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Abstract: This paper deals with the leader-following consensus of multi-agent systems with
matched nonlinear dynamics. Compared with previous works, the major difficulty here is
caused by the simultaneous existence of nonidentical agent dynamics and unknown system
parameters, which are more practical in real-world applications. To tackle this difficulty,
a distributed adaptive control law for each follower is proposed based on algebraic graph
theory and algebraic Riccati equation. By a Lyapunov function method, we show that
the designed control law guarantees that each follower asymptotically converges to the
leader under connected communication graphs. A simulation example demonstrates the
effectiveness of the proposed scheme.
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1. Introduction

By designing a distributed control law for simple agents with a limited communication range and
processing power, a system of multiple agents (i.e., a multi-agent system) can perform complex tasks
in a cooperative manner. Therefore, cooperative control of multi-agent systems has gained great
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interest in recent years and has been successfully applied to multisensor location and identification,
multi-robot search and rescue and the formation control of multiple unmanned air vehicles [1,2]. The
typical cooperative behaviors of multi-agent systems include consensus, formation control, rendezvous,
flocking and containment control. Among them, consensus is a fundamental approach to realize other
cooperative control. Roughly speaking, consensus means that all agents reach an agreement on a
common value of interest (such as position, velocity, attitude, etc.) relying solely on local information
from neighboring agents.

As a hot topic in the field of coordination control, seminal work on the consensus problem has been
conducted by Vicsek et al. [3], Jadbabaie et al. [4], Olfati-Saber and Murray [5], Moreau [6], Ren and
Beard [7], Olfati-Saber [8], Ren [9], Lin et al. [10] and Zhu and Yuan [11], to name just a few. For
multi-agent systems with single-integrator dynamics, it has been demonstrated that consensus can be
reached if and only if the undirected topology is connected or the directed topology contains a spanning
tree [7]. For multi-agent systems with double-integrator or high-order dynamics, the convergence of
consensus will be affected by not only communication topology, but also coupling strength between
agents [9–11], which is somewhat different from the single-integrator case. It should be pointed out
that the aforementioned consensus algorithms have been predominantly concerned with agents without
their own dynamics. In other words, the time-evolution of agents is determined by the information
exchange among them. However, multi-agent systems encountered in real-world applications can
hardly be described by such integrator-based models, since many of them possess high-dimensional
complicated dynamics.

Recent studies have begun to draw a connection between consensus and agent dynamics [12–19]. For
example, Tuna [12] showed that an output feedback law exists under which coupled discrete-time linear
systems synchronize asymptotically. The work of [17–19] discussed the leader-following consensus
of multiple linear agents under time-varying topologies. Note that most of the existing results were
restricted to agents with deterministic linear dynamics. A more interesting scenario is that agents have
uncertain general nonlinear dynamics. Nevertheless, such a scenario has rarely been considered. Some
exceptions include [20] for leadless consensus and [21,22] for leader-following consensus, where the
solution was given under the restrictive assumption that nonlinear dynamics should satisfy a global
Lipschitz-type condition. In other works [23,24], the leader-following consensus problem of multi-agent
systems with heterogeneous matched nonlinear dynamics was considered by using adaptive control, but
only approximate consensus behavior with bounded residual errors was achieved.

Motivated by the above discussion, here, we further consider the consensus problem of multi-agent
systems with matched nonlinear dynamics in the presence of unknown parameters. The problem is
investigated in a leader-following framework without imposing a global Lipschitz-type condition on
agent dynamics. It should be noted that a relevant topic for this problem is the synchronization of
complex network [12,17,25,26]. After quantifying the structure property of complex networks by
defining various entropy measures (e.g., Shannon entropy, Gibbs entropy, Kolmogorov–Sinai entropy,
structure entropy; see [27–31] and the references therein), lots of interesting techniques have been
proposed to solve the synchronization problem of networked linear or nonlinear oscillators [32,33].
However, most of the previous synchronization analysis does not focus on the communication limitation,
which thus is difficult to be extended to the consensus problem relying on both the communication
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limitation and the agent self-dynamics. The main contributions are three-fold. First, agent dynamics in
this paper are in a matched nonlinear form, which contain integrator-type agent dynamics in the literature
as special cases. Moreover, the nonlinear dynamics of agents are assumed to be nonidentical. Second,
both the followers and the leader are allowed to contain unknown parameters, which are inevitable in
real multi-agent systems due to imprecise measurements and interactions with an unknown environment.
Finally, by parameterizing the unknown nonlinear dynamics of each agent with some basis functions,
a distributed adaptive control law is designed based on local consensus error feedback for connected
communication graphs. The Lyapunov function method together with a Riccati equation is employed to
show that the proposed control law asymptotically regulates each follower agent (nonidentical, nonlinear
and unknown) to the leader agent.

