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Abstract: A process network is a collection of interacting time series nodes, in which
interactions can range from weak dependencies to complete synchronization. Between these
extremes, nodes may respond to each other or external forcing at certain time scales and
strengths. Identification of such dependencies from time series can reveal the complex
behavior of the system as a whole. Since observed time series datasets are often limited
in length, robust measures are needed to quantify strengths and time scales of interactions
and their unique contributions to the whole system behavior. We generate coupled
chaotic logistic networks with a range of connectivity structures, time scales, noise, and
forcing mechanisms, and compute variance and lagged mutual information measures to
evaluate how detected time dependencies reveal system behavior. When a target node
is detected to receive information from multiple sources, we compute conditional mutual
information and total shared information between each source node pair to identify unique or
redundant sources. While variance measures capture synchronization trends, combinations
of information measures provide further distinctions regarding drivers, redundancies, and
time dependencies within the network. We find that imposed network connectivity often
leads to induced feedback that is identified as redundant links, and cannot be distinguished
from imposed causal linkages. We find that random or external driving nodes are more likely
to provide unique information than mutually dependent nodes in a highly connected network.
In process networks constructed from observed data, the methods presented can be used to
infer connectivity, dominant interactions, and systemic behavioral shift.
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1. Introduction

A process network is a collection of time series variables that interact at different time scales [1].
Each time series variable is a node in the network, and nodes are linked through time dependencies.
Synapses in the human brain, industrial processes in a factory, or climate-vegetation-soil relationships
can all be studied as process networks [2–4]. In each of these examples, a time dependent relationship
between the history of a source node and current state of a target node defines a network link that has
some strength, time scale, and directionality. A whole-network property such as average node degree,
average link strength, or dominant time scale can define a “system state”. It is important to correctly
detect and interpret these links to reveal aspects of a network such as forcing structure, feedback, and
shifts or breakdowns of links over time. Breakdowns or shifts in links could indicate changes in network
response due to perturbations or gradual changes in the environment. With this framework, questions
relating to threshold responses and overall health of a system can be readily addressed, and the system
as a whole can be better understood. Process network construction requires accurate detection of time
dependent links and evaluation of their importance and strength in terms of network behavior.

Studies on networks composed of oscillators and coupled chaotic logistic equations have shown that
interacting nodes exhibit a wide range of dynamics depending on node coupling strengths, imposed
time dependencies, and forcing [5–10]. Time series nodes can range from being unconnected to
exhibiting various types of synchronization such as complete, lagged, general, or phase synchronization.
Complete and lagged synchronized nodes have coincident states either simultaneously or at a time delay,
phase synchronized nodes are locked in phase but vary in amplitude, and generally synchronized nodes
have some functional relationship [8]. In chaotic logistic networks, the potential for these dynamics
depends on delay (τ ) distribution, coupling strength (ε) and connectivity (Kf ) [5,6,9]. For strongly
connected networks, synchronization is largely independent of the connection topology (∆). As a result,
networks with different connection topologies, such as random, scale free, and small-world, all achieve
complete synchronization at a threshold connectivity as measured by average node degree multiplied by
node coupling strength ε [6]. When delays (τ ) between nodes are uniform, the network synchronizes to a
chaotic trajectory [6]. When delays are distributed over multiple τ values, the network synchronizes to a
steady state, or fixed point value [6]. At lower connectivities, the network displays a range of dynamics.
The complexity of network behavior increases with the incorporation of stochastic forcing or noise.

In observed or measured process networks, nodes are likely to exhibit a combination of deterministic
behavior due to functional dependencies and stochastic behavior due to random influences. In this study,
we aim to identify time dependencies within networks of various structures, in addition to classifying
networks in terms of their forcing-feedback mechanisms. Shifts in time dependencies or driving nodes
in process networks could identify behavioral shifts in response to perturbations. These shifts could
indicate alterations in important structural or functional components of the system.
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Identification of coupling in real networks relies on statistical measures designed to capture
the diversity of time dependent interactions. Metrics used to detect synchronization and time
dependencies between nodes include variance and correlation measures [5,6,9], information theory
measures [2,3], convergent cross mapping [11], coupling spectrums [12], graphical models [13,14],
and various others [4]. Variance (σ2) measures between nodes and over time estimate relative
levels of synchronization between nodes and identify the existence of complete synchronization to a
single trajectory or fixed point [5,6,9]. Information theory measures such as entropy H(X), mutual
information I(X;Y ), transfer entropy TE(X → Y ) [15], and partial mutual information [16,17]
quantify uncertainty of node states and reductions in uncertainty given other node states. Information
theory measures have been applied in ecohydrology [1,2,18], neuroscience [19,20], and industrial
engineering [3], among others, to identify transmitters and receivers of information in addition
to feedback within a network. When contributions from multiple “source” nodes to a “target”
node are considered, shared information can be decomposed into redundant, unique and synergistic
components [21]. Redundant information is the information shared between every source node and the
target node, and unique information is that which only a single source shares with the target. In some
cases, the knowledge of two source nodes may provide information to a target node that is greater than the
union of the information provided by both sources individually, thus providing synergistic information.

The objective of this article is to determine the additional knowledge that information theory measures
can provide over variance measures concerning process network behavior, such as distinguishing
between types of drivers, locating feedback, and identifying redundant versus unique sources of
information. How well do information theory measures capture imposed network dynamics? When a
time dependent link is identified, is it critical in terms of network function, or redundant with other
interactions? Time dependencies identified in real process networks could be either important aspects of
system health or functioning, or redundant due to induced feedback. Although the existence of feedback
within process networks can obscure what is a “cause” versus an “effect” and prevent detection of
causality, the estimation of redundancy can identify groups of redundant links [22] which can then be
further evaluated in terms of their contributions to system behavior.

This study uses a method to compute information theory measures that does not assume time series
variables to follow a Gaussian distribution, and performs well given limited datasets with as few as
200 data points. This minimization of the data requirement is valuable because data used to form
real world process networks are often sparse, fragmented, or noisy [19]. There are several proposed
methods to directly evaluate redundancy, synergy, and unique information [20,21,23,24] that each have
advantages and disadvantages in their interpretation [24–26]. Here we instead use combinations of
established information theory measures that reveal multiple aspects of information transfers.

