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Abstract: The von Neumann entropy S(D̂) generates in the space of quantum density
matrices D̂ the Riemannian metric ds2 = −d2S(D̂), which is physically founded and
which characterises the amount of quantum information lost by mixing D̂ and D̂ + dD̂.
A rich geometric structure is thereby implemented in quantum mechanics. It includes a
canonical mapping between the spaces of states and of observables, which involves the
Legendre transform of S(D̂). The Kubo scalar product is recovered within the space of
observables. Applications are given to equilibrium and non equilibrium quantum statistical
mechanics. There the formalism is specialised to the relevant space of observables and to
the associated reduced states issued from the maximum entropy criterion, which result from
the exact states through an orthogonal projection. Von Neumann’s entropy specialises into a
relevant entropy. Comparison is made with other metrics. The Riemannian properties of the
metric ds2 = −d2S(D̂) are derived. The curvature arises from the non-Abelian nature of
quantum mechanics; its general expression and its explicit form for q-bits are given, as well
as geodesics.
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relevant entropy

1. A Physical Metric for Quantum States

Quantum physical quantities pertaining to a given system, termed as “observables” Ô, behave
as non-commutative random variables and are elements of a C*-algebra. We will consider below
systems for which these observables can be represented by n-dimensional Hermitean matrices in a
finite-dimensional Hilbert space H. In quantum (statistical) mechanics, the “state” of such a system
encompasses the expectation values of all its observables [1]. It is represented by a density matrix D̂,
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which plays the rôle of a probability distribution, and from which one can derive the expectation value
of Ô in the form

< Ô >= Tr D̂Ô = (D̂; Ô) . (1)

Density matrices should be Hermitean (< Ô > is real for Ô = Ô†), normalised (the expectation value
of the unit observable is Tr D̂ = 1) and non-negative (variances < Ô2 > − < Ô >2 are non-negative).
They depend on n2−1 real parameters. If we keep aside the multiplicative structure of the set of operators
and focus on their linear vector space structure, Equation (1) appears as a linear mapping of the space of
observables onto real numbers. We can therefore regard the observables and the density operators D̂ as
elements of two dual vector spaces, and expectation values (1) appear as scalar products.

It is of interest to define a metric in the space of states. For instance, the distance between an exact
state D̂ and an approximation D̂app would then characterise the quality of this approximation. However,
all physical quantities come out in the form (1) which lies astride the two dual spaces of observables
and states. In order to build a metric having physical relevance, we need to rely on another meaningful
quantity which pertains only to the space of states.

We note at this point that quantum states are probabilistic objects that gather information about the
considered system. Then, the amount of missing information is measured by von Neumann’s entropy

S(D̂) ≡ −Tr D̂ ln D̂ . (2)

Introduced in the context of quantum measurements, this quantity is identified with the thermodynamic
entropy when D̂ is an equilibrium state. In non-equilibrium statistical mechanics, it encompasses, in
the form of “relevant entropy” (see Section 5 below), various entropies defined through the maximum
entropy criterion. It is also introduced in quantum computation. Alternative entropies have been
introduced in the literature, but they do not present all the distinctive and natural features of von
Neumann’s entropy, such as additivity and concavity.

As S(D̂) is a concave function, and as it is the sole physically meaningful quantity apart from
expectation values, it is natural to rely on it for our purpose. We thus define [2] the distance ds between
two neighbouring density matrices D̂ and D̂ + dD̂ as the square root of

ds2 = −d2S(D̂) = Tr dD̂d ln D̂ . (3)

This Riemannian metric is of the Hessian form since the metric tensor is generated by taking second
derivatives of the function S(D̂) with respect to the n2 − 1 coordinates of D̂. We may take for such
coordinates the real and imaginary parts of the matrix elements, or equivalently (Section 6) some linear
transform of these (keeping aside the norm Tr D̂ = 1).

