
Entropy 2015, 17, 6872-6892; doi:10.3390/e17106872
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Topological Characterization of Complex Systems: Using
Persistent Entropy
Emanuela Merelli 1,∗, Matteo Rucco 1, Peter Sloot 2,3,4 and Luca Tesei 1

1 School of Science and Technology, University of Camerino, Camerino 62032, Italy;
E-Mails: ruccomatteo@gmail.com (M.R.); luca.tesei@unicam.it (L.T.)

2 Computational Science, University of Amsterdam, Amsterdam 1098 XH, The Netherlands;
E-Mail: p.m.a.sloot@uva.nl

3 Complexity Institute, Nanyang Technological University, Singapore 637723, Singapore
4 ITMO University, St. Petersburg 199034, Russian

* Author to whom correspondence should be addressed; E-Mail: emanuela.merelli@unicam.it;
Tel.: +39-0737-402567.

Academic Editor: Raúl Alcaraz Martínez

Received: 28 July 2015 / Accepted: 29 September 2015 / Published: 15 October 2015

Abstract: In this paper, we propose a methodology for deriving a model of a complex
system by exploiting the information extracted from topological data analysis. Central to our
approach is the S[B] paradigm in which a complex system is represented by a two-level
model. One level, the structural S one, is derived using the newly-introduced quantitative
concept of persistent entropy, and it is described by a persistent entropy automaton. The other
level, the behavioral B one, is characterized by a network of interacting computational
agents. The presented methodology is applied to a real case study, the idiotypic network
of the mammalian immune system.

Keywords: topological data analysis; persistent entropy automaton; higher dimensional
automata; immune system; idiotypic network; computational agents

1. Introduction

Complex systems are typically characterized by a finite, usually large, number of non-identical
interacting entities that often are complex systems themselves, with strategies and autonomous
behaviors. Complex system science is a relatively young research area, and it is raising interest among

Entropy 2015, 17 6873

many researchers, mainly thanks to the emerging of new techniques in several fields, such as physics,
mathematics, computer science and data analysis [1].

Complex systems are analyzed using mainly two different approaches: one that provides a global and
abstract description by systems of differential equations [2] and the other that focuses on the interacting
components, which are generally simulated by an agent-based model and simulation framework [3].

In terms of data volume, a complex system can be associated with a big dataset. To extract useful
information from these data, new techniques have been recently introduced, most of them in the area of
topological data analysis (TDA) [4]. Topology is the branch of mathematics that studies the connectivity
of spaces or, in general, the features of shapes [5]. TDA is largely used for the analysis of complex
systems; for instance, Ibekwe et al. [6] used TDA for reconstructing the relationship structure of
Escherichia coli O157, and the authors proved that the non-O157 is in 32 soils (16 organic and 16
conventionally-managed soils). TDA was also used by De Silva [7] for the analysis of sensor networks,
and it was successfully applied to the study of viral evolution in biological complex systems [8].
Petri et al. [9] used a homological approach for studying the characteristics of functional brain networks
at the mesoscopic level.

TDA is a new discipline inspired by homology theory [5]. Informally, homology is a machinery
for counting the number of n-dimensional holes in a topological space. In our approach, we consider
only combinatorial objects: simplices (i.e., vertices, line segments, triangles, tetrahedra, and so on)
and simplicial complexes, i.e., collections of simplices [5] (see Figure 1). Simplicial complexes are
analyzed via persistent homology, which allows one to identify the generators of persistent
n-dimensional holes [4,10].

Figure 1. On the left, a simplicial complex formed by one two-simplex (yellow filled
triangle) and three one-simplices (segments forming the non-filled triangle) and three
zero-simplices (the vertices). On the right, an invalid simplicial complex; the intersection
between the yellow filled triangle and the one-simplex belonging to the upper triangle is not
empty, and they do not share a common face.

In this work, we propose a methodology for modeling complex systems that is based on TDA.
Our contribution has been inspired by S[B] [11], a paradigm for modeling complex systems. It was
used as a general framework for modeling adaptivity in software systems [12], but it was conceived for
all kinds of complex systems (biological, physical, chemical, and so on).

Figure 2 graphically shows our methodology. It is an iterative process where each iteration
corresponds to the analysis of a data sample (observation) of the complex system under study. In each

Entropy 2015, 17 6874

iteration, data are first converted into a weighted graph in order to apply the subsequent steps. The graph
is taken as the scaffold of the topological space from which the representation with a filtered simplicial
complex is derived. Then, persistent homology is computed in order to calculate the topological
invariants of the underlying topological space and to identify their generators. At this point, two kinds of
information are derived: the computational agents (from the generators) that give rise to the behavioral
level B of S[B] and the persistent entropy (from the invariants) that is a newly-introduced entropic
measure describing the global dynamics of the complex system.

Figure 2. Graphical representation of our methodology. All of the details are explained in
the text.

At the end of the iteration, we construct an S[B] model in which the structural level S is a persistent
entropy automaton, derived from all of the values of persistent entropy calculated during the iterations.
The computational agents identified at each iteration step, formally represented by interaction matrices,
are the sequence of B levels associated with the observed evolution of S[B].

To validate our methodology, we consider, as a case study, the idiotypic network (IN) model [13] of
the mammalian immune system. The latter has been largely studied as a complex adaptive system [14],
and several other models are available. Concerning the IN model, we consider the simplified description
given by Parisi [15], and we use the agent-based simulator C-ImmSim [16] for generating the data to
validate our approach. In this work, we analyzed simulated data instead of real data in order to validate
the correctness of the methodology in a more controlled way.

