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Abstract: In generalizing the special-relativistic one-component version of Eckart’s continuum
thermodynamics to general-relativistic space-times with Riemannian or post-Riemannian geometry
as presented by Schouten (Schouten, J.A. Ricci-Calculus, 1954) and Blagojevic (Blagojevic, M. Gauge
Theories of Gravitation, 2013) we consider the entropy production and other thermodynamical
quantities, such as the entropy flux and the Gibbs fundamental equation. We discuss equilibrium
conditions in gravitational theories, which are based on such geometries. In particular,
thermodynamic implications of the non-symmetry of the energy-momentum tensor and the related
spin balance equations are investigated, also for the special case of general relativity.
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1. Introduction

The special-relativistic version of continuum thermodynamics (CT) was founded by Eckart [1] in
the form of the special-relativistic theory of irreversible processes. CT is based (i) on the conservation
law of the particle number and on the balance equation of the energy-momentum tensor and (ii) on
the dissipation inequality and the Gibbs fundamental equation. In order to incorporate CT into
general relativity (GR) and other gravitational theories all based on curved space-times, as a first
step, one has to go over to the general-covariant formulation of CT, which is performed here.

The paper is devoted to the derivation of the entropy production and equilibrium conditions in
general-covariant continuum thermodynamics (GCCT). Starting out with an entropy identity [2], a
tool to construct entropy flux and production, as well as gr-Gibbs and gr-Gibbs-Duhem equations
more consequently, different forms of the entropy production are considered for discussing
non-dissipative materials and equilibria, which both are characterized by vanishing entropy
production. For defining equilibrium beyond the vanishing entropy production, additionally
“supplementary equilibrium conditions” are required [2]. The material-independent equilibrium
condition, that the four-temperature vector is a Killing field, is rediscovered also for gravitational
theories beyond GR, including a spin part in the state space.

The paper is organized as follows: First, the general-covariant shape of the energy-momentum
and spin CT-balances are written down and entropy flux and production, gr-Gibbs and
gr-Gibbs–Duhem equations are derived. Furthermore, non-dissipative materials and equilibria
of spin materials are investigated with regard to the resulting constitutive constraints. Finally,
equilibrium conditions for Frenkel materials are derived.
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2. General-Covariant Continuum Physics

2.1. The Balance Equations

The balance equations of energy-momentum and spin of phenomenological GCCT in a curved
space-time (the comma denotes partial and the semicolon covariant derivatives, round brackets the
symmetric part of a tensor, square brackets its asymmetric part) are [2]:

Tbc
;b = Gc + kc, Tbc 6= Tcb, Scba

;c = Hba + mba (1)

with Scba = −Scab, mba = −mab and Hba = −Hab (2)

Here, Tab is the, in general, non-symmetric energy-momentum tensor of CT and Scba the current
of spin density, often denoted in brief as spin tensor. The Gc and Hbc are internal source terms, the
Geo-SMEC-terms (geometry-spin-momentum-energy-coupling) [2], which are caused by the choice
of a special space-time geometry and by a possible coupling between energy-momentum, spin
and geometry.

For non-isolated systems, kc 6= 0 denotes an external force density, and mab 6= 0 is an
external momentum density. As in the continuum theory of irreversible processes [3,4], the balance
Equation (1) must be supplemented by those of particle number and entropy density:

Nk
;k = 0, Sk

;k = σ + ϕ (3)

(Nk particle flux density, Sk entropy four-vector, σ entropy production, ϕ entropy supply). The second
law of thermodynamics is taken into account by the demand that the entropy production has to be
non-negative at each event and for arbitrary materials after having inserted the constitutive equations
into the expression of the entropy production:

σ ≥ 0 (4)

The (3 + 1)-splits of the tensors in Equations (1) and (3) are:

Nk =
1
c2 nuk, n := Nkuk, (nuk);k = 0 (5)

Tkl =
1
c4 eukul +

1
c2 uk pl +

1
c2 qkul + tkl (6)

plul = 0, qkuk = 0, tkluk = 0, tklul = 0 (7)

Skab =
( 1

c2 sab +
2
c4 u[aΞb]

)
uk + skab +

2
c2 u[aΞkb] =: ukΦab + Ψkab (8)

Ξbub = 0, Ξkbuk = Ξkbub = 0, sabua = sabub = 0 (9)

Sk =
1
c2 suk + sk, s := Skuk, sk := hk

l Sl (10)

Here, the divergence-free particle number flux density Nk is chosen according to Eckart [1],
and the projector perpendicular to the four-velocity uk, respectively ui, is introduced:

hi
k = δi

k −
1
c2 uiuk, hi

kui = 0, hi
kuk = 0 (11)

and Equation (9) results in:

Ξbhj
b = Ξj, Ξkbhj

k = Ξjb, Ξkbhj
b = Ξkj (12)
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By splitting the stress tensor into its diagonal and its traceless parts:

tkl = −phkl + πkl , πklhkl = 0, tklhkl = tk
k =: −3p (13)

we introduce the pressure p and the friction tensor πkl .
According to Equations (6) and (7), we obtain:

ulTkl = qk +
1
c2 euk (14)

Starting out with Equation (8), it holds:

Ξc = Sabcuaub, Ξmc = Sabchm
a ub (15)

resulting in:

Ξmc +
1
c2 Ξcum = Smbcub (16)

Taking Equation (12) into account, we obtain:

Smbcubhj
c = Smbjub (17)

The (3 + 1)-split of tensors is a usual tool in relativistic continuum physics. The
(3 + 1)-components, generated by the split, have physical significance, which originally is hidden
in the unsplit tensor Equations (5) to (10). Thus, we generate by (3 + 1)-split the following covariant
quantities: the particle number density n, the energy density e, the momentum flux density pl , the
energy flux density qk, the stress tensor tkl , the spin density sab, the spin density vector Ξb, the couple
stress skab, the spin stress Ξkb, the entropy density s and the entropy flux density sk.

It is clear that these quantities are not independent of each other. Especially here, we are
interested in expressions for the entropy density and the entropy flux density, which we are going
to construct in the next section by use of a special procedure starting out with the entropy identity [2].
Some further hints can be found in the Appendix.

2.2. The Entropy Identity

For defining the entropy density s and the entropy flux density sk, which determine the entropy
four-vector according to Equation (10)1, we add suitable zeros to the entropy four-vector, a procedure
that paves the way for defining s and sk later on. The entropy identity results by multiplying
Equations (5)1, (14) and (16) with the present arbitrary quantities κ, λ and Λc, which are suitably
chosen below; Equation (10)1 becomes:

Sk ≡ 1
c2 suk + sk + κ

[
Nk − 1

c2 nuk
]
+

+ λ
[
ulTkl − qk − 1

c2 euk
]
+ Λc

[
Skbcub − Ξkc − 1

c2 Ξcuk
]
= (18)

=
1
c2 suk − κ

1
c2 nuk − λ

1
c2 euk − 1

c2 ΛcΞcuk +

+ κNk + λulTkl + ΛcSkbcub +
(

sk − λqk −ΛcΞkc
)

(19)

This entropy identity does not take the entire energy-momentum and spin tensor into account,
but only their contractions with ul according to Equation (18).

That means that the contractions with hkl are not included in the entropy identity, resulting in the
consequence that more than one entropy identity can be established, if other secondary conditions are
taken into consideration. A generalization of the entropy identity is obtained by replacing κ, λ and
Λc by tensors of higher order.
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An entropy vector regarding the spin of the system is also constructed by kinetic approaches
of the equilibrium theory of spin systems [5,6]. Interestingly, in the latter paper, a spin vector was
derived that satisfies the entropy identity Equation (19). This spin vector is that one that is also
mostly used in phenomenological considerations.

Because the entropy identity is not unique, the entropy production and later on also s and sk are
not unique, either: changing the entropy identity results in changing the material. Here, we start out
with the special entropy identity Equation (18).

Because the part of Λc that is parallel to uc does not contribute to the last term of Equation (18)
and, consequently, not to the entropy identity, we can demand:

Λcuc .
= 0 (20)

without restricting the generality. The identity Equation (19) becomes another one by differentiation:

Sk
;k ≡

[ 1
c2

(
s− κn− λe−ΛcΞc

)
uk
]

;k
+

+
(

κNk
)

;k
+
(

λumTkm
)

;k
+
(

ΛcSkbcub

)
;k
+

+
(

sk − λqk −ΛcΞkc
)

;k
(21)

This identity changes into the entropy production, if according to Equations (3)2 and (10)1,
s, sk and ϕ are specified. For achieving that, we now rearrange the five terms of Equation (21).