We create chaotic-logistic networks with a range of τ -distributions, coupling strengths ε,
topologies ∆, and levels of noise, and compare information theory and variance measures to the imposed
network structures. We evaluate our methods in terms of correctly identified links, or statistically
significant detections of information measures that correspond to imposed time dependencies. In a
network of observed time series data, structural properties such as driving nodes, node degrees, and
coupling strengths are generally unknown and may change over time. However, process network
construction can reveal some of this structure, and temporal changes in detected links indicate shifts
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in properties. In addition, comparisons of process networks can detect differences between inputs and
outputs of a model or between measured and simulated variables. Through this analysis of generated
network dynamics, we improve our ability to identify and interpret real-world process networks that
range from uncoupled to completely synchronized.

2. Methods: Definition of Metrics

We evaluate network behavior with several measures that capture variability and time-dependent
interactions. The standard deviation between node values, σnodes, indicates synchronization between
nodes [5]. In a network composed of i = 1...N nodes and t = 1....n time steps per node,

σnodes =
1

n

n∑
t=1

[(∑N
i=1(xi(t)− x̄(t))2

N − 1

)1/2]
(1)

For complete synchronization, σnodes = 0. The standard deviation between time steps averaged over
the N nodes, σtime, indicates the temporal variation of nodes [5].

σtime =
1

N

N∑
i=1

[(∑n
t=1(xi(t)− x̂i)2

n− 1

)1/2]
(2)

In these metrics, x̄(t) is the mean node value at time t, and x̂i is the mean temporal value of node i.
If both σnodes = 0 and σtime = 0, all the nodes in the network are at the same fixed point value for all
time steps. If σnodes > 0 and σtime = 0, nodes are at different fixed point values. Finally, if σnodes = 0

and σtime > 0, nodes are completely synchronized to each other but vary with time [5]. These measures
can also be applied to any pair of nodes or subsystems within a larger network, and are useful when
comparing networks to a reference or baseline condition. Since σnodes and σtime depend on the range of
values (xi(t)) taken by nodes in the network, the significance of any σ > 0 is difficult to evaluate without
further knowledge of the range of possible network behaviors.

Information theory measures involve comparing probability density functions (pdf s) of nodes rather
than their magnitudes. Shannon entropy H(X) quantifies the uncertainty or variability of a node. H(X)

can be computed and normalized to between 0 and 1 by dividing by the upper bound log(N ), where N
is the chosen number of bins into which the pdf p(x) is discretized.

H(X) =
N∑
k=1

p(xk) log

[
1

p(xk)

]
(3)

Mutual information I(Xa;Xb) is the reduction in uncertainty of nodeXa given knowledge of the state
of another variable Xb, and is computed from the joint pdf.

I(Xa;Xb) =
∑

p(xa, xb) log

[
p(xa, xb)

p(xa)p(xb)

]
= H(Xa)−H(Xa|Xb) (4)

Lagged mutual information Iτ = I(Xa(t − τa);Xtar(t)) quantifies the information shared between
a target node Xtar and the τa-lagged history of a source node Xa. Although I is a symmetric quantity,
Iτ introduces a directionality if we assume that past node states inform future states, and not vice versa.
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In other words, we consider past node states to be “sources” and a future state to be a “target”. In a
network of interacting nodes, multiple sources in the form of different nodes or a single node at different
time scales can provide information to a single “target” node. The total lagged Iτ shared by two sources
(Xs1 and Xs2) to a target (Xtar) is the mutual information between one source and the target added to
the conditional mutual information as follows:

I(Xtar;Xs1, Xs2) = I(Xtar;Xs2) + I(Xtar;Xs1|Xs2) (5)

Using the partial information decomposition approach [21,27], we see that this shared information
between two sources and the target can be partitioned into elements as follows:

I(Xtar;Xs1, Xs2) = Us1 + Us2 +Rs1,s2 + Ss1,s2 (6)

I(Xtar(t);Xs1(t− τs1)) = Us1 +Rs1,s2 (7)

I(Xtar(t);Xs2(t− τs2)) = Us2 +Rs1,s2. (8)

In Equations (6)–(8), Us1 and Us2 represent the unique information that only Xs1(t − τs1) and
Xs2(t − τs2), respectively, share with Xtar(t), Ss1,s2 is the synergistic information that arises only from
the knowledge of both Xs1(t − τs1) and Xs2(t − τs2) together, and Rs1,s2 is the redundant information
that is provided by either source node separately.

We see from substituting Equations (8) and (6) into Equation (5) that the conditional information
term I(Xtar;Xs1|Xs2) is equivalent to Us1 + Ss1,s2, or the unique information component of one source
node and the synergistic information due to the knowledge of both sources. The same result can be
obtained by observing that conditional mutual information is equal to the interaction information or
co-information [21,28,29] (II = I(Xtar(t);Xs1(t − τs1);Xs2(t − τs2)) = Ss1,s2 − Rs1,s2) added to
the mutual information (Us1 + Rs1,s2). A positive interaction information (II > 0) indicates that
synergy dominates over redundancy in the partitioning of shared information [21]. An II < 0 indicates
dominant redundancy, or that the knowledge of any one variable “explains” correlation between the
other two [29]. Conditional Iτ (i.e., I(Xtar;Xs1|Xs2)) is also referred to as partial information, since
it represents the part of the total mutual information that is not contained in the second source node
(Xs2) [17]. The conditional Iτ is computed between two sources and a target node as follows:

I(Xtar;Xs1|Xs2) =
∑

xtar(t),
xs1(t−τs1),
xs2(t−τs2)

p(xtar(t), xs1(t− τs1), xs2(t− τs2)) log
[
p(xtar(t), xx2(t− τs2), xs1(t− τs1))

p(xtar(t), xs2(t− τs2)

]

(9)

In Equations (5) and (9), if we consider the special case where one of the source nodes Xs2 is the
lagged history of the target node Xtar itself (i.e., Xs2(t− τs2) = Xtar(t− τtar)), the conditional mutual
information term is equivalent to the transfer entropy TE(Xs1(t−τs1)→ Xtar). Transfer entropy [15] is
the reduction in uncertainty of a node Xtar due to the knowledge of the (t− τs1) history of another node
Xs1 that is not already accounted for in the (t − τtar) history of Xtar [2,18]. TE is often interpreted as
the amount of predictive information transferred between two processes [30]. Some formulations of TE
involve consideration of block lengths l and k of the histories of the transmitting node Xs1 and receiving
node Xtar, respectively. However, the values of l and k are generally set equal to 1 so as to not impose
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additional data requirements for the computation of a higher dimensional pdf [7,15,31]. In this study, we
relax the usual assumption in transfer entropy computations that predictive information from a source
node is only conditioned on the target node’s history. T ≡ I(Xtar;Xs1|Xs2) provides a generalization
of TE that conditions the predictive information of the time dependency of any source, including the
history of the target node itself.