The remainder of the paper is organized as follows. Some background on graph theory, as well as the
problem formulation are given in Section 2. In Section 3, we provide the consensus result on nonlinear
multi-agent systems with a connected communication topology. A simulation example is presented in
Section 4, followed by Section 5, which concludes this paper.

2. Preliminaries

Throughout the paper, the following notions will be used. || · || denotes the Euclidean norm. 1N (0N )
is a vector in RN with elements being all ones (all zeros), and In (On) is the n× n identity matrix (zero
matrix). diag{x1, . . . , xN} defines a diagonal matrix with diagonal entries x1 to xN . Denote by S > 0

(S < 0) that the matrix S is positive (negative) definite. ⊗ denotes the Kronecker product with well
known properties (A⊗B)T = AT ⊗BT , A⊗(B+C) = A⊗B+A⊗C, (A⊗B)(C⊗D) = AC⊗BD,
where A, B, C and D are matrices with appropriate dimensions. If not explicitly stated, we assume that
the dimensions of the matrix used in this paper are compatible.

2.1. Graph Theory

Let G = (V , E) be an undirected graph with a set of nodes V = {v1, . . . , vN} and a set of edges
E ⊆ V × V . The node indices belong to a finite index set I = {1, . . . , N}. An edge of E is denoted by
an unordered pair (vi, vj), which means that node vi and vj can exchange information with each other.
Let us define a weighted adjacency matrix A = [αij] ∈ RN×N as follows: αij = αji > 0 if (vi, vj) ∈ E ,
otherwise αij = αji = 0. Moreover, we assume that αii = 0 for all i ∈ I. The set of neighbors of node i
is denoted by Ni = {j ∈ I : (vi, vj) ∈ E}. Define the degree matrix as D = diag{d1, . . . , dN} with
di =

∑
j∈Ni

αij . The symmetric Laplacian matrix corresponding to the undirected graph G is defined as
L = D−A. A path is a sequence of unordered edges of the form (vi1 , vi2), (vi2 , vi3), . . . , where vij ∈ V .
The graph G is called connected if there is a path between any two nodes.

2.2. Problem Formulation

The multi-agent system considered here is composed of N follower agents and a leader, having
distinct n-th order dynamics. The dynamics of the i-th follower agent is described as:

ẋi(t) = Axi(t) +B [fi(xi(t), t) + ui(t)] , i = 1, 2, . . . , N, (1)
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where xi(t) = (xi1, xi2, . . . , xin)T ∈ Rn is the state of agent i, ui(t) ∈ Rm is the control input and
fi(xi(t), t) ∈ Rm is the matched nonlinear dynamics of agent i, which is assumed to be unknown.
A ∈ Rn×n and B ∈ Rn×m are known matrices.

The leader, indexed as i = 0, has the following dynamic model:

ẋ0(t) = Ax0(t) +Bf0(x0(t), t), (2)

where x0(t) = (x01, x02, . . . , x0n)T ∈ Rn is the state of the leader and f0(x0(t), t) ∈ Rm is an unknown
continuous function.

The following assumptions are used throughout the paper.

Assumption 1. The unknown nonlinear dynamics fk(xk(t), t) is parameterized as:

fk(xk, t) = φTk (xk, t)θk, k = 0, 1, · · · , N (3)

where φk(xk, t) ∈ Rr×m is the basis function matrix and θk ∈ Rr is the unknown constant parameter
vector to be estimated.

