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Abstract: To develop an automatic tea-category identification system with a high recall rate, 

we proposed a computer-vision and machine-learning based system, which did not require 

expensive signal acquiring devices and time-consuming procedures. We captured 300 tea 

images using a 3-CCD digital camera, and then extracted 64 color histogram features and 16 

wavelet packet entropy (WPE) features to obtain color information and texture information, 

respectively. Principal component analysis was used to reduce features, which were fed into 

a fuzzy support vector machine (FSVM). Winner-take-all (WTA) was introduced to help the 

classifier deal with this 3-class problem. The 10 × 10-fold stratified cross-validation results 

show that the proposed FSVM + WTA method yields an overall recall rate of 97.77%, higher 

than 5 existing methods. In addition, the number of reduced features is only five, less than 

or equal to existing methods. The proposed method is effective for tea identification. 
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1. Introduction 

Tea is a pleasant beverage commonly brewed by pouring (near) boiling water over curled leaves of 

the Camellia sinensis, which is an evergreen bush indigenous to Asia. Tea is an extensively consumed 

beverage worldwide with an expanding market [1]. 

Tea originated in China having been recognized for its healing properties, and in recent times, there 

has been more and more evidence to show that specific substances in tea can help resist diseases. For 

example, researchers found antioxidants in tea may be capable of protecting against diseases: 

Alzheimer’s disease [2], Parkinson’s disease [3], neurodegenerative disease [4], blood pressure and 

cardiovascular disease [5], colon cancer [6], breast cancer [7], lung cancer [8], etc. 

There are many different species of tea in the world. At least six different types have been produced 

and are listed in Table 1. This study focuses on tea in China, where green, Oolong, and black tea are the 

most popular classes [9]. 

Table 1. Tea Categories. 

Category Characteristics 

White Tea wilted and unoxidized 

Yellow tea unwilted and unoxidized, with sweltering 

Green tea unwilted and unoxidized 

Oolong tea wilted, bruised, and partially oxidized 

Black tea wilted and fully oxidized 

Post-fermented tea fermented green tea 

The classification of tea categories is very important for controlling fermentation time and obtaining 

specific types of tea, which strongly influences the commercial market. In the past, human experts 

measured the color variation during fermentation by visual checks; however, this method has various 

shortcomings such as irreproducibility, high labor cost, and inconsistency. The colorimeter was then 

introduced for objective quality evaluations. In addition to examining color features, sieves of different 

pore sizes were used. However, those traditional methods are rather rough; hence, they cannot accurately 

assess, predict, and control tea quality. 

Two categories of automatic tea-classification methods were proposed: (1) to develop new 

measurement devices and (2) to develop new algorithms based on computer vision. For the former 

category, Herrador and Gonzalez [10] selected eight metals (Al, Zn, Ca, Mn, Ba, Mg, Cu, and K) as 

chemical descriptors to differentiate three tea classes. They proved the back propagation-artificial neural 

network (BP-ANN) achieved an almost 95% recall rate. Zhao et al. [11] utilized near-infrared (NIR) 

spectroscopy for fast identification of green, oolong, and black tea. They extracted five principal 

components (PCs), which were sent to SVM classifiers. For all categories, their identification accuracies 

were no less than 90%. Chen et al. [12] proposed using NIR reflectance spectroscopy to identify three 

types of tea. They used RBF-SVM as the classifier, and found the best identification for green, black, 
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and oolong teas were 90%, 100%, and 95%, respectively. Wu et al. [13] put forward a new 

nondestructive method based on multispectral digital image texture feature. The sample images were 

obtained via a red waveband, NIR waveband and green waveband multispectral digital imager. They 

combined DCT and LS-SVM as the classifier. Chen et al. [14] developed a portable electronic nose, by 

an odor imaging sensor array, with the aim of tea classification of three different fermentation degrees. 

Liu et al. [15] used electronic tongue technique to analyze 43 samples of green and black tea. A class of 

metallic oxide-modified nickel foam electrodes (SnO2, ZnO, TiO2, Bi2O3) was compared. The signals 

obtained by cyclic voltammetry underwent multivariate data analysis that consisted of principal 

component analysis (PCA) and SVM. 