In this paper, we establish network links by computing lagged mutual information Iτ using
Equation (4) between each potential source and target node for a range of time delays. To test for
statistical significance of the detected value, we randomly shuffle the target node Xtar to destroy time
correlations while retaining other properties of the time series data [2,32,33]. We compute 100 values
of Iτshuffled , and perform a hypothesis test at a 99% confidence level. If the detected value is less than
Iτshuffled ,mean + 3 ∗ σshuffled , we dismiss the detected link as not significant.

After establishing time dependent links in the network, we compute the total and conditional Iτ
provided by each pair of sources to every target node using Equations (9) and (5). We define T/I as
an index to measure the non-redundant component of each link as a function of conditional and total
shared information as follows:

T

I
(Xs1 → Xtar) = min

Xs2

[
I(Xtar;Xs1|Xs2)

I(Xtar;Xs1, Xs2)

]
(10)

where
I(Xtar;Xs1|Xs2)

I(Xtar;Xs1, Xs2)
=

Us1 + Ss1,s2
Us1 + Us2 + Ss1,s2 +Rs1,s2

(11)

Computation of T/I requires a pairwise evaluation of sources for each detected target node in the
network. For a link between Xtar and a source Xs1, minimization across each each alternate source
Xs2 provides a conservative measure of the unique and synergistic components of the link. In the
absence of synergistic relationships, if a source Xs1 is completely redundant due to another source (i.e.,
Us1 = 0 and Ss1,s2 = 0), then T/I = 0. If Xs1 is the only source or is much stronger than all other
sources (i.e., Us1 � Us2), then T/I approaches 1. Therefore, T/I characterizes the relative amount
of unique or synergistic information provided by a link as originally determined based on statistically
significant I(Xtar;Xs1). While I(Xtar;Xs1) detects a single time dependent link, conditioning on other
dependencies allows for detection of unique and redundant linkages [16,34]. High T/I values can also
result from synergistic relationships, where much more information is shared by two sources together
than either shares separately. Other methods of detecting or eliminating redundant sources include direct
transfer entropy [3] or causation entropy [35], which involve 4D pdf estimation to condition on multiple
source nodes.

We use the Kernel Density Estimation (KDE) [19,22,36] method to estimate the 3D pdf
(p(xtar(t), xs1(t− τs1), xs2(t− τs2)) required to compute conditional Iτ and the 2D and 1d pdf s needed
for Iτ and H after testing several techniques [2,7,12,19] on two-node networks of 50 ≤ n ≤ 2000

data points and varying noise levels. The kernel estimator at a grid point or location y given Yi=1....n

observations is defined as [36]:

p̂(y) =
1

nhd

n∑
i=1

κ

[
1

h
(y − Yi)

]
(12)
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The multivariate Epanechnikov kernel κ = κe [36] is as follows:

κe(x) =

{
1
2
c−1d (d+ 2)(1− yTy) if yTy < 1

0 otherwise
(13)

in which d is the dimension of the pdf , cd is the volume of a d-dimensional unit sphere, and n is the
number of observations. The optimal window width h for the kernel is chosen to vary with n and d
based on [36] as follows:

hopt =


1.06σn−1/5 if d = 1

1.77σn−1/6 if d = 2

2.78σn−1/7 if d = 3

(14)

in which σ is the standard deviation of the data. We evaluate the kernel at N = 35 evenly spaced
grid points (y) in each dimension. The KDE method performed similarly to fixed-binning [2,19] and
partitioning methods [19] for large data sets, but the smoothing of the pdf due to the kernel improved
performance for small data sets with n < 200.

3. Results: 2-Node Networks

To assess whether our estimates of Iτ and T/I accurately identify time dependencies and distinguish
between types of forcing, we first consider three bivariate cases. In each case, node X1 forces another
node X2 at a time lag of τ1,2 = 3 via a chaotic logistic equation. However, the driving node X1 is
established in different ways.

3.1. Logistic Forcing

For a chaotic logistic forcing case, X1 is an independent chaotic logistic equation, and node X2 is a
chaotic logistic function dependent on the τ1,2 = 3 lagged history of X1 (illustration in Figure 1a, left),
that is:

X1(t) = f(X1(t− 1))

X2(t) = f(X1(t− 3))
(15)

where f(X) = aX(1 − X) with a = 4. This configuration results in statistically significant detected
Iτ between all node pairs (Figure 1a). Since X1 is self-driven at a lag of τ1,1 = 1, and forces X2

at a lag of τ1,2 = 3, we detect the dominant dependency from X1 to X2 at a lag of τ1,2 − τ1,1 = 2

instead of the imposed τ1,2 = 3. The self-feedback of X1 is reflected in X2, and we see from the time
series (Figure 1a Left) that the nodes are shifted copies of each other. The proportion T/I is rather low
between all pairs (Figure 1a), indicating no single source to a target is extremely strong compared to
others, thus sources are likely to contain redundancies (Rs1,s2 > 0). In fact, we know from the time
series that any information shared betweenX1 andX2 is completely redundant given their own histories.
In other words, there is no S or U component since the history of each node contains complete predictive
information. This should result in T/I = 0, since Us = 0 and S = 0. However, we see from Figure 1a
that T/I > 0. This results from the necessarily empirical estimation of the pdf.
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Figure 1. two-node networks with different forcings imposed on node X1 (n = 2000 and
n = 50). Node X2 is always a function of the τ1,2 lagged history of X1. Left: red arrows
indicate forcing, and blue dotted arrows indicate induced feedback that was also detected
using information measures. An example time series is shown below illustrations. Middle,
Right: Information measures Iτ and T/I for each source indicate strength and uniqueness
of detected dependencies (yellow indicates high T/I) for n = 2000 data points (middle) and
n = 50 (right). (a) Logistic equation forcing case: dominant transfer detected fromX1 toX2

at a lag equal to τ1,2− τ1,1, and self-feedback on X2 reflects that of X1; (b) Feedback forcing
case: I and T/I detect imposed links, and self-feedback at lag of τ2,1 + τ1,2; T/I < 0.5 for
all links, indicating high level of redundancy (c) Random forcing case: imposed link from
X1 to X2 detected. T/I = 1 indicates that this link constitutes unique shared information.

