

Then, we can rewrite Equation (12) in the form:

ck ≤ m

(
1 +

1

k

)
an (13)

for n = km, . . . , km+m− 1. Taking the supremum in Equation (13), we obtain:

sup
l≥k

cl ≤ m

(
1 +

1

k

)
sup

n=lm,...,l(m+1)−1
an ≤ m

(
1 +

1

k

)
sup
n≥km

an.

Therefore:
lim sup
k→∞

ck ≤ m lim sup
n→∞

an,

and this is equivalent to the statement:

h(g, Tm,P) ≤ mh(g, T,P).

Taking the supremum over all finite partitions, we obtain the assertion.

Next, the lemma will be just a weaker version of Theorem 5.

Lemma 10. If an automorphism Tm of a Lebesgue space (X,Σ, µ) is ergodic for every m ∈ N, then for

every g ∈ G0, such that Cs(g) <∞ holds:

hµ(g, T ) = Cs(g) · hµ(T ).

If g ∈ G00 , then hµ(g, T ) = 0. If g ∈ G0 is such that Cs(g) =∞ and T has a positive Kolmogorov-Sinai

entropy, then hµ(g, T ) =∞.

Proof. The case of g ∈ G00 follows from Corollary 2. Suppose that there exists such g ∈ G0\G00 , which
fulfills the assumptions of the lemma and for which we have:

Cs(g) · hµ(T )− hµ(g, T ) > 0.
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Then, applying Lemma 9 to the transformation Tm and using equality hµ(Tm) = mhµ(T ) (see [2],
Theorem 4.3.16), we obtain:

Cs(g)hµ(Tm)− hµ(g, Tm) ≥ m (Cs(g)hµ(T )− hµ(g, T ))→∞ as m→∞.

Therefore, for sufficiently large m, there exists an integer M for which:

hµ(g, Tm) ≤ mhµ(g, T ) < Cs(g) logM ≤ mCs(g)hµ(T ) = Cs(g)hµ(Tm). (14)

Proposition 2 applied to the transformation Tm guarantees that for every g ∈ G0 with positive (finite)
Cs(g), we have:

hµ(g, Tm) ≥ Cs(g) logM. (15)

Comparing Equations (14) and (15), we obtain the contradiction, which implies that

hµ(g, T ) = Cs(g)hµ(T ).

If Cs(g) =∞ and hµ(T ) > 0, then there exists such an integer m > 0 that:

hµ(Tm) = mhµ(T ) > logM

and by Proposition 2 and Lemma 9:

hµ(g, T ) = hµ(g, Tm) =∞

which completes the proof.

Proof of Theorem 5. If hµ(T ) = 0, the statement is true, because for any P ∈ B, we have:

0 ≤ h(g,P) ≤ Cs(g)h(P) = 0.

Suppose that 0 < hµ(T ) < ∞. Automorphism T is ergodic. Thus, it has a factor, which is a Bernoulli
automorphism T ′ with hµ(T ) = hµ(T ′). Every Bernoulli automorphism is mixing, so Tm is ergodic for
each m. Applying Lemma 10, we obtain:

hµ(g, T ′) = Cs(g)hµ(T ′) = Cs(g)hµ(T ).

Since T ′ is a factor of T , Proposition 1 implies that:

Cs(g)hµ(T ) = Cs(g)hµ(T ′) = hµ(g, T ′) ≤ hµ(g, T ) ≤ Cs(g)hµ(T )

which completes the proof of the case of finite hµ(T ). If hµ(T ) =∞, then Proposition 2 implies that:

hµ(g, T ) ≥ Cs(g) logM
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for every M > 0.