2. Interpretation in the Context of Quantum Information

The simplest example, related to quantum information theory, is that of a q-bit (two-level system or
spin 1

2
) for which n = 2. Its states, represented by 2 × 2 Hermitean normalised density matrices D̂,

can conveniently be parameterised, on the basis of Pauli matrices, by the components rµ = D12 + D21,
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i(D12−D21), D11−D22 (µ = 1, 2, 3) of a 3-dimensional vector r lying within the unit Poincaré–Bloch
sphere (r ≤ 1). From the corresponding entropy

S =
1 + r

2
ln

2

1 + r
+

1− r
2

ln
2

1− r
, (4)

we derive the metric

ds2 =
1

1− r2

(
r · dr
r

)2

+
1

2r
ln

1 + r

1− r

∥∥∥∥r× dr

r

∥∥∥∥2 , (5)

which is a natural Riemannian metric for q-bits, or more generally for positive 2 × 2 matrices. The
metric tensor characterizing (5) diverges in the vicinity of pure states r = 1, due to the singularity of
the entropy (2) for vanishing eigenvalues of D̂. However, the distance between two arbitrary (even pure)
states D̂′ and D̂′′ measured along a geodesic is always finite. We shall see (Equation (29)) that for n = 2

the geodesic distance s between two neighbouring pure states D̂′ and D̂′′, represented by unit vectors r′

and r′′ making a small angle δϕ ∼ |r′ − r′′|, behaves as δs2 ∼ δϕ2 ln(4
√
π/δϕ). The singularity of the

metric tensor manifests itself through this logarithmic factor.
Identifying von Neumann’s entropy to a measure of missing information, we can give a simple

interpretation to the distance between two states. Indeed, the concavity of entropy expresses that some
information is lost when two statistical ensembles described by different density operators merge. By
mixing two equal size populations described by the neighbouring distributions D̂′ = D̂ + 1

2
δD̂ and

D̂′′ = D̂ − 1
2
δD̂ separated by a distance δs, we lose an amount of information given by

∆S ≡ S
(
D̂
)
− S(D̂′) + S(D̂′′)

2
∼ δs2

8
, (6)

and thereby directly related to the distance δs defined by (3). The proof of this equivalence relies on the
expansion of the entropies S(D̂′) and S(D̂′′) around D̂, and is valid when Tr δD̂2 is negligible compared
to the smallest eigenvalue of D̂. If D̂′ and D̂′′ are distant, the quantity 8∆S cannot be regarded as the
square of a distance that would be generated by a local metric. The equivalence (6) for neighbouring
states shows that ds2 is the metric that is the best suited to measure losses of information my mixing.

The singularity of δs2 at the edge of the positivity domain of D̂ may suggest that the result (6)
holds only within this domain. In fact, this equivalence remains nearly valid even in the limit of
pure states because ∆S itself involves a similar singularity. Indeed, if the states D̂′ = |ψ′ >< ψ′|
and D̂′′ = |ψ′′ >< ψ′′| are pure and close to each other, the loss of information ∆S behaves as
8∆S ∼ δϕ2 ln(4/δϕ) where δϕ2 ∼ 2 Tr δD2. This result should be compared to various geodesic
distances between pure quantum states, which behave as δs2 ∼ δϕ2 ln(4

√
π/δϕ for the present metric,

and as δs2BH = 4δs2FS ∼ δϕ2 ∼ Tr(D̂′ − D̂′′)2 for the Bures – Helstrom and the quantum Fubini – Study
metrics, respectively (see Section 7; these behaviours hold not only for n = 2 but for arbitrary n since
only the space spanned by |ψ′ > and |ψ′′ > is involved). Thus, among these metrics, only ds2 = −d2S

can be interpreted in terms of information loss, whether the states D̂′ and D̂′′ are pure or mixed.
At the other extreme, around the most disordered state D̂ = Î/n, in the region ‖ nD̂ − Î ‖� 1, the

metric becomes Euclidean since ds2 = Tr dD̂d ln D̂ ∼ nTr(dD̂)2 (for n = 2, ds2 = dr2). For a given
shift dD̂, the qualitative change of a state D̂, as measured by the distance ds, gets larger and larger as
the state D̂ becomes purer and purer, that is, when the information contents of D̂ increases.
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3. Geometry of Quantum Statistical Mechanics

A rich geometric structure is generated for both states and observables by von Neumann’s entropy
through introduction of the metric ds2 = −d2S. Now, this metric (3) supplements the algebraic structure
of the set of observables and the above duality between the vector spaces of states and of observables,
with scalar product (1). Accordingly, we can define naturally within the space of states scalar products,
geodesics, angles, curvatures.

