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Abstract: Parameter estimation for fractional-order chaotic systems has been an interesting

and important issue in theory and various fields of application. In this paper, fractional

orders, as well as systematic parameters of fractional-order chaotic systems are considered

by treating fractional orders as additional parameters. The parameter estimation is

transformed into a multidimensional optimization problem, and an effective modified

artificial bee colony algorithm is proposed to solve this problem. Numerical simulations

are conducted on two typical fractional-order chaotic systems to show the effectiveness of

the proposed scheme.
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1. Introduction

Recently, considerable attention has been give to making use of the great potential of fractional

calculus in physics [1], electrical circuit theory [2] and control systems [3]. In particular, a significant

role is played in chaos control theory, and many control methods have been devised for fractional-order

chaotic systems under the condition of known fractional orders and systematic parameters. However, in
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the real world, the fractional orders and systematic parameters of fractional-order chaotic systems cannot

be exactly known. Therefore, to achieve the goal of the control and synchronization of fractional-order

chaotic systems, the parameters should be estimated beforehand if they are unknown.

However, direct measurement of parameters for the fractional-order chaotic systems is very difficult,

so estimating system parameters through an observed chaotic scalar time series based on parameter

estimation methods is feasible and valuable. Recently, by formulating the problem as a multidimensional

optimization problem and treating the fractional order as one of the parameters to be estimated, many

optimization approaches have been applied to solve this problem, such as the particle swarm optimization

(PSO) [4–6] and differential evolution (DE) [7–9].

The artificial bee colony (ABC) algorithm is one of the most recently introduced swarm-based

optimization algorithms. It was developed by Karaboga in 2005 based on simulating the foraging

behavior of a honeybee colony and has been shown to be competitive with other population-based

algorithms for the global numerical optimization problem with the advantage of employing fewer control

parameters [10–15]. For instance, apart from the maximum evaluation number and population size,

a standard GA has three more control parameters (crossover rate, mutation rate, generation gap) [16],

a standard DE has at least two control parameters (crossover rate, scaling factor) [17] and a basic PSO

has three control parameters (cognitive and social factors, inertia weight) [4]. Besides, limit values

for the velocities vmax have a significant effect on the performance of PSO. The ABC algorithm has

only one control parameter (limit) apart from colony size and maximum cycle number. Although

it uses less control parameters, the performance of the ABC algorithm is better than or similar to

that of these algorithms, and it can be efficiently used for solving multimodal and multidimensional

optimization problems.

Similar to other population-based algorithms, the ABC algorithm can be further improved to enhance

the exploration and exploitation abilities. Therefore, in this paper, a modified artificial bee colony

(MABC) algorithm is put forward. Additionally, it is modified by employing two new searching

equations. The MABC algorithm is further used to estimate the parameters of uncertain fractional-order

chaotic systems via a functional extrema model. Numerical simulations are performed to estimate

two well-known fractional-order chaotic systems and statistically compared with some typical existing

methods. The simulation results demonstrate the good performance and the superiority of the MABC

algorithm, and thus, the MABC algorithm proves to be a promising candidate for parameter estimation

of uncertain fractional-order chaotic systems.

The rest of the paper is organized as follows. In Section 2, some preliminaries are given. In Section 3,

a brief problem formulation is described. Section 4 describes the MABC algorithm in sufficient detail.

The simulation results based on the MABC algorithm are given in Section 5, and the compared results

based on PSO and DE are also presented. The paper ends with conclusions in Section 6.
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2. Preliminaries

2.1. Caputo Fractional-Order Derivative

There are several definitions of fractional-order derivatives. There are three best-known definitions:

the Grunwald–Letnikov, Riemann–Liouville and Caputo definitions [18]. In particular, the Caputo

fractional-order derivative has the same initial conditions as integer-order derivatives, which is well

understood in physical situations and more applicable to real-world problems. Thus, the Caputo

fractional-order derivative is introduced in this paper.

Definition 1. Caputo fractional-order derivative: The Caputo fractional-order derivative of order α > 0

for a function f(t) ∈ Cn+1([t0,+∞), R) is defined as:

t0D
α
t f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n
dτ, (1)

where Γ(·) denotes the gamma function and n is a positive integer, such that n− 1 < α ≤ n.