Introducing the covariant time derivative (
•
�:= �;kuk is the relativistic analogue of the

non-relativistic material time derivative d � /dt, which describes the time rates of a rest-observer;

therefore,
•
� is observer independent and zero in equilibrium [7,8]):

•
� := �;kuk (22)

and using the balance Equations (3)1 and (1)1,3, the entropy identity Equation (21) becomes:

Sk
;k ≡ 1

c2

( •
s −

•
κ n− κ

•
n −

•
λ e− λ

•
e −

•
Λc Ξc −Λc

•
Ξ c
)
+

+
1
c2

(
s− κn− λe−ΛcΞc

)
uk

;k + κ;k
1
c2 nuk +

+
(

λum

)
;k

Tkm + λum(Gm + km) +

+
(

Λcub

)
;k

Skbc + Λcub(Hbc + mbc) +

+
(

sk − λqk −ΛcΞkc
)

;k
(23)

The covariant time derivative Equation (22) can be replaced by the Lie derivative Lu because:

(ApBp)
•
= Lu(ApBp) (24)

is valid, and we apply the covariant time derivative only on scalars according to the first row of
Equation (23). Consequently, concerning the time derivative appearing in the entropy identity, we can
use the covariant time derivative Equation (22) or the Lie derivative, both along uk.
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Taking Equations (6), (13) and (14) into account, the fourth term of Equation (23) becomes:(
λum

)
;k

Tkm = λ,k

(
qk +

1
c2 euk

)
+ λum;k

( 1
c2 uk pm − phkm + πkm

)
=

= λ,kqk +
1
c2

•
λ e +

1
c2 λ

•
um pm − λpuk

;k + λum;kπkm (25)

We now transform the sixth term of the entropy identity Equation (23) by taking Equations (8)
and (20) into account:(

Λcub

)
;k

Skbc =
(

Λcub

)•
Φbc +

(
Λcub

)
;k

Ψkbc =

=
( •

Λc ub + Λc
•
ub

)( 1
c2 sbc +

1
c4 (u

bΞc − ucΞb)
)
+

+
(

Λc;kub + Λcub;k

)(
skbc +

1
c2 (u

bΞkc − ucΞkb)
)
=

=
•
Λc

1
c2 Ξc + Λc

•
ub

1
c2 sbc + Λc;kΞkc + Λcub;kskbc (26)

Inserting Equations (25) and (26) into Equation (23) results in:

Sk
;k ≡ 1

c2

( •
s −κ

•
n −λ

•
e −Λc

•
Ξ c
)
+

+
1
c2

(
s− κn− λe−ΛcΞc − λc2 p

)
uk

;k +

+ λ,kqk +
1
c2 λ

•
um pm + λum;kπkm + λum(Gm + km) +

+ Λc
•
ub

1
c2 sbc + Λc;kΞkc + Λcub;kskbc + Λcub(Hbc + mbc) +

+
(

sk − λqk −ΛcΞkc
)

;k
≡ σ + ϕ (27)

As already mentioned, the entropy identity has to be transferred into the expression for the
entropy production by specifying the entropy flux sk, the entropy density s, the entropy supply ϕ and
the three for the present arbitrary quantities κ, λ and Λc.

Obviously, Equation (27) contains terms of different kinds: a divergence of a vector
perpendicular to uk (the last term of Equation (27)), time derivatives of intensive quantities (the
first row of Equation (27)), two terms stemming from the field equations (last terms of the third
and fourth row of Equation (27)), three terms containing spin (3 + 1)-components (in the fourth row
of Equation (27)) and three further terms containing (3 + 1)-components of the energy-momentum
tensor (in the third row of Equation (27)). This structure of the entropy identity allows one to choose
a state space and, by virtue of it, to define the entropy density, the entropy supply, the entropy flux, the
gr-Gibbs equation and the gr-Gibbs–Duhem equation, which all are represented in the next sections.

2.3. The Entropy Supply

If the system under consideration is isolated, the external sources vanish:

km .
= 0, mbc .

= 0 (28)

and with them also the entropy supply:
ϕ ≡ 0 (29)

Thus, because the entropy supply is generated by external sources, we define:

ϕ := λumkm + Λcubmbc (30)
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This definition is made in such a way that external sources do not appear in the entropy
production. Consequently, the entropy supply is given by the last terms in the third and fourth row
of Equation (27).

2.4. State Space, Gr-Gibbs Equation and Entropy Flux

We now choose a state space that belongs to a one-component spin system in local equilibrium
and which is spanned by the particle number n, the energy density e and the spin density vector Ξc:

� = (n, e, Ξc) (31)

Local equilibrium means: the state at each event is described by a set of equilibrium variables,
which change from event to event, generating gradients of equilibrium variables, causing irreversible
processes. According to Equations (15) and (16), the three-indexed spin is only partly taken into
account, namely by Ξc and Ξkc. Here, Ξc is an independent state variable, whereas Ξkc represents a
constitutive property according to Equation (36).

The gr-Gibbs equation is given by the covariant time derivative of the entropy density s, which
is composed of covariant time derivatives belonging to the chosen state space. Such covariant time

derivatives appear only in the first row of Equation (27) (the acceleration
•
um is not a material property,

but one of the kinematical invariants). Consequently, we define:

•
s := κ

•
n +λ

•
e +Λc

•
Ξ c (32)

and the split of the entropy identity into the gr-Gibbs equation and entropy density later on depends
on the choice of the time derivative, although the entropy identity is independent of this choice.