2.2.3. Generator Theorem Counterpart

In the case of g ∈ G∞0 , there is no counterpart of a Kolmogorov-Sinai generator theorem, which
states that the measure-theoretic entropy of the transformation T is realized on every generator of the
σ-algebra Σ. Let us consider Sturm shifts, shifts that model translations of the circle T = [0, 1). Let
β ∈ [0, 1) and consider the translation φβ : [0, 1) 7→ [0, 1) defined by φβ(x) = x + β ( mod 1).
Let P denote the partition of [0, 1) given by P = {[0, β), [β, 1)}. Then, we associate a binary sequence
to each t ∈ [0, 1) according to its itinerary relative to P; that is, we associate to t ∈ [0, 1) the bi-infinite
sequence x defined by xi = 0 if φiβ(t) ∈ [0, β) and xi = 1 if φiβ(t) ∈ [β, 1). The set of such sequences is
not necessary closed, but it is shift-invariant and so its closure is a shift space called the Sturmian shift.
If β is irrational, then Sturmian shift is minimal, i.e., there is no proper subshift. Moreover, for a minimal
Sturmian shift, the number of n-blocks that occur in an infinite shift space is exactly n + 1. Therefore
for zero-coordinate partition PA, which is a finite generator of σ-algebra Σ, and for any function g ∈ G0,
we have:

H(g,PAn ) =
∑
A∈PAn

g(µS(A)) ≤ ϕ

(
1

n+ 1

)
where µS is the unique invariant measure for Sturm shift. Thus,

h(g,PA) ≤ lim sup
n→∞

n+ 1

n
g

(
1

n+ 1

)
= 0.

On the other hand, since it is strictly ergodic (thus aperiodic), Theorem 3 implies that for any g ∈ G∞0 :

hµ(g, T ) =∞.

Therefore, we have a finite generator, for which the supremum is not attained.

3. Discussion

In this note, we discussed the generalization of the dynamical and Kolmogorov-Sinai entropy based
on the idea of considering in the definition of the dynamical entropy a concave function vanishing at the
origin instead of the Shannon entropy function η. The connections between dynamical entropies and
g-entropies show that the crucial property of η for applications of the Shannon entropy in the dynamical
systems is the behavior of η in the neighborhood of zero. Additionally, the main result of the paper
obtained for the generalization of the KS entropy states that, usually, there is a linear dependence between
the obtained invariant and the KS entropy. It also implies (due to the fact that it is a continuous function
of the entropy) that the measure-theoretic g-entropy is finitely observable (see, e.g., [23]). Moreover,
considering functions that behave in the neighborhood of zero differently than the Shannon function
usually trivializes the theory. On the other hand, we showed that if the limit of g/η at zero is infinite,
then for every positive number γ, there exists a partition for which the g-entropy will be greater than
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or equal to γ. Thus, the measure-theoretic g-entropy will be infinite. The example from Section 2.2.3,
based on this result, implies that there is no counterpart of the generator theorem (e.g., Tsallis entropies
for α < 1, which we obtain considering g(x) = x−xα

α−1 with α ∈ (0, 1), fit into this scheme). However, the
concept of g-entropies is still of use, e.g., considering the rate of convergence of partial g-entropies may
give additional information about the system [30]. The most promising direction in this context seems
to be considering functions for which C(g) = 0 and g′(0) =∞.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Downarowicz, T. Entropy in Dynamical Systems; Cambridge University Press: New York, NY,
USA, 2011.

2. Katok, A.; Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems; Cambridge
University Press: New York, NY, USA, 1997.

3. Misiurewicz, M. A short proof of the variational principle for Zn+ action on a compact space.
Astérisque 1976, 40, 147–157.

4. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423,
623–656.

5. Rényi, A. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium
on Mathematical Statistics and Probability, Statistical Laboratory of the University of California,
Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA,
1961; Volume 1, pp. 547–561.

6. Arimoto, S. Information-theoretical considerations on estimation problems. Inf. Control 1971, 19,
181–194.

7. Wu, Y.; Verdú, S. Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog
Compression. IEEE Trans. Inf. Theory 2010, 56, 3721–3748.