We can also regard the coordinates of dD̂ and d ln D̂ as covariant and contravariant components of
the same infinitesimal vector (Section 6). To this aim, let us introduce the mapping

D̂ ≡ eX̂

Tr eX̂
(7)

between D̂ in the space of states and X̂ in the space of observables. The operator X̂ appears as a
parameterisation of D̂. (The normalisation of D̂ entails that X̂ , defined within an arbitrary additive
constant operator X0 Î , also depends on n2 − 1 independent real parameters.) The metric (3) can then
be re-expressed in terms of X̂ in the form

ds2 = Tr dD̂dX̂ = Tr

∫ 1

0

dξD̂e−ξX̂dX̂eξX̂dX̂ − (Tr D̂dX̂)2 = d2 ln Tr eX̂ = d2F , (8)

where we introduced the function
F (X̂) ≡ ln Tr eX̂ (9)

of the observable X̂(The addition of X0Î to X̂ results in the addition of the irrelevant constant X0 to F ).
This mapping provides us with a natural metric in the space of observables, from which we recover the
scalar product between dX̂1 and dX̂2 in the form of a Kubo correlation in the state D̂. The metric (8)
has been quoted in the literature under the names of Bogoliubov–Kubo–Mori.

4. Covariance and Legendre Transformation

We can recover the above geometric mapping (7) between D̂ and X̂ , or between the covariant and
contravariant coordinates of dD̂, as the outcome of a Legendre transformation, by considering the
function F (X̂). Taking its differential dF = Tr eX̂dX̂/Tr eX̂ , we identify the partial derivatives of
F (X̂) with the coordinates of the state D̂ = eX̂/Tr eX̂ , so that D̂ appears as conjugate to X̂ in the
sense of Legendre transformations. Expressing then X̂ as function of D̂ and inserting into F − Tr D̂X̂ ,
we recognise that the Legendre transform of F (X̂) is von Neumann’s entropy F − Tr D̂X̂ = S(D̂) =

−Tr D̂ ln D̂. The conjugation between D̂ and X̂ is embedded in the equations

dF = Tr D̂dX̂ ; dS = −Tr X̂dD̂ . (10)

Legendre transformations are currently used in equilibrium thermodynamics. Let us show that they
come out in this context directly as a special case of the present general formalism. The entropy of
thermodynamics is a function of the extensive variables, energy, volume, particle numbers, etc. Let us
focus for illustration on the energy U , keeping the other extensive variables fixed. The thermodynamic
entropy S(U), a function of the single variable U , generates the inverse temperature as β = ∂S/∂U .



Entropy 2014, 16 3882

Its Legendre transform is the Massieu potential F (β) = S − βU . In order to compare these properties
with the present formalism, we recall how thermodynamics comes out in the framework of statistical
mechanics. The thermodynamic entropy S(U) is identified with the von Neumann entropy (2) of the
Boltzmann–Gibbs canonical equilibrium state D̂, and the internal energy with U = Tr D̂Ĥ . In the
relation (7), the operator X̂ reads X̂ = −βĤ (within an irrelevant additive constant). By letting U or β
vary, we select within the spaces of states and of observables a one-dimensional subset. In these restricted
subsets, D̂ is parameterised by the single coordinate U , and the corresponding X̂ by the coordinate −β.
By specialising the general relations (10) to these subsets, we recover the thermodynamic relations
dF = −Udβ and dS = βdU . We also recover, by restricting the metric (3) or (8) to these subsets,
the current thermodynamic metric ds2 =−(∂2S/∂U2)dU2 =−dUdβ.

More generally, we can consider the Boltzmann–Gibbs states of equilibrium statistical mechanics as
the points of a manifold embedded in the full space of states. The thermodynamic extensive variables,
which parameterise these states, are the expectation values of the conserved macroscopic observables,
that is, they are a subset of the expectation values (1) which parameterise arbitrary density operators.
Then the standard geometric structure of thermodynamics simply results from the restriction of the
general metric (3) to this manifold of Boltzmann–Gibbs states. The commutation of the conserved
observables simplifies the reduced thermodynamic metric, which presents the same features as a Fisher
metric (see Section 6).