The paper is organized as follows. Section 2 introduces the case study of the IN. Section 3 describes
our methodology step by step in order to extract from that data a two-level model according to the

Entropy 2015, 17 6875

S[B] paradigm. In Section 4, the methodology is applied to the case study of IN, and finally, Section 5
provides concluding remarks.

2. Case Study

In this paper, we illustrate the steps of the proposed methodology applied to a case study in a biological
immune system, specifically to the immune network theory by Nielse Jerne [13]. Jerne theorized that
the immune system can be thought of as a regulated network of antibodies and anti-antibodies, called the
idiotypic network. Let us briefly recall the main mechanisms described by the model. When an antigen
is presented to the organism, the immune system reacts in the following two ways: innate immunity and
adaptive (or acquired) immunity. Innate immune defenses are non-specific, meaning that these systems
respond to pathogens in a generic way. The innate immune system is the dominant system of the host
defense in most organisms; it involves the epithelial barriers, the phagocytes, the dendritic cells, the
plasma proteins and the NK cells. The adaptive immune system, on the other hand, is called into action
against pathogens that are able to evade or overcome innate immune defenses. The first reaction of the
immune system is governed by the mechanism of the innate immunity, and its lifespan is up to 12 h;
after that period, in the case of the presence of antigens, the adaptive response is triggered. The adaptive
immune system is mainly composed of B cells, antibodies, naive T cells and effector T cells. When
activated, these components adapt to the presence of infectious agents by activating, proliferating and
creating potent mechanisms for neutralizing or eliminating the antigens. The lifespan of the adaptive
response depends on the type of infection. In this work, we are interested in studying the behavior of
the antibodies involved during the adaptive response, and we present a general example of this scenario.
Suppose an antigen is recognized by B cells, which secrete antibodies, say Ab1. Ab1 themselves are then
recognized as anti-antibodies by anti-idiotypic B cells, which secrete other antibodies, say Ab2. Thus,
further interactions lead to Ab3 antibodies that recognize the Ab2 ones, and so on.

In an IN, there is no intrinsic difference between an antigen and an antibody. Moreover, any node
of the network can bind to and be bound to any other antigen or antibody. This phenomenon is known
as the idiotypic cascade. During the ontogenesis phase, the immune system learns which antibodies
should not be produced, and the system remembers these decisions for its entire life. This phenomenon
is called immunological memory. The important properties of this system, including memory, are then
the properties of the network of cells as a whole, rather than of the individual cells [17]. The IN model
has been used by Parisi [15] to derive a simplified model for describing the dynamics of a functional
network of antibodies in the absence of antigens. The dynamics hi of each antibody i (i = 1, 2, . . . n) at
equilibrium is simply described by Equation (1):

hi = S +
n∑

k=1

Ji,kck (1)

where Ji,k (Ji,i = 0; Ji,k = Jk,i) represents the influence of antibody k on antibody i. If Ji,k is positive,
antibody k triggers the production of antibody i, whereas if Ji,k is negative, antibody k suppresses the
production of antibody i. |Ji,k| is a measure of the efficiency of the control of antibody k on antibody
i. The values of Ji,k are distributed in the interval [−1; +1]. S is a threshold parameter that regulates
the dynamics when the couplings Ji,k are all very small; otherwise, one can assume S equal to zero.

Entropy 2015, 17 6876

The concentration ci of antibody i is assumed to have, in absence of external antigens, only two values,
conventionally zero or one (in the presence of antigen concentrations, ci might become ≥ 1). The
immune system state is determined by the values of all ci’s for all possible antibodies (i = 1, 2, . . . , n).
hi represents the total stimulatory/inhibitory effect (depending on its sign) of the whole network on
the i-th antibody. hi is positive when the excitatory effect of the other antibodies is greater than the
suppressive effect; otherwise, hi is negative.

3. Methodology

The aim of our methodology is to extract, applying TDA, local and global information from a dataset.
In particular, the output of the methodology is a set of models specified within the S[B] paradigm [11].
In the S[B] paradigm, a model has two levels of description, namely the S global or structural level and
the B local or behavioral level, which are entangled in order to express the behavior of the system as
a whole. The S level describes how the system evolves following global information coming from the
environment in which it is operating and from the interactions and the evolutions of the entities of the B

level. Note that this approach has some similarities to hierarchical models like the hierarchical automata
proposed by Mikk et al. [18]. However, in our case, the levels cannot be seen as just different levels of
abstraction, but they can exist only in the entangled S[B] model.

3.1. From Data to Weighted Graphs

We start from data that comes from observations, over time, of the complex system under study.
The first step to be accomplished is to represent such data as weighted graphs where:

• nodes represent the interacting components;

• an edge, equipped with a weight, expresses an interaction (or a distance) between two components.

Note that this step is always possible because the weight can be defined using statistical descriptors
(correlation coefficients, scoring systems, and so on), metric functions (normalized Euclidean distance,
Hamming distance, and so on) or domain-dependent features.

3.2. From Weighted Graphs to Filtered Simplicial Complexes

In this work, we are interested in filtering simplicial complexes for studying the connectivity among
the entities belonging to a complex system. The data space can be represented by simplicial complexes,
which are combinatorial objects. From a geometrical point of view, a simplicial complex is obtained by
properly gluing together smaller components, the so-called simplices. Low dimensional simplices are:

- 0-simplex, geometrically represented by a vertex;

- 1-simplex, geometrically represented by an edge;

- 2-simplex, geometrically represented by a filled triangle;

- 3-simplex, geometrically represented by a filled tetrahedron formed by filled triangles;

- . . .

Entropy 2015, 17 6877

In order to build a simplicial complex, the intersection between two simplices must be empty or they
must have in common at least one face (see Figure 1). Graphs are strictly related to the representation
of topological spaces; in particular, a graph can be viewed as a simplicial complex obtained by gluing
together 0-simplices through 1-simplices.