8. Csiszár, I. Axiomatic characterization of information measures. Entropy 2008, 10, 261–273.
9. De Paly, T. On entropy-like invariants for dynamical systems. Z. Anal. Anwend. 1982, 1, 69–79.

10. De Paly, T. On a class of generalized K-entropies and Bernoulli shifts. Z. Anal. Anwend. 1982, 1,
87–96.

11. Grassberger, P.; Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal.
Phys. Rev. A 1983, 28, 2591–2593.

12. Takens, F.; Verbitski, E. Generalized entropies: Rényi and correlation integral approach.
Nonlinearity 1998, 11, 771–782.

13. Takens, F.; Verbitski, E. Rényi entropies of aperiodic dynamical systems. Isr. J. Math. 2002, 127,
279–302.



Entropy 2014, 16 3753

14. Liu, Q.; Cao, K.-F.; Peng, S.-L. A generalized Kolmogorov–Sinai-like entropy under Markov shifts
in symbolic dynamics. Physica A 2009, 388, 4333–4344.

15. Mesón, A.M.; Vericat, F. Invariant of dynamical systems: A generalized entropy. J. Math. Phys.

1996, 37, 4480–4483.
16. Mesón, A.M.; Vericat, F. On the Kolmogorov-like generalization of Tsallis entropy, correlation

entropies and multifractal analysis. J. Math. Phys. 2002, 43, 904–918.
17. Havrda, J.; Charvàt, F. Quantification method of classification processes. Concept of structural

α-entropy. Kybernetika 1967, 3, 30–35.
18. Abe, S. Tsallis entropy: How unique? Contin. Mech. Thermodyn. 2004, 16, 237–244.
19. Furuichi, S. Information theoretical properties of Tsallis entropies. J. Math. Phys. 2006, 47, 023302.

20. Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487.
21. Tsallis, C. Entropic nonextensivity: A possible measure of complexity. Chaos Solitons Fractals

2002, 13, 371–391.
22. Tsallis, C.; Plastino, A.R.; Zheng, W.-M. Power-law sensitivity to initial conditions—New entropic

representation. Chaos Solitons Fractals 1997, 8, 885–891.
23. Ornstein, D.S.; Weiss, B. Entropy is the only finitely observable invariant. J. Mod. Dyn. 2007, 1,

93–105.
24. Weiss, B. (The Hebrew University of Jerusalem), 2013, personal communication.
25. Weiss, B. Single Orbit Dynamics; American Mathematical Society: Providence, RI, USA, 2000.
26. Blume, F. The Rate of Entropy Convergence. Ph.D. Thesis, University of North Carolina, Chapel

Hill, NC, USA, 1995.
27. Blume, F. Possible rates of entropy convergence. Ergod. Theory Dyn. Syst. 1997, 17, 45–70.
28. Galatolo, S. Global and local complexity in weakly chaotic dynamical systems. Discret. Contin.

Dyn. Syst. 2003, 9, 1607–1624.
29. Ferenczi, S.; Park, K.K. Entropy dimensions and a class of constructive examples. Discret. Contin.

Dyn. Syst. 2007, 17, 133–141.
30. Falniowski, F. Possible g-entropy convergence rates. 2013, arXiv:1309.6246.
31. Rosenbaum, R.A. Sub-additive functions. Duke Math. J. 1950, 17, 227–247.
32. Heinemann, S.-M.; Schmitt, O. Rokhlin’s Lemma for non-invertible maps. Dyn. Syst. Appl. 2001,

10, 201–214.
33. Sinai, Y.G. Weak isomorphism of transformation with an invariant measure. Sov. Math. 1962, 3,

1725–1729.

c© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Results
	Basic Facts and Definitions
	Dynamical g-Entropies.
	Case of gG0
	Bernoulli Shifts

	Kolmogorov-Sinai Entropy-Like Invariant
	Measure-Theoretic g-Entropies for Bernoulli Automorphisms
	Main Theorem
	Generator Theorem Counterpart


	Discussion
	Conflicts of Interest