5. Relevant Entropy and Geometry of the Projection Method

The above ideas also extend to non-equilibrium quantum statistical mechanics [2–4]. When
introducing the metric (3), we indicated that it may be used to estimate the quality of an approximation.
Let us illustrate this point with the Nakajima–Zwanzig–Mori–Robertson projection method, best
introduced through maximum entropy. Consider some set {Âk} of “relevant observables”, whose
time-dependent expectation values ak ≡ < Âk > = Tr D̂Âk we wish to follow, discarding all
other variables. The exact state D̂ encodes the variables {ak} that we are interested in, but also the
expectation values (1) of the other observables that we wish to eliminate. This elimination is performed
by associating at each time with D̂ a “reduced state” D̂R which is equivalent to D̂ as regards the set
ak = Tr D̂RÂk, but which provides no more information than the values{ak}. The former condition
provides the constraints < Âk > = ak, and the latter condition is implemented by means of the
maximum entropy criterion: One expresses that, within the set of density matrices compatible with
these constraints, D̂R is the one which maximises von Neumann’s entropy (2), that is, which contains
solely the information about the relevant variables ak. The least biased state D̂R thus defined has the
form D̂R = eX̂R/Tr eX̂R , where X̂R ≡

∑
k λkÂk involves the time-dependent Lagrange multipliers λk,

which are related to the set ak through Tr D̂RÂk = ak.
The von Neumann entropy S(D̂R) ≡ SR{ak} of this reduced state D̂R is called the “relevant entropy”

associated with the considered relevant observables Âk. It measures the amount of missing information,
when only the values {ak} of the relevant variables are given. During its evolution, D̂ keeps track of the
initial information about all the variables < Ô > and its entropy S(D̂) remains constant in time. It is
therefore smaller than the relevant entropy S(D̂R) which accounts for the loss of information about the
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irrelevant variables. Depending on the choice of relevant observables {Âk}, the corresponding relevant
entropies SR{ak} encompass various current entropies, such as the non-equilibrium thermodynamic
entropy or Boltzmann’s H-entropy.

The same structure as the one introduced above for the full spaces of observables and states is
recovered in this context. Here, for arbitrary values of the parameters λk, the exponents X̂R =

∑
k λkÂk

constitute a subspace of the full vector space of observables, and the parameters {λk} appear as the
coordinates of X̂R on the basis {Âk}. The corresponding states D̂R, parameterised by the set {ak},
constitute a subset of the space of states, the manifold R of “reduced states”(Note that this manifold is
not a hyperplane, contrary to the space of relevant observables; it is embedded in the full vector space of
states, but does not constitute a subspace). By regarding SR{ak} as a function of the coordinates {ak},
we can define a metric ds2 = −d2SR{ak} on the manifoldR, which is the restriction of the metric (3).
Its alternative expression ds2 =

∑
k dakdλk = d2FR{λk}, where FR{λk} ≡ ln Tr exp

∑
k λkÂk, is

a restriction of (8). The correspondence between the two parameterisations {ak} and {λk} is again
implemented by the Legendre transformation which relates SR{ak} and FR{λk}.

The projection method relies on the mapping D̂ 7→ D̂R which associates D̂R to D̂. It consists
in replacing the Liouville–von Neumann equation of motion for D̂ by the corresponding dynamical
equation for D̂R on the manifoldR, or equivalently for the coordinates {ak} or for the coordinates {λk},
a programme that is in practice achieved through some approximations. This mapping is obviously a
projection in the sense that D̂ 7→ D̂R 7→ D̂R, but moreover the introduction of the metric (3) shows that
the vector D̂−D̂R in the space of states is perpendicular to the manifoldR at the point D̂R. This property
is readily shown by writing, in this metric, the scalar product Tr dD̂ dX̂ ′ of the vector dD̂ = D̂ − D̂R

by an arbitrary vector dD̂′ in the tangent plane of R. The latter is conjugate to any combination dX̂ ′

of observables Âk, and this scalar product vanishes because Tr D̂Âk = Tr D̂RÂk. Thus the mapping
D̂ 7→ D̂R appears as an orthogonal projection, so that the relevant state D̂R associated with D̂ may be
regarded as its best possible approximation on the manifoldR.