Assumption 2. The pair (A, B) is stabilizable.

In what follows, we use the undirected graph G to model the information topology relation among N
follower agents (labeled as vi, i ∈ I). Furthermore, we define an augmented graph Ḡ = (V̄ , Ē) to model
the interaction topology betweenN followers and the leader (labeled as v0), where V̄ = {v0, v1, . . . , vN}
and Ē ⊆ V̄ × V̄ . To depict whether the followers are connected to the leader in Ḡ, we define a leader
adjacency matrix A0 = diag{α10, . . . , αN0} ∈ RN×N , where αi0 > 0 if follower vi is connected to the
leader across the communication link (vi, v0), otherwise, αi0 = 0. If we define a new matrixH = L+A0,
the following lemma plays a key role in the sequel.

Lemma 1. ([34]): If undirected graph Ḡ is connected, then the symmetric matrix H associated with Ḡ
is positive definite.

Now, for the multi-agent system (1)–(2), the leader-following consensus problem can be formulated
into designing a distributed control law ui, such that all N follower agents converge to the leader, that is,
limt→∞ ||xi(t)− x0(t)|| = 0,∀ i ∈ I for any initial conditions xi(0), i = 0, 1, . . . , N .

3. Consensus Analysis

In this section, we start with the design of distributed adaptive controllers for follower agents, then
the stability analysis of leader-following consensus of nonlinear multi-agent systems is presented.

3.1. Distributed Adaptive Controller Design

Under Assumption 1, the parameter vector θi of the unknown function fi(xi, t) is unavailable in the
controller design. Instead, θi has to be estimated by each follower agent during the evolution. On the
other hand, for consensus protocol design, it is assumed that only relative state information can be used.



Entropy 2014, 16 5024

More precisely, the only obtainable information for follower vi is the local neighborhood consensus
error [35]:

ei =
∑
j∈Ni

αij [(xj(t)− xi(t))] + αi0 [(x0(t)− xi(t))] , i ∈ I, (4)

where αij and αi0 are defined in Section 2.
With these limitations, the control law for the i-th followers is designed as follows:

ui = ui1 + ui2 (5)

with

ui1 = cKei

ui2 = −φTi (xi, t)θ̂i + φT0 (x0, t)θ̂0i,
(6)

where c > 0 is the coupling strength and K ∈ Rm×n is the feedback gain matrix to be designed later; θ̂i
and θ̂0i are the estimations of the unknown parameters θi and θ0, respectively.

Substituting the designed control law (5)–(6) into the multi-agent system (1)–(2), the closed-loop
system for the i-th follower and the leader can be expressed as:

ẋi(t) = Axi(t) +B
[
cKei − φTi (xi, t)θ̃i + φT0 (x0, t)θ̂0i

]
, i = 1, . . . , N, (7)

and
ẋ0(t) = Ax0(t) +BφT0 (x0, t)θ0, (8)

where θ̃i = θ̂i − θi.

3.2. Stability Analysis

In order to analyze the performance of the designed consensus protocol, we define the consensus error
between follower vi and the leader v0 as δi(t) , xi(t)−x0(t). Then, from the closed-loop system (7)–(8),
the dynamics of δi(t) can be obtained:

δ̇i(t) = Aδi(t) +B
[
cKei − φTi (xi, t)θ̃i + φT0 (x0, t)θ̃0i

]
(9)

where θ̃0i = θ̂0i−θ0. Denote δ = (δT1 , . . . , δ
T
N)T ; then, the error system (9) can be rewritten in a compact

form as:
δ̇(t) = (IN ⊗ A− cH ⊗BK)δ(t) + (IN ⊗B)

[
−ΦT

f θ̃f + ΦT
0 θ̃0

]
(10)

where θ̃f = (θ̃T1 , . . . , θ̃
T
N)T , θ̃0 = (θ̃T01, . . . , θ̃

T
0N)T , Φf = diag{φ1, . . . , φN} and Φ0 = diag{φ0, . . . , φ0}.