Figure 2a shows the data attractor (points [x2(t), x1(t − 2), x1(t − 3)]) and estimated pdf s used to
compute Iτ and T/I at the delay τ1,2 = 3. From the 3D pdf (Figure 2a Middle), we see that there is a
linear relationship (1:1 line) betweenX1(t−2) andX2(t) indicating that the nodes have coincident states
at a time lag of 2, thus a dominant Iτ link at that lag. There is a parabolic relationship between X1(t−3)

and X2(t). Due to this structure of the 3D pdf where X1(t − 2) predicts X2(t) more directly than the
imposed link X1(t − 3), we detect non-zero T/I . In other words, a unique component of information
is detected between x1(t − 2) and x2(t). However, the low T/I for all links indicates that each target
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node receives information from multiple sources, or a single source at multiple time lags. If we assume
that sources do not provide synergistic information, T/I < 0.5 for all dependencies indicates that the
stronger sources contain significant redundancies with weaker sources. This assumption is valid for our
generated networks, since multiple source node histories do not inform the target beyond the union of
their individual contributions.
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Figure 2. Empirical pdf s for each of the two-node network cases for n = 2000 data
points (left, middle) and n = 50 (right). Red stars indicate data points, blue circles are
grid points (i, j, k) for which pdf(i, j, k) > 0.0001. Left: 2-dimensional pdf s used to
compute Iτ between X1(t − 3) and X2(t). Middle, Right: 3-dimensional pdf used to
compute corresponding T/I of link. (a) Logistic forcing: X1(t−2) andX2(t) are completely
synchronized (1:1 line), so there is redundancy in the transfer from X1(t − 3) to X2(t); (b)
Feedback forcing: both the histories of X1 and X2 inform X2(t) due to feedback. In (a) and
(b), significant T/I is still detected due to empirical estimation of the 3D pdf s; (c) Random
forcing: knowledge of X2(t− 1) (or any other lagged node history) conveys no information
concerning X2(t), thus there are no other significant links and T/I = 1.

When the pdf is estimated based on 50 data points instead of 2000 (Figure 1a Right), we detect
statistically significant but lower Iτ compared to the n = 2000 point case, and similar values of
T/I . Comparison of the 3D pdf s in Figure 2a shows that fewer data points results in more spread
of the empirical pdf due to the kernel estimator, and weaker detection of information measures
(Figure 1 Right).
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3.2. Feedback Forcing

For a feedback forcing case, each node is a function of the history of the other node at lags τ2,1 = 4

and τ1,2 = 3 (illustration in Figure 1b), that is:

X1(t) = f(X2(t− 4))

X2(t) = f(X1(t− 3))
(16)

Similar to the logistic forcing case, this case results in high detected Iτ and relatively low T/I between
all the node pairs (Figure 1b). This indicates that the nodes are highly coupled, and are predictable given
knowledge of either node at one of several time lags. This is also apparent given the high “self” Iτ for
each node. We note that by substitution in Equation (16), each node can be written as a function of its
own history, indicating complete source redundancy and T/I = 0. However, we detect T/I > 0 for the
same reason as the previously discussed logistic forcing example. The strongest detected source to target
links, in this case the second order polynomial relation between X1(t − 3) and X2(t) (Figure 2b Left),
is detected to have a unique component when compared to the weaker link (fourth order polynomial)
between X2(t − 7) and X2(t) (Figure 2b Middle). In other words, although X2(t − 7) provides all
predictive information regarding X2(t), X2(t) is a more simple function of X1(t− 3), so we still detect
statistically significant T/I from sourceX1 to targetX2 (Figure 1b Middle). When feedback is involved,
it is not possible to distinguish between “drivers” and “receivers” within the network, but we can identify
the existence of this feedback and its strengths and time scales. Similar to the logistic forcing case,
reducing the number of data points to n = 50 results in more spread of the pdfs and weaker detection of
Iτ (Figure 1b Right).

3.3. Random Noise Forcing

In the last two-node network example, X1 is a time series of randomly generated uniform noise
(illustration in Figure 1c Left), that is:

X1(t) = z ∼ U(0, 1)

X2(t) = f(X1(t− 3))
(17)

This case results in statistically significant Iτ and T/I = 1 from X1 to X2 at the imposed delay
(Figure 1c Middle). The high T/I indicates that the link is a dominant and unique source of information
to the target X2. Furthermore, since there are no other links detected with Iτ , we can conclude that
neither synergy nor redundancy exists because all shared information is unique to the sole source X1.
In other words, because X1 forces X2, and X1 is randomly generated, no information about X2 is
encoded in any other source. The pdf s estimated to detect Iτ and T/I in this case are shown in Figure 2c
for the n = 2000 and n = 50 cases. From the pdf s, we observe thatX2(t−1) andX2(t) are uncorrelated.

With these example cases, we show that information measures T/I and Iτ capture imposed time
dependencies and feedback, and can determine the partitioning of shared information between different
source histories. When a randomly generated node drives another node, we detect high T/I since there
is no information provided by other sources, and all shared information between the source (random
driver) and target (receiving) node is unique. When there is feedback involved, such as in the logistic
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and feedback forcing cases, high Iτ is detected between all node pairs, but T/I is low due to increased
redundancies. Although T/I is often detected as significant due to pdf structure and its estimation, it
still provides an estimate of the dominance of redundancy versus unique information, particularly in the
absence of synergy. Detection of high T/I(Xs1 → Xtar) in the case of multiple sources indicates that
the source Xs1 is either unique or is highly synergistic with another source.

The two-node cases with chaotic logistic driving nodes and feedback illustrate the detection of
multiple links between nodes that were not directly imposed. However, these links are due to the
imposed time dependencies and can be considered to be induced feedback. In the chaotic logistic
driving case, a time-dependent source node forces a target node, causing the target node to acquire
the same time dependency given its own history. In the feedback example, the imposed bi-directional
feedback causes each node to have a time dependency given its own history. This induced feedback
occurs in highly connected networks and can propagate due to a single imposed bi-directional feedback
or time dependency. Detected time dependencies that were not imposed could be characterized as
“false positives” in link detection [37], but we note that these detections are expected due to the
forcing-feedback structure.