Up to here, the quantities κ, λ, Λc introduced into the entropy identity Equation (18) are
unspecified. Taking the gr-Gibbs Equation (32) into consideration, such a specification is now
possible: λ is the reciprocal rest-temperature:

λ :=
1
T

(33)

κ is proportional to the chemical potential:

κ := − µ

T
(34)

and Λc is analogous to Equation (34) proportional to a spin potential:

Λc := −µc

T
(35)

These quantities, as all of the others that do not belong to the state space variable Equation (31),
are constitutive quantities describing the material by constitutive equations. These constitutive
quantities are:

M = (T, µ, µc, pk, qk, p, πkm, skm, sckm, Ξkm) (36)

They all, including the entropy density s and the entropy flux density sk, are functions of the
state space variables:

M = M(�) (37)

These constitutive equations are out of scope of this paper (for how to use the constitutive
equations in connection with the field equations, see [9]).
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Because of Equation (33), the term λqk is as in CT a part of the entropy flux. Consequently,
we define the entropy flux density according to the last row of Equation (27):

sk := λqk + ΛcΞkc (38)

Taking Equation (36) into consideration, the entropy flux density is also a constitutive quantity.

2.5. Entropy Density and the Gr-Gibbs–Duhem Equation

According to the second row of the entropy identity Equation (27), we define the entropy density:

s := κn + λe + ΛcΞc + λc2 p (39)

This definition has to be in accordance with the gr-Gibbs Equation (32). As usual in
non-relativistic thermostatics, we demand a gr-Gibbs–Duhem equation of the intensive variables:

•
κ n+

•
λ (e + c2 p)+

•
Λc Ξc + λc2

•
p = 0 (40)

2.6. The Entropy Production

Inserting the entropy supply Equation (30), the entropy flux Equation (38), the gr-Gibbs
Equation (32) and the entropy density Equation (39) into the entropy identity Equation (27), we obtain
the entropy production:

σ = λ,kqk +
1
c2 λ

•
um pm + λum;kπkm + λumGm +

+ Λc
•
ub

1
c2 sbc + Λc;kΞkc + Λcub;kskbc + Λcub Hbc (41)

We get by taking Equations (7)1 and (10)3 into account:

1
c2 λ

•
um pm + Λc

•
ub

1
c2 sbc = − 1

c2 um

(
λ
•
p m + Λc

•
s mc

)
(42)

Starting out with the RHS of Equation (42) and with the Geo-SMEC-terms of Equation (41),
we obtain:

− 1
c2 um

(
λ
•
p m + Λc

•
s mc

)
+ λumGm + Λcub Hbc =

= um

[
λ
(

Gm − 1
c2

•
p m
)
+ Λc

(
Hmc − 1

c2

•
s mc

)]
(43)

and the entropy production Equation (41) results in:

σ = λ,kqk + Λc;kΞkc + um;k

(
λπkm + Λcskmc

)
+

+ um

[
λ
(

Gm − 1
c2

•
p m
)
+ Λc

(
Hmc − 1

c2

•
s mc

)]
(44)

an expression that belongs to a general-covariant one-component spin system. The entropy
production depends on the Geo-SMEC-terms of the balance equations, that means the same material
has different entropy productions in space-times of different theories. Entropy flux and density,
gr-Gibbs and the gr-Gibbs–Duhem equation do not depend on Geo-SMEC-terms, because the
energy-momentum and spin tensor are independent of the Geo-SMEC-terms: that is obvious, because
the (3 + 1)-split Equations (6) and (8) are valid for all space-times.
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3. Further Forms of Entropy Production

The gradient of the velocity can be decomposed into its kinematical invariants: symmetric

traceless shear σnm, expansion Θ, anti-symmetric rotation ωnm and acceleration
•
un [10]:

ul;k = σlk + ωlk + Θhlk +
1
c2

•
ul uk (45)

σlk = σkl , ωlk = −ωkl , ulσlk = σlkuk = ulωlk = ωlkuk = 0 (46)

σk
k = ωk

k = 0, Θ := uk
k (47)

Using Equation (45), the third term of Equation (41) can be replaced by:

λum;kπkm = λσmkπ(km) + λωmkπ[km] (48)

We now derive another shape of the entropy production: starting out with the entropy identity
Equation (21), we obtain the entropy production by taking the entropy flux Equation (38), the entropy
density Equation (39), the energy-momentum balance Equation (1)1 and the particle balance
Equations (3)1 and (5)1 into account. Inserting these quantities, we obtain for isolated systems:

σ =
1
c2

[
λc2 puk

]
;k
+
•
κ

1
c2 n + (λum);kTkm + λumGm +

(
ΛcubSkbc

)
;k

(49)

and the first term of Equation (49) is:

1
c2

[
λc2 puk

]
;k

= (λp)
•
+ λpuk

;k (50)

For the sequel, we need an additional expression whose validity is independent of the entropy
production because it represents an identity:

(λum);k

( 1
c4 eukum − phkm

)
= (λ,kum + λum;k)

( 1
c4 eukum − phkm

)
=

=
e
c2 λ

• − λpuk
;k (51)

The sum of Equations (49) and (51) results in:

σ = (λp)
•
+

e
c2 λ

•
+
•
κ

1
c2 n +

+(λum);k

(
Tkm − 1

c4 eukum + phkm
)
+

+λumGm +
(

Λcub

)
;k

Skbc + Λcub Hbc (52)

Replacing the first two terms by the gr-Gibbs–Duhem equation Equation (40), we obtain by
taking Equation (26) into account:

σ = − 1
c2

•
Λc Ξc + (λum);k

(
Tkm − 1

c4 eukum + phkm
)
+

+ λumGm +
(

Λcub

)
;k

Skbc + ΛcubHbc = (53)

= (λum);k

(
Tkm − 1

c4 eukum + phkm
)
+ λumGm +

+ Λcub

(
Hbc − 1

c2

•
s bc
)
+ Λc;kΞkc + Λcub;kskbc (54)
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Here, in contrast to Equation (44), the heat flux qk and the friction tensor πkm do not appear.
They are replaced by the first term of Equation (54) describing the deviation of the material from a
perfect one. The second row represents the influence of the chosen state space Equation (31) on the
entropy production.

We now consider the thermodynamical results: if we start out with the entropy identity for
which the last term of Equation (18) is set to zero Λc ≡ 0 [11].

By doing so, Ξkc and especially Ξc do not appear any more in the entropy identity, and
consequently, they are withdrawn from the procedure. The entropy identity changes, and the state
space Equation (31) transforms into:

�0 = (n, e) (55)

which characterizes a spin-free material in contrast to Equation (31). The entropy production
Equation (54) becomes:

σ0 = (λum);k

(
Tkm − 1

c4 eukum + phkm
)
+ λumGm (56)

and the entropy flux Equation (38) is:
sk

0 = λqk (57)

The gr-Gibbs equation Equation (32) becomes:

•
s0 = κ

•
n +λ

•
e (58)

and the entropy density Equation (39) is:

s0 = κn + λe + c2λp (59)

Finally, the gr-Gibbs–Duhem equation Equation (40) results in:

•
κ n+

•
λ
(

e + c2 p
)
+
•
p c2λ = 0 (60)

The thermodynamical quantity Equations (56) to (60) based on the chosen state space as
a comparison with Equations (31), (32), (39) and (40) is demonstrated. Consequently, the
thermodynamical quantities are not “absolute”; they belong to a thermodynamical scheme
implemented by a chosen state space. The spin does not appear in the thermodynamical quantity
Equations (56) to (60) in contrast to Equations (31), (32), (39) and (40). Furthermore, the regard of
the spin balance Equation (1)3 is different: the entropy production Equation (54) takes it explicitly
into account, whereas spin parts do not appear in Equation (56) [12]. Here, the spin is a constitutive
quantity and not a state space variable. For the sequel, we use the state space Equation (31) because
of its generality and consider the restricted state space Equation (55) as a special case.

The special case Equation (55) can be easily obtained by the setting Λc
.
= 0. Especially in GR, the

energy-momentum tensor is symmetric, and the external sources and the Geo-SMEC-terms are zero.
Thus, Equation (54) results in:

σGR
0 =

1
2

[
(λum);k + (λuk);m

](
Tkm − 1

c4 eukum + phkm
)

(61)

Consequently, the entropy production vanishes in GR for perfect materials or/and if the
space-time allows that the four-temperature vector is a Killing field. This is the well-known result
derived in [12], which is here worked out using a more general aspect. More details in connection
with equilibrium will be discussed in Section 5.1.
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4. Non-Dissipative Materials

As already mentioned, the entropy production depends always on a chosen state space. Thus,
Equation (54) belongs to Equation (31), and for Equations (56) to (55), the entropy production depends
on the material and on the space-time, a statement that is also valid for its zero. A non-dissipative
material is characterized by vanishing entropy production Equation (54), even in the case of
non-equilibrium (vanishing entropy production is necessary, but not sufficient for equilibrium),
independently of the specially-chosen space-time. Consequently, by definition, all processes of
non-dissipative materials are reversible (reversible “processes” are trajectories in the state space
consisting of equilibrium states), and therefore, these materials are those of thermostatics. If the state
space is changed, it may be that a non-dissipative material becomes dissipative, because changing the
state space means changing the material.