The above methods can obtain good identification results; however, they need expensive signal 

acquiring devices with time-consuming procedures. On the other hand, the latter category (i.e., 

computer-vision based systems) is attaining support in the food industry due to its rapid speed, low cost, 

consistency, reliability, and high accuracy. For instance, Borah et al. [16] described a novel  

texture-feature estimation technique, with the goal of discriminating images of eight dissimilar grades 

of CTC tea. Chen et al. [17] used 12 color feature variables and 12 texture feature variables. PCA and 

linear discriminant analysis (LDA) were employed to build the identification model for five varieties of 

Chinese green tea. Features were reduced to 11. Jian et al. [18] used computer-vision techniques in order 

to classify and grade a particular tea sample, based on the parameters of color and shape. Two kinds of 

features were obtained: (1) The color features were extracted by transforming the color tea image to HSI 

model. (2) The shape features were extracted after the color images were degraded to binary images. 

Genetic neural-network (GNN) was used as the classification method. It achieved acceptable 

identification performance with eight features of both shape and color. Gill et al. [19] presented a survey 

of versatile computer vision techniques, which are related to color and texture analysis, with a tendency 

towards tea grading and monitoring. They pointed out that computer vision and image analyses were 

harmless for sorting tea. They predicted computer vision based techniques will become more and more 

popular in tea classification. Laddi et al. [20] acquired the images of tea granules using 3-CCD color 

camera under dual ring light. In all, 10 graded tea samples were obtained and analyzed. Their acquired 

features, i.e., (energy, entropy, contrast, correlation, and homogeneity) were reduced by principal 

component analysis (PCA). Their experimental results showed that the best discrimination was  

dark-field illumination (variance = 96%). In contrast, the bright-field illumination showed weak 

discrimination (variance = 83%). Zhang et al. [21] used the combination of different features (color, 

shape, and texture) and a feedforward neural network (FNN) with the aim of classifying fruits. The 

method can be directly used for tea identification. 

Those methods used cheap digital camera as the main system; however, their classification accuracy 

does not meet the standard of practical usage. In information theory, the Shannon entropy [22] is 

commonly based on compression in a quantization process, and this can be investigated by using the 

wavelet compression. Hence, wavelet entropy (WE) is proposed and used in many applications. From 

another point of view, WE is the minimization of the feature space for data analysis. To augment the 

performance, we proposed replacing wavelet decomposition with wavelet packet transform (WPT), and 

thus the WE is replaced with wavelet packet entropy (WPE). 

Based on WPE and machine learning techniques, we proposed a novel tea-identification method, with 

the aim of developing an automatic identification system with better identification accuracy of green, 
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black, and oolong teas. To implement it, we employed the latest developments in signal processing. The 

proposed methods consist of three stages following common convention: (i) Feature extraction: we 

combined color features (obtained by color histogram) with texture features (obtained by WPE);  

(ii) Feature reduction: we employed PCA to reduce the feature dimensions; (iii) Classification: we 

introduced a fuzzy support vector machine (FSVM). 

The remainder of the paper is organized in the following way: Section 2 describes the sample 

preparation, image-acquiring procedure, the proposed methodology, and the statistical setting. 

Experiments in Section 3 compare the proposed methods with state-of-the-art methods. Finally, Section 

4 concludes the paper and outlines future research directions. For ease of reading, we explain the 

nomenclatures in Abbreviation (please refer to the end of this work). 

2. Proposed Method 

2.1. Tea Preparation 

Three hundred samples consisting of three categories were prepared with origins from various 

provinces in China. Each tea category contained different brands to increase the generalization ability 

of the identification system. All tea samples were bought on stock within the period of four months. 

Table 2 shows the characteristics of tea samples used. 

Table 2. Characteristics of tea samples. 

Category Number Origins 
Green tea 100 Henan; Guizhou; Jiangxi; Anhui; Zhejiang; Jiangsu 
Black tea 100 Yunan; Hunan; Hubei; Fujian 

Oolong tea 100 Fujian; Guangdong 

2.2. Image Acquiring 

A flowchart of the used computer vision system is illustrated in Figure 1, which consists of 5 basic 

parts: a digital camera, an illumination platform, a capture board (digitizer or frame grabber), computer 

software, and computer hardware [23]. The image acquiring procedures are as follows: 

 

Figure 1. Computer vision based system to obtain the tea image database. 
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Tea images were grabbed after spreading tea leaves uniformly by a 3-CCD digital camera, which uses 

three separate charge-coupled devices (CCD). For each one, it takes a segregated mensuration of the 

primary colors: red (R), green (G), and blue (B) light, respectively [24]. The optical system then splits 

the light, which emits through the lens, by a prism assembly. The appropriate wavelength ranges of light 

are directed to the corresponding CCDs. In general, a 3-CCD camera provides better image quality 

through enhanced resolution and lower noise [20] than a 1-CCD camera. 