2.2. The Standard Artificial Bee Colony (ABC) Algorithm

The standard artificial bee colony (ABC) algorithm proposed by Karaboga in 2005 is a competitive

optimization technique that simulates the intelligent foraging behavior of a honeybee colony [10–12].

In fact, the ABC algorithm is an iteration optimization technique similar to other population-based

algorithms. In the ABC algorithm, the colony of artificial bees contains three groups of bees: employed

bees, onlooker bees and scouts. The first half of the colony consists of the employed artificial bees, and

the second half includes the onlookers. For every food source, there is only one employed bee. In other

words, the number of food sources is equal to the number of employed bees. The employed bee of an

abandoned food source becomes a scout. The search carried out by the artificial bees can be described

as follows.

2.2.1. Initialization of the Population

The initial population of solutions is filled with SN number of n-dimensional real-valued vectors,

which are generated randomly (i.e., food sources). Let Xi = (xi,1, xi,2, · · · , xi,D) represent the i-th food

source in the population, and then, each food source is generated as follows:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j), (2)

where i = 1, 2, · · · , SN , j = 1, 2, · · · , D. xmin,j and xmax,j are the lower and upper bounds for the

dimension j, respectively. These food sources are randomly assigned to SN number of employed bees,

and their fitness is evaluated accordingly.

2.2.2. The Employed Bee Phase

At this stage, for each position of the employed bee’s food source Xi, a new food source position Vi

is generated via the equation as follows:

vi,j = xi,j + φi,j(xi,j − xk,j), (3)
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where k = 1, 2, · · · , SN and j = 1, 2, · · · , D. k and j are randomly generated, and k must be different

from i. φi,j is a random number in [−1, 1]. The above explanation implies that the other components

of Vi, except for dimension j, are the same as the ones of Xi.

Then, a greedy selection is made between Xi and Vi. That is, once Vi is obtained, it will be evaluated

and compared with Xi. If the fitness of Vi is equal to or better than that of Xi, consequently, Vi will

replace Xi and correspondingly become a member of the population. Otherwise, Xi is retained.

2.2.3. Calculating Probability Values Referring to the Probability Selection

After finishing the update process, employed bees share their nectar amount information, which is

related to the food sources, with the onlooker bees in the nearby hive. An onlooker bee evaluates the

nectar information taken from all employed bees and chooses a food source through a probability value

pi, which is calculated by the following form:

pi =
fiti

SN
∑

j=1

fitj

, (4)

where fiti denotes the fitness value of solution Xi. It is obvious that the higher the fitness value of

solution Xi, the higher the probability of selecting the i-th food source corresponding to solution Xi is.

Besides, the fitness value fiti is defined as follows:

fiti =

{

1
1+f(Xi)

, if f(Xi) ≥ 0,

1 + |f(Xi)|, if f(Xi) < 0,
(5)

where f(Xi) represents the objective function value of the decision vector Xi.

2.2.4. The Onlooker Bee Phase

Based on the probability value pi calculated by Equation (4), each onlooker bee randomly chooses

a food source corresponding to the solution Xi with a probability value pi. Thereafter, it makes a

modification (i.e., Vi) around the chosen food source by the Equation (3). Similarly to the phase of

employed bees, the greedy selection mechanism is applied to select a better solution between solution

Xi and Vi.

2.2.5. The Scout Bee Phase

In this phase, the number trial denotes the times that the food source position corresponding to the

solution Xi is not improved continuously in the honeybee’s memory. Additionally, once the value of

the number trial is more than the predetermined parameter limit employed in the ABC algorithm, the

corresponding employed bee abandons the food source and becomes a scout bee. The scout bee produces

a new food source randomly as Equation (2).
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2.2.6. Framework of the Standard Artificial Bee Colony Algorithm

Based on the above introduction, the framework of the standard artificial bee colony algorithm can be

given as below:

Algorithm 1: Framework of the standard artificial bee colony algorithm.