Starting out with Equation (54), we point out a set of conditions that is sufficient that a material
is non-dissipative, that means its entropy production vanishes independently of the space-time.
These conditions are generated by setting individual terms in Equation (54) to zero. First, the
non-dissipative material is perfect:

Tkl
ndiss

.
=

1
c4 eukul − phkl , −→ T[kl]

ndiss = 0, (62)

for which the first term of Equation (54) vanishes. Furthermore, the second term must vanish:

Gm
ndiss

.
= 0 (63)

that means the Geo-SMEC-term of the energy-momentum balance has to be zero.
The second row of Equation (54) depends on Λc, which introduces according to the last term of

Equation (18) a spin part explicitly into the state space Equation (31). There are now two possibilities
for vanishing the second row of Equation (54):

Hbc
ndiss = 0,

•
s

bc
ndiss = 0, Ψkbc

ndiss = 0 (64)

or second:
Λndiss

c = 0 (65)

If now Λc vanishes in Equation (54), and consequently also in Equation (18), spin terms cannot
appear in the state space, with the result that we have to choose the state space Equation (55) instead
of Equation (31).

Finally, we proved two statements that presuppose different state spaces for non-dissipative
materials.

� Proposition I: The five altogether sufficient conditions characterizing non-dissipative materials
are: (i) the material is perfect; (ii) the Geo-SMEC-terms of the energy-momentum and of the spin
balance vanish; (iii) the spin is Skbc

ndiss = ukΦbc
ndiss; (iv) the spin density Equation (64)2 is covariantly

constant; and (v) the state space is spanned by the particle number, the energy density and the spin
density vector Ξc. �

� Proposition II: The three altogether sufficient conditions characterizing non-dissipative
materials are: (i) the material is perfect; (ii) the Geo-SMEC-term of the energy-momentum balance
vanishes; and (iii) the state space is spanned by the particle number and the energy density. �
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5. Equilibrium

5.1. Equilibrium Conditions

We start out with the question: how are equilibrium and non-dissipative materials related to
each other? Concerning non-dissipative materials, we are looking for material properties enforcing
vanishing entropy production for all admissible space-times. Concerning equilibria, we are asking
for space-times in which materials can be at equilibrium. This is defined by equilibrium conditions,
which are divided into necessary and supplementary ones [2]. The necessary ones are given by
vanishing entropy production and vanishing entropy flux density:

σeq .
= 0 ∧ sk

eq
.
= 0 (66)

Supplementary equilibrium conditions are given by vanishing covariant time derivatives, except
that of the four-velocity:

�•eq
.
= 0, � 6= ul (67)

that means
•
u l

eq is in general not zero in equilibrium. Consequently, according to Equations (32)
and (40), the gr-Gibbs and the gr-Gibbs–Duhem equations are identically satisfied in equilibrium.
Whereas in Section 4, the non-dissipative materials are defined independently of the admissible
space-times, here, a material in a given space-time is considered, and the equilibrium condition
Equations (66) and (67) are valid.

From Equation (3)1 follows:

•
n := n,kuk = −nuk

;k −→ uk
;k = −

•
n
n

(68)

According to Equations (67)1 and (68)3, the divergence of the four-velocity, that is the expansion
Equation (47)2, vanishes in equilibrium for arbitrary space-times and materials:

uk
;k

eq = 0 (69)

Starting out with the identity Equation (51) and taking Equations (67) and (69) into account,
we obtain for all equilibria:

(λum)
eq
;k

( 1
c4 eukum − phkm

)eq
= 0 (70)

Because the second bracket of Equation (70) is never zero, the four-temperature vector λum is
independent of the material a Killing vector in equilibrium:[

(λum);k + (λuk);m

]eq
= 0 (71)

The equilibrium condition Equations (69) and (71) are induced by Equation (67)1 independently
of the entropy production and the material. Especially, Equation (71) is the well-known
necessary condition for defining thermodynamic equilibrium. It can be found in textbooks on
phenomenological and kinetic theories. Using solely arguments from phenomenological continuum
thermodynamics, e.g., in [12], Stephani presented its derivation under the assumption of the reduced
state space Equation (55) spanned by the specific internal energy and the specific volume using a
symmetric and divergence-free energy-momentum tensor.