The intensity and nature of illumination affects the performance of the computer vision system. The 

lighting placement is arranged as either back or front lighting [25]. The back lighting is used for 

producing a silhouette image to augment tea edges; meanwhile, front lighting is used to enhance tea 

surface features [19]. In this study, front lighting was used. 

2.3. Feature Processing 

Here, we presented a hybrid feature set that consisted of color and wavelet-based features. For a tea 

image with size of 256 × 256, its total number of features is 65,536, because each pixel can be regarded 

as a feature. We obtained 64 color-based features and 16 wavelet packet entropy features. Then, principal 

component analysis (PCA) was utilized in order to decrease the number of total features so that the 

remained PCs should explain more than 99.9% variances of original 65,536-feature set. Figure 2 shows 

a diagram of the proposed feature processing method. 

 

Figure 2. Flowchart of feature processing. 

2.3.1. Color Histogram 

The color histogram (CH) was harnessed over wide application areas, to count the distribution of 

colorations from a given tea image [26]. The CH counts the number of particular pixels, which have 

similar colors within a fixed range that cover the predefined color space. Usually, the CH is generated 

by two steps: (i) color discretization into 4 × 4 × 4 = 64 bins (that means four bins for each channel), 

and (ii) counting the number of pixels in each bin [21]. 

The color histogram (CH) offers a concise summarization of the color distribution. Obviously, CH is 

relatively invariant with both rotation and translation about the inspecting axis. By extracting and 

comparing CH features of two images, the CH is found to be especially suitable for problems of object 

detection of unidentified position and unidentified rotation angles inside a scene. CH is used as an 

extremely important feature in many applications. 
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2.3.2. Discrete Wavelet Packet Transform 

In the domain of signal processing, the discrete wavelet transform (DWT) is an outstanding tool that 

has various successful applications [27]. Further, the Discrete Wavelet packet transform (DWPT) is a 

powerful extension of DWT. The difference is that all nodes in the tree structure are allowed to split 

further at any decomposition level for a DWPT, which is forbidden in a conventional DWT [28]. 

In a detailed way, conventional DWT passes only the previous approximation subband to the next 

decomposition procedure [29,30]. Nevertheless, DWPT passes both the detail and approximation 

subbands to the next decomposition; hence, it can generate a full binary tree (See Figure 3). 

From another point of view, DWPT features are provided on the basis of both detail and approximation 

subbands at various levels, so it yields more information than the conventional DWT does. 

 

Figure 3. Diagram of two-level one-dimensional wavelet packet transform. Here, a and b 

represent the low-pass and high-pass filters, respectively. L and H represent the  

low-frequency and high-frequency subbands, respectively. 

It is necessary to reconstruct DWPT coefficients in image domain using zero-padding for each 

decomposition subband, since the following entropy-based feature extraction technique is for the image 

domain not the wavelet coefficient domain. 2D-DWPT is implemented by applying 1D-DWPT along 

the x- and y-axis, respectively. 3D-DWPT is carried out in a similar way [31]. 

2.3.3. Shannon Entropy 

In the past, entropy was used to measure the randomness of systems by statisticians. It is then 

generalized to measure uncertainty of the information content of a given system with the professional 

name of Shannon entropy (SE) [32] 

2
1

log ( )
G

n n
n

S h h


   (1)

where S represents the Shannon entropy, n the greylevel of any subband, hn the probability of n-th 
greylevel, and G the total number of greylevels [33]. 

In this study, entropies of both approximation and detail components at 2-level DWPT were 

computed, and termed as wavelet packet entropy (WPE). The pseudocode of calculating WPE is listed 

in Table 3. In the initial phase, each pixel was regarded as a feature, since pixels do provide some 

information. Hence, an image of 256 × 256 is considered containing 65,536 features. After feature 

extraction, we reduce the 65,536 features to only 16 WPE features (See Table 3). 
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Table 3. Pseudocode of calculating wavelet packet entropy (WPE) (Suppose 2 

decomposition level). 

Pseudocode of WPE 

Step A Input Image. Read the 2D Image. 