In this section, each node was forced by either a chaotic logistic equation or uniform random noise.
In networks of multiple interacting processes, a single node may respond to many variables. In the next
section, we generate 10-node networks with n = 200 time series points, in which nodes may be forced
by various combinations of neighbors in addition to uniform random noise. We compute information
and variance measures, and analyze synchronization and time dependencies as connectivity varies. As in
the two-node cases, Iτ and T/I measures detect dependencies between node pairs, but are also used to
identify the larger connectivity structure of the network. When multiple source nodes and random noise
influence a single target node, information measures between node pairs are more weakly detected.
However, we show that these measures can correctly identify even weak interactions and reveal the
forcing-feedback structure of a network.

4. Results: Coupled Chaotic Logistic Networks

Previous studies have determined that chaotic logistic network synchronization capacity in terms of σ
measures (σnodes and σtime) depends more on the delay (τ ) distribution than network topology ∆ [5,6,9].
For a range of ∆ including small-world, scale-free, and random networks, increasing connectivity
(increasing coupling strength or number of links) leads to synchronization of all connected nodes.
The dynamics of the resulting synchronized trajectory depend on the τ -distribution [6]. Networks with
uniform delays (e.g., τ = 1 for all linked nodes) synchronize to a single chaotic logistic trajectory.
In contrast, networks with heterogenous delays (e.g., random τ ∈ {1, 10} for linked nodes) synchronize
to the fixed point (x∗ = 1 − 1/a) of the logistic equation. This type of synchronization occurs when
nodes that receive from enough neighbors at different lags converge toward the fixed point x∗ and all
nodes approach zero amplitude [38]. In terms of information theory measures, it has been found that
information transfer can be used to predict synchronization and distinguish between origins of interaction
fields, or types of forcing, in different types of generated networks [7].
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In this section, we extend the forcing mechanisms introduced in the two-node examples to larger
10-node networks. A 10 node network is small enough for computation efficiency and to represent
many systems of interest, and large enough to capture the complexity and synchronization that larger
networks exhibit. We generated networks of between 5 and 50 nodes and observed that larger networks
synchronize at lower connectivities, but display otherwise similar behavior. The networks are generated
over a range of connectivities, with different proportions of chaotic logistic and uniform random noise
forcing. We introduce randomness into the network through randomly generated “driving nodes” that
act as controls, or through the addition of uniform random noise to each node in equal proportion.
We compute information and variance measures for the generated networks, and use whole-network
measures to summarize each individual case. In chaotic logistic networks with no random component,
we observe the expected delay-dependent synchronization.

4.1. Network Formation

We generate networks using Equation (18), each with N = 10 nodes of n = 200 time series points
per node, using the framework given as:

Xi(t) = (1− ε)f(Xi(t− 1)) +
(1− εz)ε

ki

N∑
j=1

wj,i[f(Xj(t− τj,i))] + εzεz. (18)

In Equation (18), i and j are node indices, f(X) ≡ aX(1 − X), t is time step, ki is the in-degree
of node i, w is the adjacency matrix (wj,i = 1 if Xi is a function of Xj , wj,i = 0 otherwise), τ is the
delay matrix associated with w, and z is a uniform random noise between 0 and 1. As in the two-node
example, we set a = 4 so that each individual f(Xi) is in the chaotic regime.

4.1.1. Network Forcing

The formulation of Equation (18) defines a node Xi to be forced by (1) its own lagged history; (2) the
lagged histories of connected nodes; and (3) random noise. The extents to which these components
influence Xi are defined by the coupling strengths ε and εz. For example, for ε = 1 and εz = 0, Xi

is solely a function of the histories of all Xj for which wj,i = 1 (Figure 3b). If ε = 0, each node is
an independent chaotic logistic time series, since Xi is only dependent on its own history (Figure 3a).
If ε = 1 and εz = 1, the network is entirely composed of uniform random noise (Figure 3c). For values
of 0 < ε < 1 and 0 < εz < 1, the network responds to all three types of forcing (Figure 3d).

In Equation (18), the imposed adjacency matrixw determines the interaction “field”, or set of nodes to
which each node responds. The field is homogenous over time, but is different for each node. To explore
the effect of external forcing, we introduce cases in which some of the 10 nodes are randomly generated
time series (ndrivers > 0). The remaining nodes are generated from Equation (18), and can be functions
of both chaotic logistic and randomly generated nodes, depending on the adjacency matrix w. The noise
component εzεz represents a different type of random forcing in that it affects each node in the network
in equal proportion.
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 a) ε=0  b) ε=1, εz=0  c) ε = 1, εz=1   d) 0<ε<1, 0<εz<1  e) ε<1, εz=0  f) ε<1, εz=1 

 chaotic logistic  coupled chaotic logistic  uniform random forcing 

Figure 3. Illustration of network cases based on variations of Equation (18). (a) unconnected
network driven by individual chaotic logistic equations; (b) network driven by chaotic
logistic couplings; (c) unconnected network driven by random forcing; (d) network driven by
combination of forcings according to ε > 0 and εz > 0; (e) network driven by combination of
individual and coupled chaotic logistic equations; (f) unconnected network driven by random
forcing and chaotic logistic equation.

4.1.2. Network Topologies and Delays

Network topologies used to generate the adjacency matrix w include random and small world.
Random networks are generated based only on a link probability p, while small world topologies [39] are
bi-directional cyclic networks of degree 2 (each node transmits to and receives from k = 1 neighbor on
each side), and links are added randomly with probability p. A “theoretical weighted degree” K for each
network type is the average number of incoming links per node multiplied by the coupling strength term
ε(1 − εz). A fractional weighted degree Kf = K

N−1 is a measure of connectivity that ranges between 0
(unconnected nodes) and 1. At Kf = 1, nodes are completely connected at maximum coupling strength,
i.e., ε(1− εz) = 1 and p = 1.