No equilibria are possible in space-times that do not allow the validity of Equations (69) or/and
(71). It is obvious that the condition Equations (69) and (71) are necessary, but not sufficient for
equilibrium, because they do not guarantee vanishing entropy production Equation (54) or (56),
except for the case of GR according to Equation (61). Hence, vanishing entropy production in GR
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means two different things: the system may be in equilibrium or the system is non-dissipative, and
reversible processes occur.

The expression of the entropy production Equation (44) becomes in equilibrium by taking
Equation (48) into account:

0 = λ
eq
,k qk

eq + Λeq
c;kΞkc

eq +

+ σ
eq
mk

(
λeqπ

(km)
eq + Λeq

c s(km)c
eq

)
+ ω

eq
mk

(
λeqπ

[km]
eq + Λeq

c s[km]c
eq

)
+

+ ueq
m

(
λeqGm

eq + Λeq
c Hmc

eq

)
(72)

From Equations (38) and (66)2 follows:

qk
eq = − 1

λeq Λeq
c Ξkc

eq −→ λ
eq
,k qk

eq = −
λ

eq
,k

λeq Λeq
c Ξkc

eq (73)

Inserting Equation (73) into Equation (46) results in:

0 = Ξkc
eq

(
Λeq

c;k −
λ

eq
,k

λeq Λeq
c

)
+

+ σ
eq
mk

(
λeqπ

(km)
eq + Λeq

c s(km)c
eq

)
+ ω

eq
mk

(
λeqπ

[km]
eq + Λeq

c s[km]c
eq

)
+

+ ueq
m

(
λeqGm

eq + Λeq
c Hmc

eq

)
(74)

In contrast to the material-independent equilibrium condition Equations (69) and (71),
the equilibrium condition Equations (72) to (74) depend on material and space-time. Each of these
three condition is necessary for equilibrium, and altogether, they are sufficient for equilibrium,
because the field equation Equation (1) and the entropy supply Equation (30) are taken into account.

Another shape of Equation (74) can be derived from Equation (54) by taking Equation (71)
into account:

0 = (λum)
eq
;k T[km]

eq +

+ Λeq
c;kΞkc

eq + Λeq
c ueq

m;kskmc
eq + ueq

m

(
λeqGm

eq + Λeq
c Hmc

eq

)
(75)

This equilibrium condition is satisfied in GR because the energy-momentum tensor is symmetric;
both the Geo-SMEC-term vanishes and the state space Equation (55) is used. General solutions
of Equations (74) and (75), that means, to find all couples, material ↔ space-time, which satisfy
Equations (74) and (75), cannot be achieved. Therefore, we discuss some special cases of equilibria in
the next section.

5.2. Special Equilibria

We now decompose the equilibrium condition Equation (74) into a set of terms representing
special cases of equilibria, which altogether enforce the validity of Equation (74):

Ξkc
eq

(
Λeq

c;k −
λ

eq
,k

λeq Λeq
c

) .
= 0 (76)

σ
eq
mk

(
λeqπ

(km)
eq + Λeq

c s(km)c
eq

) .
= 0 (77)

ω
eq
mk

(
λeqπ

[km]
eq + Λeq

c s[km]c
eq

) .
= 0 (78)

ueq
m

(
λeqGm

eq + Λeq
c Hmc

eq

) .
= 0 (79)
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If we do not restrict the spin material under consideration, the bracket in Equation (76) has to be
zero, resulting in a differential equation for the spin potential Equation (35):

λeqΛeq
c;k − λ

eq
,k Λeq

c = 0 (80)

Because this equilibrium condition is pretty exotic, we restrict our discussion to spin materials
with vanishing Ξkc. According to Equations (8) and (73), we obtain:

Ξkc .
= 0, −→ Skbc = ukΦbc + skbc ∧ qeq

k = 0 (81)

According to Equations (77) and (78), the couple stress skbc modifies the friction tensor:

Πkm
eq := λeqπkm

eq + Λeq
c skmc

eq (82)

and necessary material-independent equilibrium conditions are:

σ
eq
mk = 0, ω

eq
mk = 0 (83)

Another necessary equilibrium condition is Equation (79). In connection with Equation (75),
we obtain:

(λum)
eq
;k T[km]

eq + Λeq
c ueq

m;kskmc
eq = 0 (84)

a relation which is satisfied, if we have e.g.,

(λum)
eq
;k = 0 ∧ skmc

eq = 0 (85)

Using the state space Equations (55), (76) to (79) result in Equation (83) or:

πeq = 0 ∧ ueq
m Gm

eq = 0 (86)

5.3. Frenkel Materials

Taking Equation (9)3 into account, materials defined by the special spin:

Ψkbc
FR

.
= 0 ∧

[
Φbc
FRub

.
= 0 −→ Ξc

FR = 0
]