Given a directed or undirected graph, it is possible to construct from it a simplicial complex following
several approaches [19]. In this work, we use the clique complexes; given a graph G = (V,E), a clique is
a complete subgraph, and a maximal clique is a clique that is not contained in a larger clique. We use the
Bron–Kerbosch algorithm [20] for listing all of the maximal cliques of a graph. As shown in Figure 3, a
simplicial clique complex of G is the simplicial complex whose simplices are all of the maximal cliques
of G. Since a k-clique is equivalent to a (k − 1)-simplicial complex, then a 3-clique is equivalent to
a 2-simplicial complex, and so on [21].

Figure 3. On the left, an undirected graph formed by eight vertices V = {v0, v1, . . . , v7} and
twelve edges with weights W = {w0, w1, . . . , w11} with w0 ≤ w1 · · · ≤ w11. Highlighted
by dashed circles, the four 3-maximal cliques {v0, v1, v2}, {v2, v3, v4}, {v4, v5, v6} and
{v6, v7, v0} identified by the Bron–Kerbosch algorithm. On the right, the simplicial complex
formed by the four 2-simplices (filled triangles) corresponding to the four 3-maximal cliques.

The computational algorithms for the characterization of simplicial complexes require as input
a filtered simplicial complex, i.e., a simplicial complex equipped with a filter value. A filter value [22]
can be considered as a time-appearing value along the process described below. The set of obtained filter
values is called the filter set and must be a strictly ordered set. The general algorithm for building a
filtered simplicial clique complex from a weighted graph is described as follows:

1. list all maximal cliques of G with the Bron–Kerbosch algorithm;

2. for each maximal clique, select the minimum (or the maximum) value of the weights of its edges;

3. for each maximal clique, assign the value selected in Equation (2) to the corresponding simplicial
complex as the filter value.

In Figure 4, the algorithm is applied to the graph in Figure 3.

Entropy 2015, 17 6878

Figure 4. On the right, the filtered simplicial complex derived from the algorithm where
the filter values are selected as the minimum of the weights. As a result, we set t0 = w0,

t1 = w3, t2 = w6, t3 = w9, because we want a filter set F = {t0, t1, t2, t3}, such that
t0 < t1 < t2 < t3.

3.3. Computation of Persistent Homology on Filtered Simplicial Complexes

Topological spaces can be characterized by using topological invariants. In this work, we use
simplicial complexes as topological spaces and persistent homology to determine their invariants [5].
Persistent homology is the computational implementation of homology, which allows one to describe
a simplicial complex in terms of n-dimensional holes. These quantities are expressed by the Betti
numbers βi, where i ≥ 0, i ∈ N, described as follows:

- β0 corresponds to the number of connected components;

- β1 corresponds to the number of planar holes;

- β2 corresponds to the number of voids in solid objects (2-dimensional holes);

- . . .

Moreover, for Betti numbers βi > 0, a set Vi of generators of the corresponding topological features
can be identified. Such generators are the simplices involved in the formation of the i-dimensional holes.
Elements of V0 will be denoted by [v0], [v1], . . . to identify 0-simplices; elements of V1 will be denoted
by edges [v0, v1], [v1, v2], . . .; elements of V2 are (filled) triangles denoted by [v0, v1, v2], [v0, v1, v3], . . .,
and so on [5].

Basically, persistent homology is an incremental construction of the final filtered simplicial complex.
The clique weight rank persistent homology algorithm (CWRPH) [23] is used, which has been efficiently
implemented by the tool jHoles [24]. At each step of the algorithm, the family of simplices associated
with the current filter value are introduced into the topological space, and the Betti numbers are
computed. Figure 5 shows these steps applied to the filtered simplicial complex of Figure 4. The output of
the algorithm is usually graphically represented by Betti barcodes. A Betti barcode, as shown in Figure 5,
is a collection of line segments (or points in the case of persistent diagrams [4]), where each line (labeled
Dim 0 and Dim 1) is equipped with two pieces of information: the lifespan, in terms of appearance and
disappearance, of a Betti number in the form of an interval [a; b) and the corresponding set of generators.

Entropy 2015, 17 6879

If the line persists all over the procedure, i.e., it survives also during the subsequent introduction of new
simplices, it is called persistent, and b =∞. Otherwise, it is classified as topological noise.

Figure 5. Computation of persistent homology over a filtered simplicial complex: at filter
value t0, the first 2-simplex (blue filled triangle) is introduced. The topological space is
characterized by one connected component; the Betti numbers are β0 = 1, βi = 0 for all
i ≥ 1. These Betti numbers are the same until t3 when the last 2-simplex (green filled
triangle) is introduced, and it is connected to the others. For filter value t3, the simplicial
complex is still characterized by one connected component β0 = 1, but also by one
1-dimensional hole, i.e., β1 = 1. The generator of the connected component is {[v0]},
while the generators of the persistent hole are {[v0, v2], [v2, v4], [v4, v6], [v6, v0]}.

In Figure 5, a connected component appeared at filter value t0, and its set of generators is {[v0]};
it is persistent, as indicated in the Dim 0 line of the Betti barcode. Similarly, a 1-dimensional hole
appeared at filter value t3, and its set of generators is {[v0, v2], [v2, v4], [v4, v6], [v6, v0]}; it is persistent, as
indicated in the Dim 1 line of the Betti barcode. Note that in this example, all of the lines in the barcode
are persistent. However, this is not the case in general, because topological noise can be present.