Four specific classes of networks were tested, combining network topologies and delay distributions
(Table 1). Cases 1 and 2 are random networks, while Cases 3 and 4 have small world topologies. Cases 1
and 3 have uniform delay distributions (τj,i = 1 for wj,i = 1), and Cases 2 and 4 have random delay
distributions (τj,i ∈ {1, 10} for wj,i = 1). As expected, we find that both topologies ∆ behave similarly
as network connectivity Kf increases in terms of both standard deviation and information measures.
As found in previous studies, we see that network behavior is most dependent on the τ -distribution and
the connectivityKf rather than ∆. Cases 1 and 3 synchronize to a single chaotic logistic trajectory asKf

is increased (Case 1 shown in Figure 4a), while Cases 2 and 4 synchronize to a fixed-point value asKf is
increased (Case 2 shown in Figure 4b). Other network configurations tested include scale-free networks
and higher degree (k > 1) small world networks, all of which synchronized similarly according to their
τ -distribution. Due to the similarities between network topologies, we show results for only Cases 1
and 2, the random network cases. Networks of various sizes from 5 to 50 nodes and observed similar
results in terms of synchronization and detected information measures.

We canvas a range of parameters to form the adjacency matrices w and forcing structures and generate
the subsequent process networks (Table 2). For each network, ε and εz are constants (i.e., all nodes
transmit and receive with equal coupling strengths), except for cases where ndrivers > 0. In these cases,
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ndrivers of the N total nodes are randomly generated nodes that only transmit information according to
wj,i. Over 40,000 distinct networks are generated (Table 2), and we compare several categories.

Table 1. Synchronization characteristics of four network cases composed of different
topologies and delay (τ ) distributions.

Case Structure τ -Distribution Kf Synchronization Type

1 random uniform, τ = 1 ε(1− εz)p chaotic trajectory
2 random random, τ ∈ {1, 10} ε(1− εz)p fixed point
3 small world uniform, τ = 1 ε(1− εz)p+ (1− p)2kε(1−εz)

N−1 chaotic trajectory
4 small world random, τ ∈ {1, 10} ε(1− εz)p+ (1− p)2kε(1−εz)

N−1 fixed point
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Figure 4. Time series (50 time steps shown) for several generated networks for (a) Case 1
with uniform (τ = 1) delay distribution and (b) Case 2 with random delay distribution.
Both cases approach synchronization as Kf increases.

Table 2. 10 node network parameter range (42,336 total networks generated).

Parameter Range of Values Number of Cases

p [0,0.05 ... 1] 21
ε [0,0.05 ... 1] 21
εz [0, 0.01, 0.1, 0.5] 4

ndrivers [0, 1 ... 5] 6
topology ∆ [random, small world k = 1] 2
τ -distributions [random, uniform] 2

total number of networks 42,336
cases with random ∆, ndrivers = 0, εz = 0 882

4.2. Synchronization and Information in Noise Free Networks

We first set εz = 0 in Equation (18) to obtain a noise free network, and consider the range of coupling
strengths 0 < ε < 1 and link probability values 0 < p < 1 (illustrations in Figure 3a,b,e). We see
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from the generated time-series data that nodes completely synchronize for high values of Kf according
to their τ -distributions (Figure 4). Observation of σnodes (Figure 5a) leads to the same conclusion
that both network cases synchronize to a single trajectory as Kf increases, but at different rates.
For Case 1 (uniform τ ), complete synchronization to a time-varying trajectory is reached at Kf = 0.4

(Figure 5a,d). Case 2 (random τ -distribution) synchronizes more gradually as Kf increases, and is
completely synchronized to a fixed-point trajectory for Kf > 0.7 (Figure 5a,d).
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Figure 5. Behaviors of 882 network configurations with range of connectivities Kf for
(left) the case with no randomly generated driving nodes,(middle) ndrivers = 1, and (right)
ndrivers = 5. (a–c) Standard deviation across nodes σnodes; (d–f) Standard deviation across
time σtime; (g–i) Box plots show mean Iτ detected for all imposed linkages for all networks
in eachKf range, and open circles are maximum detected Iτ of any imposed link; (j–l) mean
T/I over all networks and maximum detected T/I as in (g–i); (m–o) Fraction of all imposed
links that were correctly identified as time dependencies through detected Iτ .

The mean values of Iτ and T/I displayed in the bar plots of Figure 5g,j represent the mean statistics
for imposed links over all networks in eachKf interval, while the maximum Iτ and T/I values displayed
in the open circles represent the maximum individual values detected within any of the networks in
each Kf range. In other words, mean values represent average detections for imposed links, while
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the maximum represents overall maximum detected values. For Case 1, mean Iτ for imposed links
approaches a constant and statistically significant value of approximately Iτ = 0.25 (Figure 5g) as
the network synchronizes, indicating that the synchronized trajectory retains the imposed uniform
τ = 1 time dependency. T/I also reaches a constant non-zero value when the network synchronizes,
indicating that multiple sources are detected, but the imposed lag is dominant compared to others.
For unsynchronized networks (Kf < 0.4), the low value of mean T/I indicates that most target nodes
have multiple sources that lead to redundancies. These redundant sources may not be imposed links
from the adjacency matrix, but arise due to induced feedback as illustrated in the two-node example
cases. However, for low Kf < 0.2 in Case 1, we see high maximum individual values of T/I (open red
circles in Figure 5j). These high maximum values result from cases in which a target node receives from
one source (its own history in the unconnected chaotic logistic case) very strongly, and other sources
very weakly, so that T/I is close to 1. Maximum values of Iτ and T/I that are much higher than average
values indicate that most imposed links become redundant, but there is at least one less connected node
that receives more unique information. For Case 1, Iτ links are weaker on average for less synchronized
networks, and more redundant. However, maximum individual Iτ and T/I values are highest for less
synchronized networks, representing cases of high coupling strength but low link probability (ε = 1 and
p� 1) in which a single node is a dominant influence on a target.

For Case 2, slightly lower Iτ values are detected for the range of connectivities (Figure 5g).
However, we observe very high maximum individual Iτ values over the non-synchronized high
connectivity range (0.5 < Kf < 0.8). From the time series (Figure 4b), we see that this is because nodes
are generally phase-locked at a time lag of 2 in this range ofKf values, so they are completely predictable
based on their own histories. As expected, these high Iτ values are associated with lower T/I (Figure 5j)
because of many redundant sources. At complete synchronization (Kf > 0.8) for Case 2 networks, we
see that no Iτ or T/I are detected on average. Case 1 and Case 2 networks show similar behavior
at low connectivities, but information measures diverge for the different types of synchronization.
T/I decreases as Case 2 networks synchronize, indicating the increase in redundant links. In contrast,
T/I increases as Case 1 networks synchronize due to the dominant (t− 1) “self”-dependency that arises
on the path to synchronization.