Remark 1. The leader-following consensus problem of the multi-agent system (1)–(2) is solved by the
control law (5)–(6) if and only if the equilibrium point δ(t) = 0 of the consensus error system (10) is
asymptotically stable.

On the other hand, under Assumption 2, one can see that the following algebraic Riccati equation:

ATP + PA− PBBTP + In = 0 (11)
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has a unique positive definite solution P [36]. Then, we select the gain matrix K in (6) as:

K = BTP, (12)

and the parameter adaptive law as:

˙̂
θi = −φi(PB)T ei

˙̂
θ0i = φ0(PB)T ei.

(13)

Remark 2. Both the control law (5)–(6) and the adaptive law (13) are strictly distributed, in the
sense that each follower only uses local information of neighboring followers and the leader if this
follower is an informed agent. Thus, no centralized information is required, which is more practical for
controller implementation.

Now, with the above preparations, we are in a position to give our main results for the multi-agent
system (1)–(2) under the connected interaction topology.

Theorem 1. Consider the multi-agent system (1)–(2) under Assumptions 1 and 2. Assume that
the communication graph Ḡ is connected and φk (k = 0, 1, . . . , N) are uniformly bounded. Then,
the distributed control law (5)–(6) combined with the adaptive law (13) solves the leader-following
consensus problem if the coupling strength c is chosen as:

c >
1

2λmin(H)
, (14)

where λmin(H) denotes the smallest eigenvalue of H .

Proof. Consider the following candidate Lyapunov function:

V (t) =
1

2
δT (t)(H ⊗ P )δ(t) +

1

2
θ̃Tf θ̃f +

1

2
θ̃T0 θ̃0. (15)

Differentiating (15) along the trajectories of error system (10) yields:

V̇ (t) =δT (t)(H ⊗ P )δ̇(t) + θ̃Tf
˙̃θf + θ̃T0

˙̃θ0

=
1

2
δT (t)

[
H ⊗ (ATP + PA)− 2cH2 ⊗ PBK

]
δ(t)

+ δT (t)(H ⊗ PB)
[
−ΦT

f θ̃f + ΦT
0 θ̃0

]
+ θ̃Tf

˙̂
θf + θ̃T0

˙̂
θ0

(16)

Substituting the adaptive law (13) into (16), we have:

V̇ (t) =
1

2
δT (t)

[
H ⊗ (ATP + PA)− 2cH2 ⊗ PBBTP

]
δ(t). (17)

Since the graph Ḡ is connected, we know that H is positive definite from Lemma 1. Then, there exists
a unitary matrix U ∈ RN×N , such that:

UTHU = diag{λ1, . . . , λN},
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where λi > 0 are eigenvalues of matrix H . With the state transformation δ̃ = (U ⊗ In)δ, we can
continue (17) as follows:

V̇ (t) =
1

2

N∑
i=1

δ̃Ti (t)λi
[
ATP + PA− 2cλiPBB

TP
]
δ̃i(t)

≤1

2

N∑
i=1

δ̃Ti (t)λi
[
ATP + PA− PBBTP

]
δ̃i(t)

≤− λmin(H)

2
||δ||2.

(18)

Obviously, V̇ is negative semi-definite. Then, it follows that V (t) ≤ V (0), which indicates that
δ, θ̃f , θ̃0 ∈ L∞. Hence, δ̇(t) ∈ L∞ due to (10) and the assumption that φj (j = 0, 1, . . . , N) are
uniformly bounded. Moreover, from (18), one has:∫ t

0

||δ(s)||2ds ≤ − 2

λmin(H)

∫ t

0

V̇ (s)ds ≤ 2

λmin(H)
(V (0)− V (t)) ≤ 2

λmin(H)
V (0),

that is to say, δ ∈ L2. According to Barbalat’s lemma [37], the trajectory of error system (10) starting
from any initial conditions will converge to the origin asymptotically as t→∞, which, in turn, indicates
that limt→∞ ||xi(t)− x0(t)|| = 0,∀ i ∈ I. The proof is thus completed.