At this point, we need to identify the components of the complex system interacting with each other
and with the environment in which the system is immersed. Moreover, we need to characterize the latter
one. Thus, from persistent homology, the methodology independently derives: (1) a set of computational
agents together with their interaction matrices; and (2) the persistent entropy as a global property of
the environment.

Entropy 2015, 17 6880

3.4. From Persistent Homology to Computational Agents: Local Interactions

Each non-empty set of generators Vi represents (i+ 1)-body interactions among components, i.e., the
methodology is able to automatically extract some hidden relationships (2-, 3-, . . ., n-relations) among
system components. For instance, the persistent homology computed in Figure 5 has non-empty sets
of generators V0 = {[v0]} and V1 = {[v0, v], [v2, v4], [v4, v6], [v6, v0]}. V0, containing only one element,
simply tells us that the data represent only one system. On the other hand, V1 identifies four possible
2-body interactions among four interacting components, for which the vertices v0, v2, v4 and v6 can be
taken as representatives. In general, for each non-empty Vi, an interaction matrix Ji is obtained, such
that the components (represented by vertices) can realize a multiple interaction of degree i+1. Note that
this is a simple case of a more general model introduced by the authors in [25], which can be associated
with the data space.

Since we want to derive a computational model for the complex system under study, it is very natural
to use the concept of computational agent [2,3] to represent the identified interacting components.
An agent can execute a generic number of actions, possibly concurrently. However, TDA extracts
information about connectivity among agents, but it does not provide any information regarding the
agent behavior. Thus, for obtaining a complete operational model of the interactions, there is still the
need to use domain-based knowledge. For instance, in Section 4, we will use the Jerne model described
in Section 2 with higher dimensional automata [26] as the computational model.

3.5. From Persistent Homology to Persistent Entropy: Global Information

In order to exploit global information from TDA, we use the notion of persistent entropy, introduced
in [27], to characterize the environment. This entropy measure is basically calculated using the persistent
Betti barcodes. By definition, the value of the persistent entropy is strongly related to the topological
structures derived from the data. Given the maximum filtration value m of the set F and the set I of lines
in a Betti barcode, the persistent entropy H of the topological space is calculated as follows:

H = −
∑
i∈I

pilog(pi)

where pi = li
L

, li = bi − ai and L =
∑

i∈I li. Note that, when topological noise is present, for each
dimension of the Betti barcode, there can be more than one line, denoted by [ai ; bi], with i ∈ I . Instead
of [ai ; ∞), a persistent topological feature is denoted by [ai ; m) where m = max{F} + 1. Note
that the maximum persistent entropy corresponds to the situation in which all of the lines in the barcode
are of equal length. Conversely, the value of the persistent entropy decreases as more lines of different
lengths are present.

Consider again the persistent homology in Figure 5. Let the set F = {t0, t1, t2, t3} be such that t0 = 0,
t1 = 1, t2 = 2 and t3 = 3. Let I = {0, 1} where 0 is the index of the unique line in Dim 0 and 1 is the
index of the unique line in Dim 1 (both persistent in this case); then m = 4; the line 0 is [0, 4); the line 1

is [3, 4); yielding an entropy H = 0.5.

Entropy 2015, 17 6881

3.6. The Derived S[B] Model

At this point, enough information is available for defining a model of the complex system in the vision
of the S[B] paradigms, where global information constrains local interactions. Given an equilibrium
condition (steady state) characterizing the system, an external or internal factor may alter this equilibrium
and make the system react towards a new equilibrium [12]. If the system is observed at a certain moment,
as when a sample of the data is taken, it may still satisfy the current equilibrium condition. If not, it has
entered a critical transition. Depending on the future evolution, the system can go back to the previous
steady state or reach a point in which it can not go back to the previous equilibrium. Thus, it starts
an adaptation phase towards a new kind of known or unknown equilibrium.

In our methodology, persistent entropy is the global information that, at the S level, naturally
constrains the local interactions at the B level, represented by the computational model discussed in
Section 3.4. Note that we derive from the data and from the domain-specific knowledge a set of
models, each of which gives an S[B] representation of the system at the moment of the observation.
The extraction of the local dynamics of the evolution of the system between two observations is beyond
the scope of this work. Conversely, the global dynamics of the evolution of the system can be described
in the form of a persistent entropy automaton.

3.7. Persistent Entropy Automaton

The evolution over time of the persistent entropy can be used for detecting when the system reacts
to stimuli, i.e., it starts a critical transition. Let us consider the chronogram plotting the values of the
persistent entropy along the observed system data samples. Indeed, a peak in the chart means an abrupt
change in the topology of the simplicial complexes. This information is used to identify the time interval
in which the system possibly adapts towards a new equilibrium. On the other hand, a plateau in the chart
corresponds to an equilibrium condition, namely a steady state. The relevant regions can then be used
for deriving a state machine representing the global observed evolution of the system.

Finite state automata [28] are one of the most often used formalism for modeling systems (hardware,
software, physical systems, and so on). They are a very familiar and useful model that extends the
concept of the directed graph associating the nodes and the edges with the meaning of states and
transitions, respectively. A state describes a static feature of the behavior of the system during its
evolution, while a transition models how the system can evolve from one state to another. The basic
formalism has been generalized in order to model timed [29] and hybrid systems [30]. In this paper,
automata are equipped with topological information in order to model data-based complex systems.

We use the notion of persistent entropy as an observable, which is associated with the behavioral
level B, to define the equilibrium conditions characterizing the steady states of the S[B] system. For a
more formal definition of the link between the observables and the dynamics of S[B], we refer to [12].
The structural level S of the derived S[B] model can be defined as a persistent entropy automaton (PEA),
which is a tuple (R,Λ, ρ0, H,−→S, L) where:

• R is a set of steady states;

• Λ is a set of names for the transitions;

Entropy 2015, 17 6882

• ρ0 ∈ R is the initial steady state;

• H is the observable variable, corresponding to the value of persistent entropy;

• −→S⊆ R× Λ×R is a labeled transitions relation among steady states;

• L(ρ) is a labeling function associating each state ρ ∈ R with its equilibrium condition, depending
on the values of H .