Step (0) Predefine some parameters: SN (population size), D (the dimension of optimization

problem), LOWER (the lower bound of searching space), UPPER (the upper bound of searching

space), limit (control parameter), MCN (maximum cycle number).

Step (1) The population initialization phase:

Step (1.1) Randomly generate 0.5 ∗ SN points in the searching space to form an initial

population via Equation (2).

Step (1.2) Evaluate the objective function values of population.

Step (1.3) cycle = 1;

Step (2) The employed bee’s phase:

For i = 1 to 0.5 ∗ SN do

Step (2.1)

Step (2.1.1) Generate a candidate solution Vi by Equation (3).

Step (2.1.2) Evaluate f(Vi).

Step (2.2) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.

End For

Step (3) Calculating the probability values pi by Equation (4), set t = 0, i = 1.

Step (4) The onlooker bee’s phase:

While t ≤ 0.5 ∗ SN , do

Step (4.1)

If rand(0, 1) < pi

Step (4.1.1) Generate a candidate solution Vi by Equation (3).

Step (4.1.2) Evaluate f(Vi).

Step (4.1.3) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.

Step (4.1.4) Set t = t+ 1.

End If

Step (4.2) Set i = i+ 1, if i = 0.5 ∗ SN , set i = 1.

End While

Step (5) The scout bee’s phase:

If max(triali) > limit, replace Xi with a new candidate solution generated via Equation (2).

Step (6) Set cycle = cycle+ 1, and if cycle > MCN , then stop and output the best solution

achieved so far, otherwise, go to Step 2.
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3. Problem Formulation

Consider the following fractional-order chaotic system:

0D
α
t Y (t) = f(Y (t), Y0, θ), (6)

where Y (t) = (y1(t), y2(t), · · · , yn(t))
T ∈ Rn denotes the state vector of System (6), Y0 = Y (0)

denotes the initial value, θ = (θ1, θ2, · · · , θn)
T denotes the set of original systematic parameters and

α = (α1, α2, · · · , αn)(0 < αi < 1, i = 1, 2, · · · , n) are the fractional derivative orders. Additionally,

f(Y (t), Y0, θ) = (f1(Y (t), Y0, θ), f2(Y (t), Y0, θ), · · · , fn(Y (t), Y0, θ))
T .

The corresponding estimated system can be written as:

0D
α̃
t Ỹ (t) = f(Ỹ (t), Y0, θ̃), (7)

where Ỹ (t) = (ỹ1(t), ỹ2(t), · · · , ỹn(t))
T ∈ Rn is the state vector of the estimated System (7),

θ̃=(θ̃1, θ̃2, · · · , θ̃n)
T is a set of estimated systematic parameters and α̃ = (α̃1, α̃2, · · · , α̃n)

T is the

estimated fractional orders. Besides, Systems (6) and (7) have the same initial conditions Y0.

In general, to identify the fractional-order chaotic System (6), it can be transformed into a functional

extrema model as follows:

J(α̃, θ̃) = arg min
(α̃,θ̃)∈Ω

F

= arg min
(α̃,θ̃)∈Ω

N
∑

k=1

‖Yk − Ỹk‖2,
(8)

where k = 1, 2, · · · , N is the sampling time point and N denotes the length of data used for parameter

estimation. Yk and Ỹk respectively denote the state vector of the original System (6) and the estimated

System (7) at time kh. h is the step size employed in the predictor-corrector approach for the numerical

solutions of fractional differential equations [19]. ‖ · ‖ is the Euclid norm. Ω is the searching area

admitted for parameters θ̃, where fractional orders α̃ are considered as special variables. The parameter

identification of System (6) can be achieved by searching suitable θ̃ and α̃ in the searching space Ω, such

that the objective function is minimized. In other words, the main task is to find the best combination of

the independent variables of α̃ and θ̃ for the objective function.

4. A Modified Artificial Bee Colony Algorithm

In order to improve the convergence speed and accuracy of the standard ABC algorithm, some

modifications in terms of the searching equations are proposed. Additionally, they are described in

detail in the following subsections.