We define a correctly detected link as a statistically significant value of Iτ detected for a node pair
(Xi, Xj) at the imposed lag time τj,i. For unsynchronized networks with mid-range connectivities
(0.1 < Kf < 0.6), we correctly identify nearly all imposed links according to τi,j for both network
cases (Figure 5m). Even for very low-connectivity networks, over half of imposed links are detected.
When Case 1 networks are synchronized, a link is detected between every node pair due to the common
trajectory, regardless of the imposed w. This leads to a 100% correct link detection rate, but also a 100%
“false” detection [37] rate of unimposed links. As discussed in the two-node examples, these detections
are all due to induced feedback, thus we do not show their increasing number as networks synchronize.
For Case 2, as networks synchronize to a very low amplitude phase-locked state, we cease to detect any
of the imposed links.
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4.3. Influence and Detection of External Drivers

When nodes in a process network contain complete predictive information, as in the previously
discussed noiseless case, complete synchronization occurs at high connectivities. However, real process
networks are likely to involve some proportion of nodes that are unpredictable due to influences from
outside of the network. These unpredictable nodes may act only as drivers and do not respond to the
network dynamics. To simulate these conditions, we generate networks in which one or more nodes
(ndrivers of N total nodes) have independent dynamics, and act only as sources. While chaotic logistic
nodes approach synchronization with increasing Kf , the random driving nodes remain independent of
this behavior. However, even chaotic logistic nodes do not entirely synchronize due to their varying
dependencies on the drivers (Figure 6). From observation of σnodes and σtime for the ndrivers = 1 case
(Figure 5b,e), we see similar trends as in the ndrivers = 0 case, but no complete synchronization.
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Figure 6. Time series (50 time steps shown) for several generated networks with ndrivers = 1

for (a) Case 1 (b) Case 2.

For Case 1, we detect similar mean and maximum Iτ values for imposed links over the Kf range
(Figure 5h), but maximum T/I values decrease as Kf increases (Figure 5k). This indicates that imposed
sources become increasingly redundant with other sources as connectivity increases, and that imposed
sources are weaker than induced feedback that arises as the non-driving nodes partially synchronize. The
decreasing maximum T/I behavior for Case 1 networks with ndrivers = 1 is very similar to the Case 2
networks with ndrivers = 0. When Case 1 networks are prevented from completely synchronizing due to
a random driver, no single source becomes dominant as in the case where ndrivers = 0. Case 2 networks
with ndrivers = 1 have lower detected mean and maximum Iτ (Figure 5h) than the ndrivers = 0 case,
and lower mean T/I (Figure 5k). However, the maximum individual T/I values are higher at higher Kf

values for Case 2, reflecting the influence of the random driving node. If a random driver forces a target
node, the shared information is not redundant with any other source, except in the case where induced
feedback exists to form an indirect link. For example, if the random node forces an intermediate node
that in turn forces the target node, some of the information shared between the the random and target
node is also encoded in the intermediate node history, resulting in some redundancy. However, random
sources do not propagate feedback as do time-dependent drivers, leading to more unique transfers of
information.
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When ndrivers = 5, we observe a continuing trend of decreased synchronization capacity
(Figure 5c,f), decreased shared information Iτ (Figure 5i), decreased average T/I , and increased
maximum individual T/I (Figure 5l). We also see that the fraction of correctly detected imposed
links decreases with increased randomness in the network (Figure 5m,n,o). For the set of ndrivers = 5

networks, uniform and random τ -distribution cases are nearly indistinguishable, and only slight
synchronization is observable from σ measures (Figure 5c,f). Although target nodes receive from a
similar number of source nodes as in previous cases, the randomness of some of the sources results in
high values of T/I , reflecting unique contributions of information. Essentially, any given source node
may only share a small amount of information with a target node, but this information is more likely to
be unique if the source is random. On average however, linkages are increasingly redundant (low T/I)
as connectivity increases and feedback is created.

4.4. Influence of Noise in Network

In real networks, variability cannot always be attributed to the behavior of other nodes, but may be
caused by noise. In this section, we set εz > 0 in Equation (18) to represent sources of variability
such as measurement noise. While randomly generated driving nodes force other network components
according to connectivity as determined by adjacency matrix w, a noise component represents random
variability z applied to each node. Similar to cases where ndrivers > 0, randomness due to εz > 0

prevents complete synchronization. The introduction of noise as 10% of the coupling strength (εz = 0.1)
to the case with no random drivers (Figure 7 Left) results in similar synchronization behavior as the
initial noiseless scenario (Figure 5 Left), except that nodes do not completely synchronize. In contrast to
the ndrivers > 0 cases, all nodes contain time dependencies in addition to the noise components, and we
observe that nodes tend to synchronize to an equal degree (Figure 8) as Kf increases. When the noise
component is increased to εz = 0.5, the network further loses capacity to synchronize (Figure 7b,e), and
Cases 1 and 2 are nearly indistinguishable.

The shared information Iτ for the εz = 0.1 case (Figure 7g) is similar to the initial noiseless case
(Figure 5g) for Case 1 networks, but lower for Case 2 networks. While mean detected Iτ increases
with Kf for Case 1 networks up to a constant value, we observe an opposite trend in T/I , in which the
maximum detected T/I decreases with increased Kf until it reaches a constant low value at Kf = 0.6.
As the nodes partially synchronize, the noise components cause scatter in the pdfs that results in similar
strengths of information measures between sources. The detected T/I is similar to the case with 1
external driver (Figure 7k). At low Kf , a node may receive a large amount of unique information from
a source, but feedback results in redundancy at high Kf .
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Increasing the noise component to εz = 0.5 (Figure 7b,e) results in similar σnodes and σtime as the
ndrivers = 5 case, in which the two cases are not distinguishable. However, the mean Iτ and T/I

(Figure 7h,k) are very small compared to the case with random driving nodes. For Case 1, there is a
threshold connectivity value around Kf = 0.7 at which no Iτ is detected for any imposed link. This is
due to the high noise in addition to many source nodes. Nodes would synchronize to a chaotic trajectory
if not for the noise, and the spread of the resulting pdf does not allow for significant detection of any
sources. For Case 2, maximum detected Iτ is statistically significant even at high Kf (> 0.7) values,
because nodes tend toward synchronization to a phase-locked trajectory in which Xi(t) = Xi(t − 2).
Although T/I is very low on average for εz = 0.5 networks (Figure 7k), the maximum detected T/I is
high over the range of connectivities. Similar to the case of multiple random drivers, when a target node
receives from a single source that is partially random, the information due to the random component is
more likely to be unique, resulting in a high T/I .