6. Properties of the Metric

The metric tensor can be evaluated explicitly in a basis where the matrix D̂ is diagonal. Denoting by
Di its eigenvalues and by dDij the matrix elements of its variations, we obtain from (3)

ds2 = Tr

∫ ∞
0

dξ

(
dD̂

D̂ + ξ

)2

=
∑
ij

lnDi − lnDj

Di −Dj

dDijdDji . (11)

(For Di = Dj ,whether or not i = j, the ratio is defined as 1/Di by continuity.) In the same basis, the
form (8) of the metric reads

ds2 =
1

Z

∑
ij

eXi − eXj

Xi −Xj

dXijdXji −
(∑

i e
XidXii

Z

)2

, (12)

with Z =
∑

i e
Xi(For Xi = Xj , the ratio is eXi). The singularity of the metric (11) in the vicinity

of vanishing eigenvalues of D̂, in particular near pure states (end of Section 2), is not apparent in the
representation (12) of this metric, because the mapping from D̂ to X̂ sends the eignevalue Xi to −∞
when Di tends to zero.
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Let us compare the expression (11) with the corresponding classical metric, which is obtained by
starting from Shannon’s entropy instead of von Neumann’s entropy. For discrete probabilities pi, we have
then S{pi} = −

∑
i pi ln pi and hence the same definition ds2 = −d2S{pi} as above of an entropy-based

metric yields ds2 =
∑

i dp
2
i /pi, which is identified with the Fisher information metric. The present

metric thus appears as the extension to quantum statistical mechanics of the Fisher metric when the
latter is interpreted in terms of entropy. In fact, the terms of (11) which involve the diagonal elements
i = j of the variations dD̂ reduce to dD2

ii/Di. This result was expected since density matrices behave as
probability distributions if both D̂ and dD̂ are diagonal.

Let us more generally consider in (11), instead of solely diagonal variations dDii, variations dDij

with indices i and j such that |Di −Dj| � Di + Dj . The expansion of Di and Dj around 1
2
(Di + Dj)

in the corresponding ratios of (11) yields (lnDi − lnDj)/(Di − Dj) ∼ 2/(Di + Dj). The considered
terms of (11) are therefore the same as in the Bures–Helstrom metric

ds2BH =
∑
ij

2

Di +Dj

dDijdDji , (13)

introduced long ago as an extension to matrices of the Fisher metric [5]. We thus recover this
Bures–Helstrom metric as an approximation of the present entropy-based metric ds2 = −d2S(D̂).
For n = 2, ds2BH is obtained from the expression (5) of ds2 by omitting the factor tanh−1 r/r entering
the second term.

In order to express the properties of the Riemannian metric (3) in a general form, which will exhibit
the tensor structure, we use a Liouville representation. There, the observables Ô = OµΩ̂µ, regarded
as elements of a vector space, are represented by their coordinates Oµ on a complete basis Ω̂µ of n2

observables. The space of states is spanned by the dual basis Σ̂µ, such that Tr Ω̂νΣ̂µ = δνµ, and the
states D̂ = DµΣ̂µ are represented by their coordinates Dµ. Thus, the expectation value (1) is the
scalar product DµOµ. In the matrix representation which appears as a special case, µ denotes a pair of
indices i, j, Ω̂µ stands for | j >< i |, Σ̂µ for | i >< j |, Oµ denotes the matrix element Oji and Dµ

the element Dij . For the q-bit (n = 2) considered in Section 2, we have chosen the Pauli operators σ̂µ

as basis Ω̂µ for observables, and 1
2
σ̂µ as dual basis Σ̂µ for states, so that the coordinates Dµ = Tr D̂Ω̂µ

of D̂ = 1
2
(Î + rµσ̂µ) are the components rµ of the vector r (The unit operator Î is kept aside since D̂

is normalised and since constants added to X̂ are irrelevant). The function F{X} = ln Tr eX̂ of the
coordinates Xµ of the observable X̂ , and the von Neumann entropy S{D} as function of the coordinates
Dµ of the state D̂, are related by the Legendre transformation F = S+DµXµ, and the relations (10) are
expressed by Dµ = ∂F/∂Xµ, Xµ = −∂S/∂Dµ. The metric tensor is given by

gµν =
∂2F

∂Xµ∂Xν

, gµν = − ∂2S

∂Dµ∂Dν
, (14)

and the correspondence issued from (7) between covariant and contravariant infinitesimal variations of
X̂ and D̂ is implemented as dDµ = gµνdXν , dXµ = gµνdD