4.1. Two Modified Solution Searching Equations

To improve the performance of the standard ABC algorithm, one effective research trend is to

investigate searching equations. So far, a variety of searching equations have been put forward [20–24].

The most representative one is GABCproposed by Zhu and Kwong [21]. In this method, in order to
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improve the exploitation and make full use of the information of the gbest solution to guide the search

of candidate solution, a modified searching equation enlightened by PSO is suggested as follows:

vi,j = xi,j + φi,j(xi,j − xk,j) + ψi,j(xbest,j − xi,j), (9)

where the third term in the right-hand side of Equation (9) is a new added term called the gbest term,

xbest,j is the j-th element of the global best solution and ψi,j is a uniform random number in [0, 1.5].

Nevertheless, based on the experiment results shown in [21], it can be found that the improvement of the

algorithm is not notable.

Thus, owing to the poor performance of the above Equation (3) and Equation (9), two new searching

equations are presented to be used by the employed and onlooker bees, separately. The two equations

are written as below:

vi,j = xr1,j + λ(xi,j − xr1,j) + µ(xbest,j − xr1,j), (10)

vi,j = xbest,j + pi(xi,j − xbest,j) + ν(xr1,j − xr2,j), (11)

where xbest,j is the j-th element of the global best solution. Similar to PSO algorithms, xi,j denotes

the j-th element of the best previous solution of employed bee i (i.e., the local-best position or its

experience). r1 and r2 are distinct integers randomly selected from {1, 2, · · · , SN} and are also different

from i and best. j ∈ {1, 2, · · · , n} is a randomly chosen index. pi represents the current probability of

the i-th employed bee. λ, µ are a random number in the range [0, 1], and ν is a random number in the

range [−1, 1].

From Equation (10), due to the first term, the new candidate solution is generated around Xr1, which

is a randomly selected individual from the population. The randomly selected individual Xr1 can bring

more information to the searching equation and avoid being trapped into the local optimum, which is

good at exploration. Besides, despite the guidance ofXbest not being used in the first term, Equation (10)

can also take full advantage of xi,j and Xbest in the latter two terms to drive the new candidate solution

towards the current best solution, which can guarantee its convergence speed. Therefore, the last two

terms of Equation (10) do well in the exploitation. Generally speaking, Equation (10) can keep the

exploration and exploitation well balanced. However, because of the guidance of Xr1 in the first term,

Equation (10) pays more attention to the exploration. According to [10], in the employed bee phase, the

searching process focuses on the exploration, which is consistent with the emphasis of Equation (10).

Therefore, Equation (10) is chosen as the searching equation for the employed bees.

In Equation (11), owing to the first term, the new candidate solution is generated around Xbest, which

stands for the current global best solution. The current probability is introduced in the second term to

make full use of the information of the current population to further enhance the exploitation. Thus, the

first two terms have effects on the exploitation ability. In addition, to keep balance corresponding to the

first two terms in Equation (11), the third term is recommended to improve the diversity of the population.

To sum up, Equation (11) may be beneficial to not only the convergence, but also the diversity of the

population. However, due to the guidance of Xbest in the first term, Equation (11) places more emphasis

on the exploitation. According to [10], the onlooker bee phase concentrates on the exploitation, which

is inconsistent with the emphasis of Equation (11). Therefore, Equation (11) is selected as the searching

equation for the onlooker bees.
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4.2. The Proposed Method

In view of the above, a new algorithm is proposed. Two new searching equations are proposed to

generate new candidate solutions on the employed bee’s phase and onlooker bee’s phase, respectively.

The pseudo-code of the modified ABC algorithm (here, we call it MABC) is given below:

Algorithm 2: Framework of the modified ABC algorithm.

Step (0) Predefine some parameters: SN , D, LOWER, UPPER, limit, MCN .

Step (1) The population initialization phase:

Step (1.1) Randomly generate 0.5 ∗ SN points in the search space to form an initial population

via Equation (2).

Step (1.2) Evaluate the objective function values of the population.

Step (1.3) cycle = 1;

Step (2) The employed bees phase:

For i = 1 to 0.5 ∗ SN do

Step (2.1)

Step (2.1.1) Generate a candidate solution Vi by Equation (10).