Remark 3. It is worthwhile to mention here that the leader-following consensus problem of multi-agent
systems with heterogeneous unknown nonlinear dynamics was also investigated using adaptive control
in [38,39] and fuzzy disturbance observer in [40], but they only consider agents with first-order dynamics.
In this paper, the results in [38–40] were largely extended to the multi-agent systems with more general
agent dynamics described by (1)–(2). Therefore, the results of this paper are expected to be a necessary
complement to the consensus development of general nonlinear multi-agent systems.

4. Numerical Simulation

In this section, a numerical example is presented to illustrate Theorem 1. Consider a multi-agent
system composed of five followers and a leader with a communication graph shown in Figure 1, in
which the weights on each edge are assumed to be one. The Laplacian matrix L among five followers
and the leader adjacency matrix A0 are given by:

L =


2 0 0 −1 −1

0 1 −1 0 0

0 −1 2 −1 0

−1 0 −1 2 0

−1 0 0 0 1

 and A0 = diag{0, 1, 0, 0, 0}.
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Figure 1. Communication topology between the leader and the followers.
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In simulation, each follower agent is modeled as the Chen chaotic system [41]:
ẋi1 = α(xi2 − xi1)
ẋi2 = (γ − α)xi1 + γxi2 − xi1xi3
ẋi3 = xi1xi2 − βxi3

(19)

where xi = [xi1, xi2, xi3]
T are the state variables of the i-th (i = 1, . . . , 5) follower agent. It is known

that the Chen system depicts a chaotic behavior when α = 35, β = 3 and γ = 28. Letting:

A =

 −α α 0

γ − α γ 0

0 0 −β

 , B = I3, f(xi, t) =

 0

−xi1xi3
xi1xi2

 ,

the Chen system in (19) can be written in the form of (1). Apparently, the pair (A,B) is stabilizable, and
the nonlinear function f(xi, t) can be parameterized as f(xi, t) = φTi (xi, t)θi in Assumption 1 with:

φi(xi, t) =

(
0 xi1xi3 0

0 0 xi1xi2

)
, θi =

(
−1

1

)
, (i = 1, . . . , 5).

Let the leader agent be described also by the Chen system with different unknown nonlinear dynamics:

ẋ0(t) = Ax0(t) +Bf0(x0(t), t), (20)

where f(x0, t) = φT0 (x0, t)θ0 with:

φ0(x0, t) =

(
0 x01x03 0

0 0 x01x02

)
, θ0 =

(
−1.1

0.9

)
.

When the designed control law (5)–(6) and the adaptive law (13) are applied to this multi-agent
system, the control gain K in (6) is selected according to the following procedure. Solving the algebraic
Riccati equation (11) yields:

P =

 0.6790 −5.5836 0.0000

−5.5836 47.0518 −0.0000

−0.0000 0.0000 0.1623

 .

Then, the gain matrix K is designed as K = BTP . Thus, according to Theorem 1, when
c > 1

2λmin(H)
= 6.2, the leader-following consensus will be achieved using the distributed control
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law (5)–(6) combined with the adaptive law (13). The simulation results with c = 6.5 are shown in
Figures 2 and 3, from which we can see that each follower described by (19) asymptotically converges
to the leader described by (20), although there exist unknown parameters.

Figure 2. State trajectories xk(t) (k = 0, 1, . . . , 5) of all followers and the leader.
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Figure 3. Error trajectories δi(t) = xi(t) − x0(t) (i = 1, . . . , 5) between each follower and
the leader.
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5. Conclusions

In this paper, we have studied the leader-following consensus problem of multi-agent systems with
unknown nonlinear dynamics. Compared with previous models, our system does not require individual
agent dynamics to satisfy the global Lipschitz-type condition. Moreover, based on the local consensus
error feedback, a distributed adaptive control law has been developed, which was proven to drive all of
the followers to the leader under a undirected and connected communication topology. In the future,
we will further apply the method proposed in this paper to multi-agent systems with more general agent
dynamics and more general communication graphs.
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