Step B 
1D-DWPT. Pass the image through low-pass and high-pass filters and perform downsampling along 

x-axis and y-axis in sequence. Obtain four subbands. 

Step C 
2D-DWPT. For the four subbands obtained in 1D-DWPT, we continually implement 1D-DWPT to 

each subband, and finally obtained 16 subbands. 

Step D 
WPE. Extract Shannon entropy from the 16 subbands obtained by 2D-DWPT, and output the final 

feature vector of 16 elements. 

Literatures showed that WPE is able to capture the wavelet-based features (including shape and 

texture) in an efficient way and has many successful applications in various fields [34–36]. 

2.3.4. Principal Component Analysis 

In total, there are 80 features (64 color and 16 WPE features) extracted from a prescribed tea image. 

Those 80 features will increase computation resources and cost a mass of storage memory, which may 

aggravate the performance of the classifier. A valid strategy is to decrease the feature number by  

feature-reduction techniques [37]. 

Principal component analysis (PCA) is an effective utensil that is commonly used not only to reduce 

the interrelated variables, but also to retain the most substantial principal components (PC). The 

implementation of PCA is achieved by transforming the sample vectors to a new set of new variables 

sorted by the variance degree in a decreasing way.  

Principal component analysis (PCA) has three benefits [38]: (i) It can orthogonalize the variables of 

the input vectors, in order to decorrelate each other. (ii) It sorts the resulting orthogonal variables, to 

guarantee the principal components with the largest variation come first and those with the smallest 

variation come last. (iii) It completely removes the variables from the dataset that impart the least 

variation. 

Note that the input dataset is suggested to take a normalization as zero-mean and unity-variance 

before implementing a principal component analysis. Users can type the “PCA” command in Matlab 

platform to implement a canonical PCA procedure. 

2.4. Classification 

Support vector machine (SVM) is the most popular learning model that analyzes data and recognizes 

patterns for supervised classification [39]. However, SVM cannot deal with outliers and noises, i.e., its 

performance will decrease sharply when the data set either contains outliers or was contaminated by 

noises. Fuzzy SVM (FSVM) was an effective variant with the advantages of reducing the effect from 

outliers and noises. There are some other advanced variants of SVM, such as generalized eigenvalue 

proximal SVM [40], twin SVM, least-square SVM 
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2.4.1. Support Vector Machine 

Let us suppose there is an N-size training samples of z-dimensional vector, and suppose the goal is to 

create a hyperplane of (z − 1)-dimension. Assume the dataset takes the form of [41] 

 ( , ) | , 1,...,z
n n np y p n N   (2)

where pn denotes a training point that is a z-dimensional vector, yn is the realistic class of pn taking the 
value of either +1 or −1, which corresponds to the class 2 or 1, respectively [42]. The hyperplane with 
maximum-margin that separates the two classes is the desired SVM. Considering that any hyperplane is 
in the form of 

0p b w  (3)

where w represents the weights and b the bias. We need to select the optimal values of w and b to 
maximize the distance between the two parallel hyperplanes to the full degree, while it can yet separate 
the data of the two classes. 
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Positive slack vector ξ = (ξ1, …, ξn, …, ξN) are added to measure the misclassification degree of 

sample pn. Hence, the mathematical formula of the optimal SVM can be deduced by solving: 
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where L represents the error penalty and e a vector of ones of N-dimension. Therefore, the optimization 
turns to a trade-off between a small error penalty and a large margin. The constraint optimization problem 
is solved using “Lagrange multiplier”: 
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The min-max problem is not easy to solve, so dual form technique is commonly proposed to solve it as 
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 (7)

The main merit of the dual form is that the slack variables ξn disappear, with only the constant L be an 
additional constraint on the Lagrange multipliers. 
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2.4.2. Fuzzy SVM 

Fuzzy support vector machine (FSVM) is effective than simple SVM models especially in predicting 

or classifying real-world data, because several training samples are more substantial than others. It makes 

sense to require the meaningful training samples must be recognized perfectly meanwhile to neglect 

some meaningless points like noises or outliers [43]. 