Step (2.1.2) Evaluate f(Vi).

Step (2.2) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.

End For

Step (3) Calculating the probability values pi by Equation (4), set t = 0, i = 1.

Step (4) The onlooker bees phase:

While t ≤ 0.5 ∗ SN , do

Step (4.1)

If rand(0, 1) < pi

Step (4.1.1) Generate a candidate solution Vi by Equation (11).

Step (4.1.2) Evaluate f(Vi).

Step (4.1.3) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.

Step (4.1.4) Set t = t+ 1.

End If

Step (4.2) Set i = i+ 1, if i = 0.5 ∗ SN , set i = 1.

End While

Step (5) The scout bee’s phase:

If max(triali) > limit, replace Xi with a new candidate solution generated via Equation (2).

Step (6) Set cycle = cycle+ 1, and if cycle > MCN , then stop and output the best solution

achieved so far; otherwise, go to Step 2.

5. Simulations

To verify the effectiveness of the MABC algorithm, two typical fractional-order chaotic systems are

chosen to test the performance. The simulations were done using MATLAB (Version 7.1, MathWorks,

Natick, MA, USA) on an Intel(R) Core(TM) i5-3470 CPU, 3.2 GHz with 4 GB of RAM. In order to

calculate the objective function, the number of samples is set as 300 and the step size is 0.01. As is well
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known, the larger the population and the maximum cycle number, the larger the probability of finding

the global optimum. However, a larger population and maximum cycle number implies a larger number

of function evaluations. In the following simulations, for the MABC, ABC, PSO and DE algorithms, the

population size (SN) and maximum cycle number (MCN) are all set as: SN = 100, MCN = 100.

Besides, for the MABC and ABC algorithms, according to [10], to make a fair comparison and have good

searching ability, the control parameter limit is chosen as 15. For the parameters of the DE algorithm,

according to [7], the scaling factor F = 0.5 is usually a good choice. If the parameter F is smaller,

the population may converge prematurely. On the contrary, the convergence speed decreases. Besides,

regarding the crossover rate CR, a large CR often speeds up the convergence. However, from a certain

value upwards, the convergence speed may decrease or the population may also converge prematurely.

A good choice for the crossover rate is a value between CR = 0.3 and CR = 0.9. In the following

experiments, the parameters of DE are selected as: F = 0.5, CR = 0.7. For PSO, empirical results

have shown that an inertia weight w = 0.7298 and cognitive and social factors with c1 = c2 = 1.49618

provide good convergent behavior [4,25]. Therefore, in the following simulation, the parameters for PSO

are set as: w = 0.7298, c1 = c2 = 1.49618. To make a fair comparison, the searching spaces of the

parameters are the same for all algorithms.

Example 1. The fractional-order economic system [26,27] is described as:











0D
α1

t x(t) = z(t) + (y(t)− a)x(t),

0D
α2

t y(t) = 1− by(t)− x2(t),

0D
α3

t z(t) = −x(t)− cz(t),

(12)

when (a, b, c) = (1, 0.1, 1), (α1, α2, α3) = (0.90, 0.85, 0.95) and the initial point is (2,−1, 1),

System (12) is chaotic. To show the performance of the MABC algorithm clearly, the true values

of fractional orders α1, α2, α3 and systematic parameter a are assumed as unknown parameters,

which need to be estimated. The searching spaces of the unknown parameters and orders are set as

(α1, α2, α3, a) ∈ [0.1, 1.4]× [0.1, 1.4]× [0.1, 1.4]× [0.5, 1.5].

The statistical results of the best, the mean and the worst estimated parameters with the corresponding

relative error values over 15 independent runs are shown in Table 1. From Table 1, it can be easily seen

that the estimated value generated by the MABC algorithm is closer to the true parameter value, which

means that it is more accurate than the standard ABC, PSO and DE algorithms. Besides, it can also be

clearly found that the relative error values obtained by the MABC algorithm and marked with black are

all smaller than those of the standard ABC, PSO and DE algorithms, which can further prove that the

MABC algorithm has higher calculation accuracy. What is more, the best fitness value obtained by the

MABC algorithm is better than those obtained by the standard ABC, PSO and DE algorithms.