In a PEA, the notion of time is intrinsically present, which can be continuous or discrete. The value
H of the persistent entropy must be defined for each instant t in the time domain. In our methodology,
the time domain is discrete, and each discrete instant t corresponds to an observation of the data, i.e.,
the value of the persistent entropy is the one calculated from persistent homology at each iteration and
reported on the chronogram.

The dynamics of a PEA is described as follows. Whenever a PEA is in a steady state ρ, the current
value of H (or a value derived from H) must satisfy the associated equilibrium condition L(ρ). Time
can elapse while the PEA stays in ρ, and the value of H changes accordingly. If at a certain point, the
equilibrium condition L(ρ) is no longer satisfied, the PEA must exit the state ρ and start executing a
transition ρ

λ−→S ρ′. This process is in general non-instantaneous; the PEA needs some time, i.e., further
changes in the value of H , in order to reach a point at which the equilibrium condition L(ρ′) of state
ρ′ is satisfied. At that moment, the PEA is again in a steady state, and the dynamics is again the one
previously introduced.

4. S[B] Model of the Case Study

According to Jerne [13], the IN can be described by three main states: virgin, activation and memory.
In the virgin state, there are no antibodies, but only non-specific T cells that start their activities after
the activation signal sent by B cells that recognize the presence of pathogens. Then, the IN proliferates
antibodies and reaches the activation state, which is not a steady state. After the activation, the IN
performs the immunization, during which the antibodies play a dual role. In fact, an antibody can be
seen both as a self-protein (a protein of the organism) or a non-self protein (a pathogen to be suppressed).
After the immunization, the IN reaches the memory state. This state represents a steady condition in
which there is only a selection of antibodies. All of the transitions and states of IN are characterized by
the fact that antibodies perform basically two actions: elicitation and suppression.

In the rest of this section, we report on the application of our methodology to the IN simulated
with C-ImmSim [16,31]. We executed several (in the order of hundreds) simulations, each of them
characterized by:

• a lifespan of 2190 discrete time ticks, where a tick corresponds to three days;

• a repertoire of at most 1012 antibodies, i.e., the maximum number of antibodies available during
the whole simulation;

• an antigen volume V = 10 µL.

During the simulation, an antigen is injected, and after an unknown (simulated) transient period of
time, the same antigen is injected again.

Entropy 2015, 17 6883

From Data to Persistent Homology

In C-ImmSim, each idiotype (both antigens and antibodies) is represented with a bit-string, in our
case of a 12-bit length. Two idiotypes Ai and Aj interact if and only if they are different, that is their
Hamming distance d(Ai, Aj) is such that 11 ≤ d(Ai, Aj) ≤ 12. The pair-wise distances among all of
the idiotypes are stored in an affinity matrix. However, this does not take into account the volume of
the idiotypes. For this reason, in this case study, we decided to replace it with a coexistence matrix C

where each element is a coexistent index. Given the Hamming distance d(Abi(t), Abj(t)) between two
antibodies and their volumes [Abi(t)], [Abj(t)] at time t, their coexistence index is defined as follows:

CAbi,j(t) =
d(Abi(t), Abj(t)) · [Abi(t)] · [Abj(t)]∑n

l=1[Abl(t)]
(2)

where n is the number of antibodies.
Equation (2) expresses the fact that for lower values of affinity, the volume must be more significant,

because the match between antibodies is less probable.
The coexistence matrix C is a symmetric matrix, and each element is taken to represent a weighted

arc of an undirected graph. In this way, we obtained a graph representation of our data taken from the
simulation. Figure 6 shows the weighted idiotypic network at the end of one simulation.

Figure 6. Example of the immune network at the end of a simulation. The thickness of the
arcs is proportional to their weight; the diameter of the nodes is proportional to the number
of incident edges.

Entropy 2015, 17 6884

The persistent homology of the filtered simplicial complex obtained from the weighted graph was
computed with jHoles [24]. An example of the output is given in Table 1. For each data sample, we
obtained a number of one-dimensional holes in the order of hundreds. We did not obtain any persistent
n-dimensional hole with n > 1.

Table 1. Example of the output of jHoles with idiotypic network (IN) simulation data as the
input. One connected component appeared at filtration value 0.0, which is persistent. The
generator is the vertex called 16. Three 1-dimensional holes appeared at filtration values
7.0, 6.0 and 8.0, which are persistent. The four edges generating them are reported after
the intervals.

β0 [0.0;∞) : {[16]}

[7.0;∞) : {[320, 3775], [256, 3775], [320, 3839], [256, 3839]}
β1 [6.0;∞) : {[256, 3839], [256, 3711], [384, 3711], [384, 3839]}

[8.0;∞) : {[260, 3835], [260, 3839], [256, 3835], [256, 3839]}

4.1. Idiotype Agent Behaviors as Higher Dimensional Automata

The persistent homology generated, as expected, a set of interaction matrices among entities.
As introduced in Section 3.4, we now need to select a computational model to represent the behaviors of
the agents (entities), and we need to use the domain-based knowledge in order to define their actions.

Among other computational models available for expressing concurrent computations, the true
concurrent characteristic of the systems considered suggests the use of higher dimensional automata
for modeling the behavior of the agents.