Fuzzy support vector machine (FSVM) applies a fuzzy membership function (FMF) s to every 

training point [44], such that the training samples are transferred to fuzzy training samples, which can 

be expressed as 

 ( , , ) | ,0 1 , 1,...,z
n n n n np y s p s n N     (8)

where sn denotes the altitude of the corresponding training point towards one class and (1 − sn) is the 
attitude of meaning less. The optimal hyperplane problem of FSVM is defined as: 
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where s = (s1, s2, …, sN) represents the membership vector of FMF. A smaller sn decreases the influence 
of the parameter ξn, such that the corresponding sample pn is regarded less substantial. In a similar way, 
the Lagrangian is constructed as: 
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Again, “dual form” is used to transform Problem (10) to 
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Therefore, it is clear that the task becomes merely a function of the support vectors, which are the subset 
of the training data lying on the margins. 

2.4.3. Fuzzy Membership Function 

We set the fuzzy membership function (FMF) to the distance between the point and its class center. 

Suppose the mean of class +1 and class −1 as p+ and p−, respectively. Then, we can get the radius of 

class +1 and class −1 as 

{ : 1}
max

n
n

p y
r p p 
   (12)

{ : 1}
max
n

n
p y

r p p 
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 (13)

where r+ and r− represents the radius of class +1 and −1, respectively. The fuzzy membership sn is defined 
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as a function of both the radius and the mean of both classes [43] 
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where δ > 0 is used to guarantee sn > 0. 

2.4.4. Multiclass Technique 

Support vector machines (SVMs) and its variants were originally developed for a two-class problem. 

However, we needed to predict three classes: green, oolong, and black tea. Several methods have already 

been proposed for multi-class problems via SVMs, among which the most popular approach was to 

break down the multiclass task into multiple two-class tasks. We chose the Winner-Takes-All (WTA) 

method. 

Suppose V (>2) classes exist in the task. WTA strategy classifies new instances based on the idea of 

one-versus-all. At first, we train V different individual binary classifiers (SVM or its variants). The n-th 

individual classifier is aimed to distinguish the data in class n from the data of all the remaining classes 

(1, 2, …, n − 1, n + 1, …, V). A new test sample will be sent to all the V individual classifiers, and the 

individual classifier that outputs the largest value is chosen. 

2.5. Statistical Setting 

It will yield an optimistically biased assessment if the whole dataset is used as a validation set, which 

is dubbed “in-sample estimate”. Therefore, the whole dataset is divided into two sets: training set and 

test (or validation) set, and the evaluation performance of the test set is reported, which is dubbed  

“out-of-sample estimate”. However, for small-size dataset problems, the “out-of-sample estimate” will 

increase the variance of estimation of classification performance [45]. 

In this study, we used a more advanced technique to calculate the out-of-sample performance of the 

proposed identification system: the K-fold stratified cross validation (SCV) technique. The original 

samples were randomly segmented into K mutually exclusive subsets with closely equal length. Then, 

K-1 subsets were used for training and the rest for validation. 

The abovementioned procedure repeated K runs, such that each subset was used once and only once 

for validation. The K validation results from the K runs were then merged together, in order to generate 

an out-of-sample estimation over the whole dataset. We assigned K with a value of 10 following common 

convention.  

The 10-fold SCV was repeated 10 times, to further reduce the variance of estimation. Stratification 

technique was used so that each subset contained roughly the same proportions of different tea classes. 

As per Figure 4, the purpose of the proposed system is bi-fold: offline learning for training the classifier, 

and online prediction for predicting the category of query tea images. 
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Figure 4. Diagram of the proposed automatic tea classification system. 

3. Results and Discussions 

The experiments were carried out on the IBM machine with 3 GHz core i3 processor and 8 GB 

random access memory (RAM), running on the Windows 7 operating system. The algorithms were 

developed in-house via Matlab 2015a (The Mathworks ©, Natick, Massachusetts, USA). 

3.1. Feature Extraction 

The second row of Table 4 shows the sample of each category of teas. Indeed, their colors and textures 

were distinct from each other using human vision. Next, we tried to extract their color information by 

CH. The third row of Table 4 shows the corresponding histogram, which clearly indicates the distribution 

of CHs of three categories of teas were different; hence, the CH is an effective feature. 

Table 4. Feature extraction of three category of tea. 

 Green Oolong Black 

Sample 
Image 

Color 
Histogram 

 

Online Prediction

Offline Learning

Ground-truth 
images

WPE
Image Feature 

Database

Classifier

Query Tea 
Image

WPE Image Feature

(i) SVM + WTA
(ii) FSVM + WTA

Color Histogram

PCA

PC 
Score
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PC Coefficients
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Table 4. Cont. 

