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Abstract: In this paper, a projective synchronization approach for a class of fractional-order 

chaotic systems with fractional-order 1 < q < 2 is demonstrated. The projective 

synchronization approach is established through precise theorization. To illustrate the 

effectiveness of the proposed scheme, we discuss two examples: (1) the fractional-order 

Lorenz chaotic system with fractional-order q = 1.1; (2) the fractional-order modified Chua’s 

chaotic system with fractional-order q = 1.02. The numerical simulations show the validity 

and feasibility of the proposed scheme. 
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1. Introduction 

Many real-world physical systems can be well and more accurately described by fractional-order 

differential equations [1–4]. In recent years, chaotic phenomena has been found in many fractional-order 

nonlinear systems, such as the fractional-order Lorenz chaotic system [5,6], Chua’s fractional-order 

chaotic circuit system [6], the fractional-order modified Duffing chaotic system [7], the fractional-order 
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Rössler chaotic system [8,9], the fractional-order Chen chaotic system [6–8], the fractional-order 

memristor chaotic system [10], and so on. 

Over the last two decades, due to its potential applications in the field of science and engineering [11,12], 

more and more attention has been focused on synchronization of chaotic systems, and many synchronization 

schemes have been proposed. Among all, one particular synchronization scheme named projective 

synchronization has been proposed by Mainieri and Rehacek [13]. A master and slave system could be 

synchronized up to a scaling factor in PS, which can be used to extend binary digital to M-nary digital 

communication for getting faster communications [13,14]. 

However, many previous synchronization methods [6–9,13–16] for fractional-order chaotic systems 
only focused on the fractional-order 10 << q , when in fact, there are many fractional-order systems 

with fractional-order 1 < q < 2 in the real world. For example, the time fractional heat conduction  

equation [17], the fractional telegraph equation [18], the time fractional reaction-diffusion systems [19], 

the fractional diffusion-wave equation [20], the space-time fractional diffusion equation [21],  

the super-diffusion systems [22], etc., but the chaos phenomenon was not considered in [17–22]. 

Meanwhile, based on numerical simulation, Ge and Jhuang [23] reported some results on synchronization of 

the fractional order rotational mechanical system with fractional-order q = 1.1. Up to now, to the best of 

our knowledge, there seem to be no results on chaotic synchronization for fractional-order chaotic 

systems with 1 < q < 2 through precise theorization. So, how to achieve the chaotic synchronization for 

fractional-order nonlinear systems with 1 < q < 2 through precise theorization is an interesting and 

opening question of academic significance as well as practical importance. 

Motivated by the abovementioned discussion, in this paper we propose a projective synchronization 

approach for a class of fractional-order chaotic systems with fractional-order 1 < q < 2 through precise 

theorization. To show the effectiveness of the proposed scheme, the projective synchronization for a 

fractional-order Lorenz chaotic system with fractional-order q = 1.1 and Chua’s fractional-order modified 

chaotic system with fractional-order q = 1.02 are discussed, respectively. The numerical simulations 

have indicated the validity and feasibility of our scheme. 

2. Problem Statement and Main Result 

In this paper, the Caputo derivative of fractional order q for function f(t), is defined as 
( )

10

1 (τ)
( )

( ) ( τ)

m
tq

q m

f
D f t d

m q t + −= τ
Γ − −  where mqm <<−1 , qD  denotes the Caputo derivative of 

fractional order q  for function )(tf , m is the smallest integer larger than q, )()( tf m  is the m-th 

derivative in the usual sense, and 
+∞ −−−=−Γ

0

)1()( dtetqn tqn  denote the gamma function. 

Now, the following fractional-order chaotic system is considered:  

))(()( txhtAxxDq +=  (1)

where 21 << q  is the fractional order, and 1)( ×∈ nRtx  is state vector. nnRA ×∈  is one constant real 

matrix. 1)( ×∈ nRtAx  and 1))(( ×∈ nRtxh  are the linear part and nonlinear part in system (1), respectively. 

In this paper, we only discuss a class of fractional-order chaotic systems which satisfy: 

))('),(')(())(')())(('())('())(( txtxtxHtxtxtxHtxhtxh nl −+−=−  (2)
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Here 1)(' ×∈ nRtx  is a real variable. nn
l RtxH ×∈))('(  and 1))('),(')(( ×∈− n

n RtxtxtxH  are real 

matrices. ))(')())(('( txtxtxHl −  and ))('),(')(( txtxtxH n −  are the linear part and nonlinear part with 

respect to ))(')(( txtx − , respectively. In fact, the nonlinear part ))(( txh  in many fractional-order chaotic 

systems such as the fractional-order Lorenz chaotic system [5,6], Chua’s fractional-order modified 

chaotic system [24], the fractional-order Duffing chaotic system [7], the fractional-order Rossler chaotic 

system [8,9], the fractional-order Chen chaotic system [6–8], etc., all satisfy Equation (2). 

Now, we study how to realize the projective synchronization for fractional-order chaotic system (1). 

Select the fractional-order chaotic system (1) as master system, and choose the following controlled 

fractional-order system as slave system:  

))(),(())(()()( 1 tytxutyhtAytyDq ++= − αα  (3)

where 0≠α  is a constant named scaling factor, and 1))(),(( ×∈ nRtytxu  is the real feedback controller 

which will be determined later. 