In 1991, Pratt published the formal definition of higher dimensional automata (HDA), based on
the concept of n-dimensional objects [26]. HDAs generalize classical automata, allowing them to
express non-interleaving concurrency. States and edges of a standard finite state automaton become
n-dimensional objects where n is any finite dimension. The basic idea is that an n-dimensional object
stands for an n-dimensional transition representing the concurrent execution of n actions.

Classical finite state automata are largely used for representing the behavior of concurrent and
distributed systems. The components of these systems can be viewed as computational agents that
execute their actions [32].

Figure 7 shows how to pass from a classical automaton to an HDA with a two-dimensional object,
a surface. In the classical automaton on the left, the state at the bottom has two outgoing edges labeled
a and b followed by b and a, respectively. Using an interleaving semantics, the automaton can perform
both the two sequences of transitions labeled ab and ba. However, geometrically, the graph representing
the automaton contains a hole, that is the interior of the square. Pratt suggested replacing the interleaving
semantics with true concurrency by filling the hole (see Figure 7, right). The surface, depicted on the
right, represents the simultaneous execution of a and b without imposing any order. Conversely, the
“sculpting” of the inner surface by proper transformations allows one to represent with HDAs, also

Entropy 2015, 17 6885

classical non-determinism, i.e., the presence of both possibilities of performing first a and then b or
performing first b and then a.

Figure 7. A classical finite state automaton representing the interleaving of actions a and b

(left); the corresponding higher dimensional automaton (right).

Therefore, Figure 7 shows the behavior of two different computational agents running in parallel and
performing the actions a and b, respectively. The classical automaton on the left corresponds to the
implementation of the parallelism by interleaving, i.e., only one action can be performed at time, so the
agents must execute their actions in sequence, but both sequences are possible. The HDA on the right
represents a true concurrent situation in which the two agents can effectively execute their actions at the
same time.

A more intuitive and concise definition of HDAs was given in terms of Chu spaces [33,34]. A Chu
space is a tuple (A, r, X) over an alphabet Σ of statuses where A is a set of actions or events, X is a
set of states and r : (A × X) → Σ is a function representing the status of an action or event in a state.
Σ = {0, 1} is an appropriate alphabet for representing actions or events that may be either unstarted or
finished, as in classical automata. Conversely, an extended alphabet Σ = {0, 1, 2} is appropriate in the
HDA setting, because actions or events can be unstarted, executing or finished, respectively.

Figure 8 shows the representation as Chu spaces of the automata in Figure 7. The function r of
the Chu spaces is represented as a matrix. Every column represents a possible state of the automaton.
For instance, on the left, state s0 = (0, 0) is one where both a and b are unstarted; state s1 = (0, 1) is one
in which a is still unstarted and b is finished, and so on. On the right, state s1 = (0, 1) is the one in which
action a is unstarted and action b is executing; state s5 = (1, 2) is the one in which action a is executing
and action b is finished, and so on.

A graphical representation of a Chu space is often given using a Hasse diagram, which helps to
easily deduce the set of admissible traces, dropping out automatically possibly forbidden states. In these
diagrams, the computation proceeds in the upwards direction and represents an execution path in the
automaton [33]. As an example, Figure 9 shows the Hasse diagram representing the Chu space of the
HDA of Figure 7 (right).

Entropy 2015, 17 6886

Figure 8. On the left, a classical automaton together with the two-length alphabet of statuses
and its Chu space representation as a matrix. On the right, a higher dimensional automaton
(HDA) with its Chu space representation using the three-length alphabet.

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0) (0, 2)

(2, 1) (1, 2)

(2, 2)

Figure 9. Hasse diagram representing the Chu space for the concurrent execution of
two actions.

Applying Domain-Based Knowledge

From the Jerne model (see Section 2), it is well known that antibodies can perform elicitation and
suppression actions simultaneously on different targets. Using this domain knowledge, we modeled the
antibodies given by the generators of the persistent topological features as an HDA represented by a Chu
space over the three-length alphabet.

We defined an action a ∈ A of the Chu space as a triple (action, source, target), where action can be
either elicit or reduce, and source and target are the identifiers of two antibody agents. Thus, a generic
agent Abi can execute two possible actions concurrently, as described in the Chu space represented in
Table 2. The corresponding Hasse diagram is the one already presented in Figure 9.

Entropy 2015, 17 6887

Table 2. Chu space representation of an HDA modeling a generic antibody Abi performing
two actions on the same target Abj .

r s0 s1 s2 s3 s4 s5 s6 s7 s8

(elicit , Abi, Abj) 0 0 0 1 1 1 2 2 2
(reduce, Abi, Abj) 0 1 2 0 1 2 0 1 2

Note that there is not a direct path between state s3 = (1, 0) to s1 = (0, 1), meaning that if action
(elicit , Abi, Abj) is executing and action (reduce, Abi, Abj) is unstarted, then the first cannot go back to
the unstarted status while the second becomes executing (or vice versa). Instead, from state s3 = (1, 0),
it is possible to go to state s4 = (1, 1), meaning that both actions can be executing at the same time.
Note that if in the Hasse diagram, the line between s3 = (1, 0) and s4 = (1, 1) were not present, that
would have meant that action (reduce, Abi, Abj) could not start executing before action (elicit, Abi, Abj)

became finished. Finally, note that the actions are bi-directional, i.e., there is an elicit action from Abi to
Abj and also an elicit action from Abj to Abi.

As a concrete example, we show the HDA modeling the behavior of two coupled antibodies Ab1 and
Ab13 resulting from the methodology applied to the case study. Table 3 shows the matrix of the Chu
space representing such subsystem. Figure 10 shows the relative Hasse diagram.