 Green Oolong Black 

Discrete 
Wavelet 

Transform 
(DWT) 

 

Discrete 
Wavelet 
Packet 

Transform 
(DWPT) 

 

The fourth and fifth rows of Table 4 compare the results of DWT decomposition with DWPT 

decomposition. There were three channels (RGB) of each image, so we performed decomposition for 

each channel and combined them to output the final decomposition result. It was clearly observed the 

DWPT decomposed the detail component that DWT did not decompose. Therefore, DWPT can give 

more multi-resolution information than DWT. Entropy was extracted on the 16 subbands of DWPT. 

3.2. PCA Result 

The 80 features extracted from each tea image were aligned to be a row vector, and features of all 

images were aligned row-wise to generate a 2D matrix, on which PCA was performed. Figure 5 shows 

the curve of variance explained against number of PCs, and the detailed results are listed in Table 5, 

from which it is clear one PC preserves 93.91% of total variances, two PCs preserve 99.08% of total 

variances, three PCs preserve 99.49% of total variances, four PCs preserve 99.78% of total variances. 

Finally, five PCs obtains more than 99.90% of total variance, which meet our criterion. 

Table 5. Detailed data of accumulated explained variance. 

# of PC 1 2 3 4 5 

Variance Explained 93.91% 99.08% 99.49% 99.78% 99.90% 



Entropy 2015, 17 6675 
 

 

Figure 5. Curve of accumulated variance explained against number of principal  

components (PCs). 

3.3. Classification Performance Comparison 

We compared the proposed two classifiers (SVM + WTA; and FSVM + WTA), with state-of-the-art 

methods (BP-ANN [10], SVM [12], LDA [17], GNN [18], and FSCABC-FNN [21]), by averaging the 

results of 10 × 10-fold SCV. The classification-performance comparison results are listed in Table 6. 

Please refer Abbreviation to see the full names of abbreviations. 

Table 6. Average sensitivity/recall rate over a 10 × 10-fold stratified cross validation (SCV). 

Existing Approaches 

# of Original Features 
# of Reduced 

Features 
Classifier 

Green 

Tea 

Oolong

Tea 

Black 

Tea 
Overall Rank 

8 metal features 8 BP-ANN [10] N/A N/A N/A 95% 6 

3735 spectrum features 5 SVM [12] 90% 100% 95% 95% 6 

12 color + 12 texture features 11 LDA [17] 96.7% 92.3% 98.5% 95.8% 5 

2 color + 6 shape features 8 GNN [18] 95.8% 94.4% 97.9% 96.0% 4 

64 CH + 7 texture + 8 shape 

features 
14 FSCABC-FNN [21] 98.1% 97.7% 96.4% 97.4% 2 

Proposed Approaches 

64 CH + 16 WPE features 5 SVM + WTA 95.7% 98.1% 97.9% 97.23% 3 

64 CH + 16 WPE features 5 FSVM + WTA 96.2% 98.8% 98.3% 97.77% 1 

Studies in literatures [10] and [12] differentiated the same categories of green tea, oolong tea, and 

black tea as in this study. Therefore, we directly listed their results on test set, which obtained the  

out-of-sample evaluation, the same as the K-fold SCV used in this study. 

Table 6 shows that the proposed two methods (“SVM + WTA” and “FSVM + WTA”) achieve good 

recall rates. The “SVM + WTA” method obtained 95.7%, 98.1%, and 97.9% on green, oolong, and black 

tea, respectively. The “FSVM + WTA” method obtained 96.2%, 98.8%, and 98.3% on the same 

categories. The overall recall rate of former method was 97.23%, while the latter one obtained 97.77% 

overall recall rate. From the results, we can deduce the FSVM was more effective than SVM. It can 

increase the overall recall rate slightly (about 0.54%). This finding aligns with past publications that 

stated FSVM is better than SVM [46,47]. 
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In summary, the proposed “FSVM + WTA” yields 97.77% overall recall rate over an average of 10 

runs, which exceeds not only the proposed “SVM + WTA” method with 97.23%, but also the  

state-of-the-art methods including BP-ANN [10] with 95%, SVM [12] with 95%, LDA [17] with 95.8%, 

GNN [18] with 96.0%, and FSCABC-FNN [21] with 97.4%. The reasons were two-fold: (i) Compared 

to traditional shape features and texture features, the WPE has better a ability to analyze transient 

features of non-stationary signals, which are abundant in tea leaves. (ii) The FSVM is a rather novel 

variant of SVM. FSVM can reduce the effect of outliers and noises, hence, increasing the overall  

recall rate. 