ν .
These expressions exhibit the Hessian nature of the metric. This property simplifies the expression of

the Christoffel symbol, which reduces to

Γµνρ = −1

2

∂3S

∂Dµ∂Dν∂Dρ
, (15)
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and which provides a parametric representation D̂(t) of the geodesics in the space of states through

d2Dµ

dt2
+ gµσΓσνρ

dDν

dt

dDρ

dt
= 0 . (16)

Then, the Riemann curvature tensor comes out as

Rµρ νσ = gξζ(ΓµσξΓνρζ − ΓµνξΓρσζ) , (17)

the Ricci tensor and the scalar curvature as

Rµν = gρσRµρ νσ, R = gµνRµν , (18)

We have noted that the classical equivalent of the entropy-based metric ds2 = −d2S is the Fisher
metric

∑
i dp

2
i /pi, which as regards the curvature is equivalent to a Euclidean metric. While the space of

classical probabilities is thus flat, the above equations show that the space of quantum states is curved.
This curvature arises from the non-commutation of the observables, it vanishes for the completely
disordered state D̂ = Î/n. Curvature can thus be used as a measure of the degree of classicality of
a state.

7. Geometry of the Space of q-Bits

In the illustrative example of a q-bit, the operator X̂ = χµσ̂
µ associated with D̂ is parameterised by

the 3 components of the vector χµ (µ = 1, 2, 3), related to r by χ = tanh−1 r and χµ/χ = rµ/r. The
metric tensor given by (5) is expressed as

gµν = Krµrν +
χ

r
δµν , K ≡ 1

r

d

dr

χ

r
=

1

r2

(
1

1− r2
− χ

r

)
, (19)

gµν = (1− r2)pµν +
r

χ
qµν .

(We have defined rµ = rµ, δµν = δµν = δµν so as to introduce the projectors rµrν/r2 ≡ pµν ≡
δµν − qµν in the Euclidean 3-dimensional space, and thus to simplify the subsequent calculations.) In
polar coordinates r = (r, θ, ϕ), the infinitesimal distance takes the form

ds2 = drdχ+ rχ(dθ2 + sin2 θdϕ2) . (20)

We determine from (15) and (19) the explicit form

Γµνρ =
K

2
(rµδνρ + rνδµρ + rρδµν) +

1

2r

dK

dr
rµrνrρ (21)

of the Christoffel symbol. By raising its first index with gµν and using polar coordinates, we obtain
from (16) the equations of geodesics for n = 2. Within the Poincaré–Bloch sphere the geodesics are
deduced by rotations from a one-parameter family of curves which lie in the θ = 1

2
π, |ϕ| ≤ 1

2
π half-plane

and which are symmetric with respect to the ϕ = 0 axis. This family is characterized by the equations
(where χ = tanh−1 r):

d2r

dt2
+

r

1− r2

(
dr

dt

)2

− r

2

[
1 +

χ

r

(
1− r2

)](dϕ

dt

)2

= 0 , (22)
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d2ϕ

dt2
+

1

r

dr

dt

dϕ

dt
+

1

χ

dχ

dt

dϕ

dt
= 0 , (23)

and the boundary conditions at t = 0:

r (0) = a , ϕ (0) = 0 ,
dr (0)

dt
= 0 ,

dϕ (0)

dt
=

1

k
, k2 = a tanh−1 a . (24)

Equation (23) provides, using the boundary conditions (24):

dϕ

dt
=

k

rχ
. (25)

Insertion of (25) into (22) gives rise to an equation for r (t), which can be integrated by regarding t as a
function of ζ = arcsin r. One obtains:(

dr

dt

)2

=
(
1− r2

)(
1− k2

rχ

)
. (26)

The scale of t has been fixed by relating to r (0) the boundary condition (24) for dϕ (0) /dt, a choice
which ensures that ds2 = drdχ + rχdϕ2 = dt2, and hence that the parameter t measures the distance
along geodesics.