(87)

are called Frenkel materials. According to Equation (87)2, Frenkel materials belong to the state space
Equation (55), and their spin is:

Skbc
FR = uksbc (88)

According to Equation (54), a necessary equilibrium condition of Frenkel materials is:

0 = (λum)
eq
;k

(
Tkm
FR −

1
c4 eFRukum + phkm

FR

)eq
+ ueq

m λeqGm
FReq (89)

If the Frenkel material is dissipative, the equilibrium conditions are Equations (69) and (71), and
according to (89):

(λum)
eq
;k T[km]

FReq = 0, ueq
m λeqGm

FReq = 0 (90)

and additionally according to Equations (73)1 and (77)/(78):

qk
FReq = 0, σ

eq
mkλeqπ

(km)
FReq = 0, ω

eq
mkλeqπ

[km]
FReq = 0 (91)
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6. Discussion

Starting out with the entropy identity derived in [2] and specifying entropy flux, entropy
density and entropy supply, different expressions of the entropy production in general-relativistic
space-times are determined by taking the gr-Gibbs and the gr-Gibbs–Duhem equations into account.
All of these thermodynamical quantities depend on the chosen state space, which in general is more
extended than that of general relativity. Beyond that, the entropy production of a general-covariant
one-component spin system depends on the so-called Geo-SMEC-terms, which are located at the RHS
of the balance equations, thus discriminating between different general-covariant theories.

Well-known relations of general relativity are generalized for theories based on post-Riemannian
space-times. In this case, the interrelation between geometric and constitutive quantities in the
expression for the entropy production becomes more complex. Consequently, the zero of the
entropy production can be realized by a variety of conditions imposed on constitutive and/or
geometric quantities. One condition of them is the fact that the entropy production vanishes for
perfect materials, if the state space does not include spin terms and if the Geo-SMEC-term of the
energy-momentum balance is zero. That is just the well-known case of general relativity.

Vanishing of entropy production is only necessary, but not sufficient for equilibrium.
This necessary condition has to be complemented by “supplementary equilibrium conditions” for
describing equilibrium sufficiently. Two supplementary equilibrium conditions are independent
of the entropy production restricting the space-time independently of the material: the expansion
vanishes, and the four-temperature vector is a Killing field. Equilibria are impossible, if one of these
two conditions is not satisfied.

For defining equilibria, the time derivative plays a prominent role. There are two concepts, the
Lie derivative along the four-velocity Lu� and the covariant derivative along the four-velocity �;pup,
which both result in the same entropy identity. Here, we use the covariant time derivative.

From the viewpoint of material theory, the conditions are interesting for which the entropy
production vanishes whatever the properties of the space-time of the considered theory may be.
One set of conditions for non-dissipativity is: the material is perfect; the Geo-SMEC-term of the
energy-momentum balance vanishes; and the state space is spanned by particle number and energy
density. That is again the special case of general relativity.

7. Conclusions

Non-equilibrium thermodynamics of spin systems, including production, flux, supply and
density of entropy and Gibbs and Gibbs–Duhem equations, can be formulated covariantly by
choosing a suitable state space describing a class of materials. Results of General Relativity are
contained as a special case.
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Appendix

Relativistic continuum thermodynamics is a field theory defined on the four-dimensional
space-time whose elements are the events. The basic assumption is that the local state at each event
is specified by the primary variables: the particle flow vector Ni, the energy-momentum tensor
Tik, the spin tensor Sikl and the four-entropy vector Si. In the framework of special relativity, it
was shown by Eckart [1] that the particle flow vector Ni has to be introduced independently of the
energy-momentum tensor Tik. This fact is taken over to non-flat geometries.

The primary variables obey balance equations, that of particle number, energy-momentum, spin
and entropy. These balances are covariantly formulated and therefore valid for all geometries and
materials. The geometry of the space-time is determined by field equations (not considered in the
paper) together with the balance equations. The (3 + 1)-split of the primary variables encloses
constitutive variables, which depend on the chosen material, such as the energy flux density, the stress
tensor and the entropy density. These constitutive variables are defined on a chosen state space, which
determines the class of materials under consideration. Changing the state space means changing the
class of materials.

The entropy identity represents a tool for constructing entropy density and entropy flux density
more consequently by choosing them in accordance with the balance equations, because these appear
in the entropy identity by special chosen expressions. That is the reason why the entropy identity
is not unique, but depends on the material, a fact that shows that entropy density and entropy flux
density are constitutive quantities.

The basic ideas of relativistic material theory stem partly from the non-relativistic theory,
from the special-relativistic TIP (thermodynamics of irreversible processes) and from general
relativity [13–18].
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