The evolutionary curves of the parameters and fitness values estimated by the various algorithms are

shown in Figures 1–3 in a single run. From Figures 1–3, it can be clearly seen that convergence processes

of the parameters and fitness values of MABC algorithm are much better than other algorithms. The

estimated parameters can be closer to the true values than the standard ABC, PSO and DE algorithms.

Additionally, the relative error values and fitness values obtained by the MABC algorithm decline faster

than the other algorithms. In other words, it can be concluded that the MABC algorithms can more
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efficiently identify a fractional-order economic system than the standard ABC algorithm, as well as the

existing PSO and DE algorithms.

Table 1. Simulation results of various algorithm for System (12) over 15 independent runs.

MABC, modified ABC; DE, differential evolution.

Algorithm ABC MABC PSO DE

α1 0.89999710751139 0.90000000000779 0.90000008734044 0.90000000839266
|α1−0.90|

0.90
0.00000289 0.00000000000779 0.0000000873 0.0000000839

α2 0.85000340425767 0.84999999974820 0.84999849834607 0.85000001554904
|α2−0.85|

0.85
0.00000340 0.000000000252 0.00000150 0.0000000155

Best α3 0.95000109556663 0.95000000006606 0.94999815994424 0.94999999728649
|α3−0.95|

0.95
0.00000110 0.0000000000661 0.00000184 0.00000000271

a 1.00000824446713 1.00000000001685 0.99999940889994 0.99999991725828
|a−1.00|
1.00

0.00000824 0.0000000000169 0.000000591 0.0000000827

F 0.000109 0.00000000381 0.0000496 0.00000150

α1 0.89999898839006 0.90000000009692 0.90000391181321 0.90000002685242
|α1−0.90|

0.90
0.00000101 0.0000000000969 0.00000391 0.0000000269

α2 0.84999200041440 0.84999999995773 0.84999584987409 0.85000004254726
|α2−0.85|

0.85
0.000008 0.0000000000423 0.00000415 0.0000000425

Mean α3 0.95001365433365 0.94999999979106 0.94999945817490 0.94999990594634
|α3−0.95|

0.95
0.0000137 0.000000000209 0.000000542 0.0000000941

a 0.99999960182130 0.99999999907077 0.99998842441733 1.00000002104131
|a−1.00|
1.00

0.000000398 0.000000000929 0.0000116 0.0000000210

F 0.00110 0.0000000187 0.000136 0.00000441

α1 0.89986759049317 0.89999999754274 0.90001851000084 0.90000037757625
|α1−0.90|

0.90
0.000132 0.00000000246 0.0000185 0.000000378

α2 0.85024440008037 0.85000000709250 0.84998125561542 0.85000066521416
|α2−0.85|

0.85
0.000244 0.00000000709 0.0000187 0.000000665

Worst α3 0.95021128707672 0.94999999845907 0.94996909375371 0.94999907973644
|α3−0.95|

0.95
0.000211 0.00000000154 0.0000309 0.000000920

a 1.00043167262447 0.99999999647242 0.99993245642478 0.99999938116949
|a−1.00|
1.00

0.000432 0.00000000353 0.0000675 0.000000619

F 0.00253 0.0000000626 0.000377 0.00000982
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Figure 1. Estimated parameter values with various algorithms on a fractional-order

economic system.
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Figure 2. Relative error values with various algorithms on a fractional-order economic

system.
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Figure 3. Best fitness values with various algorithms on a fractional-order economic system.
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Example 2. The fractional-order Rössler system [26,28] is described as:











0D
α1

t x(t) = −(y(t) + z(t)),

0D
α2

t y(t) = x(t) + ay(t),

0D
α3

t z(t) = b+ z(t)(x(t)− c),

(13)

when (a, b, c) = (0.5, 0.2, 10), (α1, α2, α3) = (0.90, 0.85, 0.95) and the initial point is (0.5, 1.5, 0.1),

System (13) is chaotic. In this example, the fractional orders α1, α2, α3 are selected as unknown

parameters to be estimated. The searching spaces of the unknown parameters are set as (α1, α2, α3) ∈

[0.1, 1.4]× [0.1, 1.4]× [0.1, 1.4].