For k = 0, we obtain r = |sin t|, ϕ = ±π/2. Thus, the longest geodesics are the diameters of the
Poincaré–Bloch sphere. We find the value π for their “length”, that is, for the geodesic distance between
two orthogonal pure states. At the other extreme, when the middle point r = a, ϕ = 0 of a geodesic lies
close to the surface r = 1 of the sphere, the asymptotic form of the equation (26) is solved as

t = ±2k
√
πe−k

2

erf ξ , ξ =

√
1

2
ln

1− a
1− r

, k2 =
1

2
ln

2

1− a
(27)

(by taking ξ as variable instead of r). The determination of the explicit equations of such short geodesic
curves is achieved by integrating (25) into

ϕ =
t

k
= ±2

√
πe−k

2

erf ξ . (28)

From (27) and (28) we can determine the geodesic distance between two neighbouring pure states D̂′ =
|ψ′ >< ψ′| and D̂′′ = |ψ′′ >< ψ′′| represented by the points rmax = 1, ϕmax = ±1

2
δϕ with δϕ small.

At these two points, we have ξ → ∞, erf ξ = 1, and this determines k in terms of 1
2
δϕ through (28).

The length of the geodesic that joins them, given by (27), is:

δs2 = δϕ2 ln
4
√
π

δϕ
, δϕ = arccos |< ψ′ | ψ′′ >| . (29)

Thus, in spite of its singularity for r = 1, the present 3-dimensional metric (5) in the space r, θ, ϕ defines
distances between pure states represented by points on the surface r = 1 of the Poincaré–Bloch sphere.
However, It should be noted that the presence of the logarithmic factor in (29) forbids such distances to
be generated by a 2-dimensional metric in the space θ, ϕ. In fact, the distance (29) is measured along a
geodesic that penetrates the sphere r = 1, because no geodesic is tangent to the surface of this sphere
nor lies on its surface.
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In contrast, all geodesics produced by the Bures–Helstrom metric are tangent to the surface of the
sphere, or are its great circles. They are given by Equations (25) and (26), where χ is replaced by r and
k by a; the solution of these equations provides the ellipses

r cosϕ = a cos t , r sinϕ = sin t . (30)

Here as above, the largest distance π is reached for orthogonal pure states represented by opposite points
on the sphere, but now a peculiarity occurs. Whereas the metric ds2 = −d2S produces a single geodesic,
the diameter joining these two points (with “length” π), the Bures metric produces a double infinity of
geodesics, the half-ellipses (30) having as long axis this diameter, and having all the same “length” π.
Other pairs of pure states are joined by geodesics which are arcs of great circles, and their Bures distance
δsBH = δϕ is identified with the ordinary length of the arc. Here for n = 2 as in the general case, the
3-dimensional Bures–Helstrom metric admits a restriction to pure states generated by a 2-dimensional
metric, which is identified with the quantum Fubini–Study metric, itself defined only for pure states by
sFS = arccos |< ψ′ | ψ′′ >| = 1

2
sBH.

Returning to the metric ds2 = d2S, the Riemann curvature is obtained from (17) as

Rµ
ρ νσ =

K

4

[
(r2 +

r

χ
− 1)(qµσqνρ − qµνqρσ) + (r2 − r

χ
+ 1)(pµσqνρ − pµνqρσ) (31)

+
r

χ

1

1− r2
(r2 − r

χ
+ 1)(qµσpνρ − qµνpρσ)

]
.

Contracting with gρσ the indices of (30) as in (18), we finally derive the Ricci curvature

Rµ
ν = −Kr

2χ

(
r2δµν +

χ− r
χ

pµν

)
, (32)

and the scalar curvature

R = −Kr
2χ

(
3r2 +

χ− r
χ

)
. (33)

Both are negative in the whole Poincaré sphere. In the limit r → 0, the curvature R vanishes as
R ∼ −10

9
r2, as expected from the general argument of Section 2: a weakly polarised spin behaves

classically. At the other extreme r → 1, R behaves as R ∼ −2 [(1− r) | ln(1− r) |]−1; it diverges,
again as expected: pure states have the largest quantum nature.

The metric ds2 = −d2S, introduced above in the context of quantum mechanics for mixed states
(and their pure limit) and information theory, might more generally be useful to characterise distances in
spaces of positive matrices.
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