A final case in which ndrivers = 5 and εz = 0.5 combines the influences of random driving nodes and
noise. In this case, little synchronization is detected based on σ measures (Figure 7c,f) for either Cases 1
or 2. Shared information Iτ is statistically significant over the range of Kf , but very small (Figure 7i).
However, the maximum individual T/I values tend to be large over the entire Kf range, similar to the
previous cases with high noise levels in the form of either random drivers or noise.

As noise and randomness are introduced in the networks, fewer imposed links are correctly identified
(Figure 7m,n,o). However, for high Kf > 0.5, a higher fraction of imposed links is detected in the case
with random drivers and noise (Figure 7o) than the case with only noise (Figure 7n). This is because
the random drivers transmit information more strongly than source nodes composed of both noise and
chaotic logistic components, so are more likely to be detected at higher Kf values. Detection of links
improves with longer time series datasets, but we consider only networks of n = 200 data points to
reflect realistic data availability. For all of the network cases generated, some links are not detected at
low Kf values because they are very weak. At high Kf , links other than those imposed are detected due
to feedback induced by the high connectivity.

4.5. Summary of Structure and Synchronization of Networks

The addition of randomness or noise to a connected network prevents complete synchronization.
This random component could be in the form of driving nodes that do not directly participate in feedback,
or in the form of noise inherent to each individual node. Driving nodes remain independent of the
synchronization of the rest of the network, while nodes in a noisy but feedback-connected network
synchronize to an equal degree. Measures of σnodes and σtime are useful to gage the relative level
of synchronization, and particularly distinguish between uniform and random delay τ -distributions in
noiseless network cases through their detection of synchronization and amplitude death. However, they
do not convey information about time dependencies and redundancies within the network, and do not
distinguish between high and low connectivities when there is a high level of randomness.

Information measures such as lagged mutual information (I(Xtar;Xs1)), conditional information
given other sources (I(Xtar;Xs1|Xs2)), and total shared information between multiple sources
(I(Xtar;Xs1, Xs2)) detect time dependencies between node pairs in a process network, and enable
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detection of dominant drivers, and unique and redundant sources of information. Even for completely
synchronized nodes, Iτ detects time dependencies within a single trajectory, as in the noiseless Case 1
(uniform τ -distribution) networks. For unsynchronized networks with detected time dependencies
(significant Iτ ), T/I further conditions on other source nodes and time scales to reveal redundancies
and unique links. A T/I > 0 indicates that the detected link is not completely redundant given the
history of another source node, which could be the target’s own history, as is detected with transfer
entropy. In the case of a network forced only by feedback, there may be high Iτ between node pairs,
but low T/I due to redundancies in the synchronizing nodes. In contrast, for a network forced randomly
or by a node with no time dependencies, target nodes may share information with only one source, or
completely unique sources. In these cases, we detect both significant Iτ and T/I , indicating a high level
of unique information transfer.

We define a correctly detected link as statistically significant value of lagged mutual information Iτ
detected between two nodes (Xi, Xj) that corresponds to an imposed link according to wi,j and τi,j .
In a weakly connected network with little noise, we identify nearly all imposed links. As connectivity
increases, if nodes tend to synchronize to a time-dependent trajectory, we increasingly detect “false” links
between nodes that are not defined to be connected, or are connected at a different time scale. These false
links are actually feedback induced by the imposed time dependencies. When a network begins to
synchronize, it is not possible to distinguish links due to imposed network structure from those due to
induced feedback. In cases where nodes synchronize to a fixed point trajectory, we cease to detect any
links. In networks with noise, some imposed links are correctly detected at high levels of connectivity
since the random components provide unique information that prevents complete synchronization.

5. Discussion

The two-node and 10-node network scenarios presented here represent a small fraction of potential
network dynamics that could be observed in real-world networks. The two-node networks help us
understand induced feedback and types of forcing, and the resulting interpretation from analysis of the
data. The 10-node networks capture general features of a larger network dynamic arising from multiple
pieces of feedback. Process networks based on measured or simulated nodes of time series exhibit a wide
range of connectivities and time-varying interactions. Coupling strengths and timescales vary between
nodes and shift over time, and thresholds may exist for which certain couplings break down while others
become dominant. Additionally, shared information between two or more variables could be synergistic,
if the knowledge of two nodes together provides more information than their union separately. Although
we present relatively simple cases in this study, the metrics used for analysis allow for the detection of
a range of behaviors such as complete or partial synchronization, weak or strong time dependencies,
and redundancy or uniqueness of shared information. The information theoretic measures used in this
study may be compared with efficient statistical learning methods applied to graphical models, such as
the graphical lasso [13] or methods that combine graphical models with conditional dependencies [14],
particularly in cases with many time series nodes.

In real-world process networks in which noise and other drivers prevent complete synchronization,
some detected time dependencies are likely to correspond to causality (i.e., “correctly detected links”),
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while others represent induced feedback. When nodes in the network are highly connected with feedback
present, detected links are identified as redundant, and it is difficult to distinguish critical interactions
from induced feedback. This feature of process networks indicates a future challenge in terms of
connecting network time dependencies to system functionality.

Figure 9 categorizes the range of possible whole-network or subsystem behaviors that can be
extended to an observed process network. If a network is not completely synchronized, nodes could
be lag-synchronized, or transferring and receiving information at different time scales and strengths.
Real-world process networks consist of measured time-series data for which the underlying mechanisms
are partially or completely unknown. There may be unmeasured or hidden driving and receiving nodes,
and network connectivity can shift over time. The weakening of a single link may result in decreased
redundancy in the form of induced feedback throughout an entire network. For real process network
analysis, the measures presented in this study can aid in comparing observations to simulation results,
evaluating system states, or assessing the influence of noise or bias on time dependencies.
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Figure 9. Illustration of a range of network dynamics that can be identified using
information theoretical measures. Nodes are synchronized if σnodes = 0 and synchronized
to zero-amplitude trajectories if σtime = 0. In asynchronous cases, the absence of
statistically significant Iτ indicates a disconnected network in the case of no synergistic
shared information. Otherwise, the dependencies between nodes can be further explored
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