Table 3. Chu space representing the subsystem Ab1 | Ab13.

r s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

(elicit , Ab1, Ab13) 1 0 1 2 0 0 0 0 0 0 1 1 1
(reduce, Ab1, Ab13) 0 0 0 0 1 2 0 0 0 0 0 0 0
(elicit , Ab13, Ab1) 0 0 0 0 0 0 1 2 0 0 1 0 2
(reduce, Ab13, Ab1) 2 0 0 0 0 0 0 0 1 2 0 1 0

r s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25

(elicit , Ab1, Ab13) 2 2 2 2 0 0 0 0 0 0 0 0
(reduce, Ab1, Ab13) 0 0 0 0 1 1 1 1 2 2 2 2
(elicit , Ab13, Ab1) 1 0 2 0 1 0 2 0 1 0 2 0
(reduce, Ab13, Ab1) 0 1 0 2 0 1 0 2 0 1 0 2

Entropy 2015, 17 6888

Figure 10. Hasse diagram for Chu space representing the subsystem Ab1 | Ab13.

4.2. Persistent Entropy Automaton for the Idiotypic Network

The value H(t) of persistent entropy associated with every observation at time t was calculated
accordingly to the definition in Section 3.5. Note that in this case, it is possible to build a chart of
H over time, because we know that the data are subsequent, as they come from the same simulation.
In general, for comparing two values of H , one should define the so-called mass function [35].

Figure 11 shows the chart of H(t). Persistent entropy recognizes the dynamics of the immune system:
a peak in the chart means immune activation, while a plateau represents the immune memory. An upward
curve between a peak and a plateau means proliferation, while a backward curve means immune
response. From the comparison of the charts, it is possible to recognize that the system is stimulated
twice (Figure 11).

Note that from the chart, it is also possible to derive a discrete estimation of the first and second
derivatives of H(t) by using finite differences. Analyzing the chart of persistent entropy, we were able
to recognize two steady states, namely virgin and memory. The virgin state of IN is characterized by the
equilibrium condition H = 0 ∧ Ḣ = 0. This is the initial state in the PEA that we derived. The memory
steady state corresponds to a plateau in the chart, and it is characterized by the equilibrium condition
H > 0 ∧ Ḣ = 0. This information is depicted in Figure 12 as the derived PEA.

Note that in the chart of Figure 11, two peaks are present. This reflects the fact that the system
was stimulated twice and, thus, entered a critical transition followed by an adaptation phase from state
memory to itself. This then suggests that a self-transition should be added to the state memory in
the PEA.

Entropy 2015, 17 6889

Figure 11. Persistent entropy of the immune system. The difference between the peaks
amplitude is motivated by the fact that before the second peaks, the antibodies have been
already stimulated, and the immune memory has been reached, so the system is more reactive
and is faster in the suppression of the antigen; thus, the the entropy value for the steady state
is H = 2.87.

Virgin

H = 0, Ḣ = 0

Memory

H > 0, Ḣ = 0

Immunization

Resistance Immunization

Figure 12. Persistent entropy automaton representing the S level of the S[B] model of the
idiotypic network.

Finally, even if we do not observe it in our simulation, we know from domain-specific knowledge that
when in the virgin state, if the received stimulus is not grater than a certain threshold, then the immune
activation does not start at all, and after a while, the system goes back to the initial state again. This
means that also in the initial state of the PEA, a self-loop transition should be added.

Entropy 2015, 17 6890

5. Conclusions

In this work, we defined a new methodology, based on topological data analysis, for deriving
a model for a complex system from a collection of data observations. Each observation is represented as
a weighted graph, which is the scaffold of a corresponding topological object. The topological object is
characterized by persistent homology, from which local and global information of the complex system
is derived. The local information, about interacting computational agents, is represented by the new
concept of topology-based interaction matrices. The global one is represented by persistent entropy,
which is a recently-introduced entropy measure linking together information theory and topology.
The S[B] paradigm is the framework in which the methodology extracts and defines the models, yielding
a new kind of entangled model. The global dynamics through all of the observations is described by the
newly-introduced notion of persistent entropy automaton. We applied the methodology for modeling the
idiotypic network of the mammalian immune system with data taken from the simulator C-ImmSim.

We showed that the methodology can be effectively used to model a complex system, towards a new
topological field theory of data [36].

Acknowledgments

The authors thank Mario Rasetti for being their mentor, unique and invaluable during the years of
the Topology driven methods for complex systems (TOPDRIM) project and especially for his helpful
suggestions, but also criticisms. We acknowledge the financial support of the Future and Emerging
Technologies (FET) program within the Seventh Framework Programme (FP7) for Research of the
European Commission, under the FP7 FET-Proactive Call 8 Dynamics Multi-level Complex Systems
(DyMCS), Grant Agreement TOPDRIM, Number FP7-ICT-318121. Peter Sloot also acknowledges
partial support from the Russian Scientific Foundation, Proposal #14-21-0137.

Author Contributions

Emanuela Merelli and Matteo Rucco conceived the methodology; Matteo Rucco designed and
performed the data analysis; Peter Sloot supervised the application of the methodology on the case
study; Luca Tesei and Emanuela Merelli wrote the paper. All authors have read and approved the final
manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Stein, D.; Newman, C. Nature versus nurture in complex and not-so-complex systems. In ISCS
2013: Interdisciplinary Symposium on Complex Systems; Springer: Berlin Heidelberg, Germany,
2014; pp. 57–63.

2. Boccara, N. Modeling Complex Systems, 2nd ed.; Springer-Verlag: New York, NY, USA , 2010.

Entropy 2015, 17 6891

3. Jennings, N.R. An agent-based approach for building complex software systems. Commun. ACM
2001, 44, 35–41.

4. Carlsson, G. Topology and data. Bull. Am. Math. Soc. 2009, 46, 255–308.
5. Zomorodian, A.J. Topology for computing. In Cambridge Monographs on Applied and

Computational Mathematics; Cambridge University Press: Cambridge, UK, 2009; Volume 16.
6. Ibekwe, A.M.; Ma, J.; Crowley, D.E.; Yang, C.H.; Johnson, A.M.; Petrossian, T.C.; Lum, P.Y.