From another point of view, few features expend less time. The number of the final reduced features 

of the proposed method was only five, less than or equal to BP-ANN [10] with eight, SVM [12] with 

five, LDA [17] with 11, GNN [18] with eight, and FSCABC-FNN [21] with 14. The excellent recall rate 

proved the effectiveness of those five features used in this study. 

3.4. Optimal Wavelet 

To find which wavelet performs best for this problem, we tested six different wavelets including db1, 

db2, db3, bior2.2, bior3.3, and bior4.4. The classification method was “FSVM + WTA”. Decomposition 

level was set to 2. A 10 × 10-fold SCV was employed. The average overall recall-rates by different 

wavelets are listed in Table 7. 

Table 7. Average Overall Recall-Rate of different wavelets. 

Wavelet Recall Rate 

db1 96.37% 

db2 96.60% 

db3 96.57% 

bior2.2 96.53% 

bior3.3 97.10% 

bior4.4 97.77% 

Table 7 shows the bior4.4 wavelet achieves the highest average overall recall-rate among all wavelets. 

This explains why we chose the bior4.4 wavelet in our research work. In addition, db1 wavelet performs 

the worst for tea-category identification. To find the reason, we show the scaling function, wavelet 

function, low-pass filter (LPF) and high-pass filter (HPF) of both decomposition and reconstruction 

functions of bior 4.4 in Figure 6 and Figure 7, respectively. 

We find that the scaling functions and wavelet functions of bior4.4 are more similar to gray-level 

changes along the textures and edges in tea images. Hence, this may be the reason why bior4.4 is better 

than other wavelets. This result aligns with past publications: Manthalkar et al. [48] stated “Bior4.4 gives 

the best classification performance” and Prabhakar and Reddy [49] also found bior4.4 performed the 

best among all wavelets. 
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(a) Scaling Function (b) Wavelet Function 

(c) LPF (d) HPF 

Figure 6. Decomposition functions for bior4.4, (a) Scaling Function, (b) Wavelet Function,  

(c) low-pass filter (LPF), (d) high-pass filter (HPF). 

(a) Scaling Function (b) Wavelet Function 

(c) LPF (d) HPF 

Figure 7. Reconstruction functions for bior4.4, (a) Scaling Function, (b) Wavelet Function,  

(c), low-pass filter (LPF), (d) high-pass filter (HPF). 

3.5. Further Discussion of Methods 

Here, we revisit the proposed methods. Firstly, there were three reasons why we used CH: (i) Color 

information is an effective tool for recognizing objects, which is the case of this study; (ii) The CH 

related to the physical properties of the teas; (iii) CH not only can reflect illumination conditions and tea 

color, but also ascertains image geometry and surface roughness. 

Secondly, we have two reasons for choosing WPE: (i) Wavelet packet transform yields more 

information related to high-frequency subbands than wavelet transform does, which was essential in 

feature extraction; (ii) Entropy is effective in describing the uncertainty and complexity of 1D signals 

and 2D images. Although DWPT took more time than DWT, it is worthy considering its excellent 

performance. 

Thirdly, FSVM is employed since the influences of training samples vary. Usually, one part of 

training samples is more important than the rest. Hence, it is natural to expect the important training 

points to be recognized correctly, and that other training samples (like noises) are not properly 

considered by the classifier. Generally, using FSVM, each sample no longer only belongs to one class. 

This is the fundamental concept of FSVM. 
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4. Conclusion 

The goal of this work is to develop an automatic tea-category classification system with high 

sensitivity/recall rate. The contributions of this study consisted of the following aspects: (i) We proposed 

using WPE as a novel feature; (ii) We introduced FSVM that can reduce the effect from either outliers 

or noises, compared to conventional SVM; (iii) We used a WTA technique to cope with the three-class 

problem; (iv) The proposed method achieved a higher identification rate than five state-of-the-art 

methods while using the least features. 

In the future, we would like to extract fractional features [50–52] from tea images. We will also try 

to apply the FSVM method to pathological brain detection [53–55], fruit classification [56], 

neuroscience [57,58], and CT Image Processing [59–61]. In addition, its stability and convergence 

[62,63] will be analyzed. 
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