To show the performance of MABC algorithm, the statistical results of the best, the mean and the

worst estimated parameters by various algorithms over 15 independent runs are listed in Table 2. From

Table 2, it can be seen that the MABC algorithm has more accurate results than those of the standard

ABC, PSO and DE algorithms. Figures 4–6 depict the convergence profile of the evolutionary processes

of the estimated parameters and the fitness values. From the figures, it can be seen that the MABC

algorithm still can converge to the optimal solution more rapidly than the other algorithms.

Table 2. Simulation results of various algorithm for System (13) over 15 independent runs.

Algorithm ABC MABC PSO DE

α1 0.89999988336465 0.90000000000057 0.89999976800825 0.89999999997794
|α1−0.90|

0.90
0.000000117 0.000000000000565 0.000000232 0.0000000000221

α2 0.84999973045874 0.84999999999937 0.84999856019088 0.85000000023856

Best
|α2−0.85|

0.85
0.000000270 0.000000000000635 0.00000144 0.000000000239

α3 0.94998811621200 0.95000000005566 0.95012518289719 0.95000000987768
|α3−0.95|

0.95
0.0000119 0.0000000000557 0.000125 0.00000000988

F 0.0000666 0.0000000000405 0.0000828 0.0000000120

α1 0.90000227541788 0.89999999997784 0.89999581166110 0.89999999996680
|α1−0.90|

0.90
0.00000228 0.0000000000222 0.00000419 0.0000000000332

α2 0.85000037233112 0.85000000004318 0.85001036746114 0.84999999991562

Mean
|α2−0.85|

0.85
0.000000372 0.0000000000432 0.0000104 0.0000000000844

α3 0.95037664105673 0.95000000056334 0.94957364204493 0.94999999450775
|α3−0.95|

0.95
0.000377 0.000000000563 0.000426 0.00000000549

F 0.000395 0.00000000328 0.000557 0.0000000234

α1 0.90002081204987 0.89999999989872 0.89994777622230 0.90000000092049
|α1−0.90|

0.90
0.0000208 0.000000000101 0.0000522 0.000000000920

α2 0.85002033675238 0.85000000049223 0.85012993522134 0.84999999861606

Worst
|α2−0.85|

0.85
0.0000203 0.000000000492 0.000130 0.00000000138

α3 0.95205165177920 0.95000003505732 0.94352872137521 0.94999989275506
|α3−0.95|

0.95
0.00205 0.0000000351 0.00647 0.000000107

F 0.000781 0.0000000116 0.00279 0.0000000383
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Figure 4. Estimated parameter values with various algorithms on a fractional-order Rössler

system.
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Figure 5. Relative error values with various algorithms on a fractional-order Rössler system.
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Figure 6. Best fitness values with various algorithms on a fractional-order Rössler system.
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Based on the above two examples, the proposed scheme is significantly better than all of the other

listed algorithms, and it has a faster convergence speed and higher calculation accuracy in estimating the

unknown fractional orders and systematic parameters of fractional-order systems.

6. Conclusions

In this paper, the parameter estimation of fractional-order chaotic systems is converted to an

optimization problem from the prospect of optimization. A modified artificial bee colony algorithm

is proposed to solve the optimization problem via a functional extrema model. In simulations, the

proposed method is employed to identify two typical fractional-order chaotic systems. It is shown

that, for the given parameter configurations and maximum number of iterations, the modified ABC

algorithm could estimate the unknown fractional orders and parameters of the uncertain fractional-order

chaotic systems more rapidly, more accurately and more stably than standard the ABC, PSO and DE

algorithms. Additionally, the proposed method can avoid the design of the parameter update law in the

synchronization analysis of the fractional-order chaotic systems with unknown parameters. Furthermore,

although this paper is mainly concentrated on the parameter estimation problem of the fractional-order

chaotic systems, the proposed method is also a useful tool for the study of various numerical optimization

problems in physics and other related areas.
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