Topological data analysis of escherichia coli o157: H7 and non-o157 survival in soils. Front. Cell.
Infect. Microbiol. 2014, 4, 122.

7. De Silva, V.; Ghrist, R. Coverage in sensor networks via persistent homology.
Algebraic Geom. Topol. 2007, 7, 24.

8. Chan, J.M.; Carlsson, G.; Rabadan, R. Topology of viral evolution. Proc. Natl. Acad. Sci. USA
2003, 110, 18566–18571.

9. Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P.J.; Vaccarino, F.
Homological scaffolds of brain functional networks. J. R. Soc. Interf. 2014, 11,
doi:10.1098/rsif.2014.0873.

10. Edelsbrunner, H.; Harer, J. Computational Topology: An Introduction; American Mathematical
Soc.: Providence, RI, USA, 2010.

11. Merelli, E.; Pettini, M.; Rasetti, M. Topology driven modeling: The IS metaphor. Nat. Comput.
2015, 14, 421–430.

12. Merelli, E.; Paoletti, N.; Tesei, L. Adaptability Checking in Complex Systems. Sci. Comput.
Program. 2015, doi:10.1016/j.scico.2015.03.004.

13. Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. 1974, 125, 373–389.
14. Holland, J.H. Complex adaptive systems. Daedalus 1992, 121, 17–30.
15. Parisi, G. A simple model for the immune network. Proc. Natl. Acad. Sci. USA 1990, 87, 429–433.
16. Bernaschi, M.; Castiglione, F. Design and implementation of an immune system simulator.

Comput. Biol. Med. 2001, 31, 303–331.
17. Hoffmann, G. A theory of regulation and self-nonself discrimination in an immune network.

Eur. J. Immunol. 1975, 5, 638–647.
18. Mikk, E.; Lakhnech, Y.; Siegel, M. Hierarchical Automata as Model for Statecharts. In Advances

in Computing Science (ASIAN’97); No. 1345 in Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 1997; pp. 181–106.

19. Jonsson, J. Simplicial Complexes of Graphs; Springer-Verlag: Berlin Heidelberg, Germany, 2008.
20. Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM

1973, 16, 575–577.
21. Bandelt, H.J.; Chepoi, V. Metric graph theory and geometry: A survey. Contemp. Math. 2008,

453, 49–86.
22. Adams, H.; Tausz, A.; Vejdemo-Johansson, M. javaPlex: A research software package for

persistent (co) homology. In Mathematical Software-ICMS 2014; Springer: Berlin Heidelberg,
Germany, 2014; pp. 129–136.

23. Petri, G.; Scolamiero, M.; Donato, I.; Vaccarino, F. Topological strata of weighted complex
networks. PLoS ONE 2003, 8, e66506.

Entropy 2015, 17 6892

24. Binchi, J.; Merelli, E.; Rucco, M.; Petri, G.; Vaccarino, F. jholes: A tool for understanding
biological complex networks via clique weight rank persistent homology. Electron. Notes Theor.
Comput. Sci. 2014, 306, 5–18.

25. Merelli, E.; Rasetti, M. Non locality, topology, formal languages: New global tools to handle large
data sets. Proced. Comput. Sci. 2013, 18, 90–99.

26. Pratt, V. Modeling concurrency with geometry. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Orlando, FL, USA,
21–23 January 1991; pp. 311–322.

27. Rucco, M.; Castiglione, F.; Merelli, E.; Pettini, M. Characterisation of the idiotypic immune
network through persistent entropy. Proc. Complex. 2015, in press.

28. Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to automata theory, languages, and
computation. ACM SIGACT News 2001, 32, 60–65.

29. Bernardo, M.; Tesei, L. Encoding timed models as uniform labeled transition systems. In Computer
Performance Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 104–118.

30. Henzinger, T.A. The Theory of Hybrid Automata; Springer: Berlin/Heidelberg, Germany, 2000.
31. Mancini, E.; Castiglione, F.; Bernaschi, M.; de Luca, A.; Sloot, P. HIV reservoirs and immune

surveillance evasion cause the failure of structured treatment interruptions: A computational study.
PLoS ONE 2012, 4, e36108.

32. Milner, R. Communication and Concurrency; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA,
1989.

33. Gupta, V. CHU Spaces: A Model of Concurrency. Ph.D. Thesis, Stanford University, Palo Alto,
CA, USA, 1994.

34. Pratt, V. Higher dimensional automata revisited. Math. Struct. Comput. Sci. 2000, 10, 525–548.
35. Stewart, W.J. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of

Performance Modeling; Princeton University Press: Princeton, NJ, USA, 2009.
36. Rasetti, M.; Merelli, E. The topological field theory of data: A program towards a novel strategy

for data mining through data language. J. Phys. Conf. Ser. 2015, 626, 012005.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Case Study
	Methodology
	From Data to Weighted Graphs
	From Weighted Graphs to Filtered Simplicial Complexes
	Computation of Persistent Homology on Filtered Simplicial Complexes
	From Persistent Homology to Computational Agents: Local Interactions
	From Persistent Homology to Persistent Entropy: Global Information
	The Derived S[B] Model
	Persistent Entropy Automaton

	S[B] Model of the Case Study
	Idiotype Agent Behaviors as Higher Dimensional Automata
	Persistent Entropy Automaton for the Idiotypic Network

	Conclusions