Definition. For the fractional-order chaotic master systems (1) and slave system (3), it is said to be 
projective synchronization if there exists a non-zero constant α  such that 

0)()(lim)(lim =−=
+∞→+∞→

txtyte
tt

α where 1))()(()( ×∈−= nRtxtyte α  is the synchronization error. The 

symbol •  represents the matrix norm. 

Theorem. The real feedback controller in slave system (3) is chosen as 
)())](([))(),(( 1 tetxHKtytxu l

−−= α . It is said to be a projective synchronization between master  

system (1) and slave system (3) if there exists a real matrix K such that:  

(i) 0)](),([
0)(

=
=ten txteH , 0

)(

)](),([
lim

0)(
=

→ te

txteH n

te
 for any )(tx , 

(ii) Re[ ( α )] 0A Kλ + < , 1/ω max[Re ( )] [ ( )] qA K q= − λ + α > Γ . 

where )](),([)())(())(())(( txteHtetxHtxhtyh nl +=−α . ω  is the minimum absolute value of the real 

part of the eigenvalue of matrix )( KA α+ . 

Proof. According to ( ) α ( ) ( )e t y t x t= − , the error system between fractional-order system (1) and system (3) 

is described as: 

( ) (α ( ) ( )) ( ) (α ( )) ( ( )) α ( ( ), ( ))q qD e t D y t x t Ae t h y t h x t u x t y t= − = + − +  (4)

Since )())](([))(),(( 1 tetxHKtytxu l
−−= α , the system (4) can be rewritten as: 

( ) ( ) (α ( )) ( ( )) [α ( ( ))] ( )q
lD e t Ae t h y t h x t K H x t e t= + − + −  (5)

By )](),([)())(())(())(( txteHtetxHtxhtyh nl +=−α , the system (5) can be changed to: 

( ) ( α ) ( ) [ ( ), ( )]q
nD e t A K e t H e t x t= + +  (6)

Since 0)](),([
0)(

=
=ten txteH  for any )(tx , hence 0)( =te  is the zero solution in error system (6). 

Now, let 10e  and 20e  be the initial conditions for system (6), so the solution )(te for system (6) can be 

shown as:  
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1
,1 10 ,2 20 ,

0

( ) [( ) ] [( α ) ] ( ) [( α )( ) ] [ ( ), ( )]
t

q q q q
q q q q ne t E A K t e tE A K t e t s E A K t s H e s x s ds−= +α + + + − + −  (7)

where 1,qE , 2,qE  and qqE ,  are the two-parameter function of Mittag-Leffler type, i.e., 


∞

= +Γ
=

0
, )(

)(
n

n

pq pqn

z
zE ( 0>q , 0>p ), and z is a variable. 

For the Mittag-Leffler function )(, zE pq , the inequality (8) has been obtained in Reference [25]: 

( )
, [( α ) ]

qq A K t
q pE A K t e +α+ ≤  (8)

According to Equation (7) and inequality (8), one has:  

1
,1 10 ,2 20 ,

0

( ) ( ) 1 ( )( )
10 20

0

( ) [( ) ] [( α ) ] ( ) [( α )( ) ] [ ( ), ( )]

( ) [ ( ), ( )]
q q q

t
q q q q

q q q q n

t
A K t A K t q A K t s

n

e t E A K t e tE A K t e t s E A K t s H e s x s ds

e e e e t t s e H e s x s ds

−

+α +α − +α −

≤ +α + + + − + −

≤ + + −




 (9)

Since Re[λ( α )] 0A K+ < , therefore ( α )A K+  is a stability matrix. So, ttKA eNe ωα −+ ≤ 0
)( ,  

and ( α ) ω ω
0 0

q qA K t t te N e N e+ − −≤ ≤ , here 00 >N  is a suitable constant. 

Now, the inequality (9) can be transformed as:  

ω ω 1 ω( )
0 10 0 20 0

0

( ) ( ) [ ( ), ( )
t

t t q t s
ne t N e e N e e t N t s e H e s x s ds− − − − −≤ + + −  (10)

Due to 0)](),([
0)(

=
=ten txteH , 0

)(

)](),([
lim

0)(
=

→ te

txteH n

te
 for any )(tx , so there exists a constant ε 0>  

such that 0/)()](),([ NtetxteHn ≤  as ( ) εe t < . 

So, the inequality (10) can be rewritten as: 

ω ω 1 ω( )
0 10 0 20

0

( ) ( ) ( )
t

t t q t se t N e e N e e t t s e e s ds− − − − −≤ + + −  (11)

That is:  

ω 1 ω
0 10 0 20

0

( ) ( ) ( )
t

t q se t e N e N e t t s e e s ds− −≤ + + −  (12)

According to the result in Reference [26], the inequality (12) can be changed as:  
ω

0 10 0 20 ,1( ) ( ) [ ( ) ]t q
qe t e N e N e t E q t≤ + Γ  (13)

Using the result in Reference [4]: 1
2

)Re(/)1(
1, )1()1()(

/1 −− +++≤ zNezNzE
qzqp

pq , where )2,1(0 => iNi , 

0≥z , arg( ) ρz ≤ ,and 0.5π min(π,π )q q< ρ < , therefore, the inequality (13) can be changed to:  

1/ω ( ( ))
0 10 0 20 ,1 0 10 0 20 1 2( ) ( ) [ ( ) ] ( )[ / (1 ( ) )]

qt q t q q
qe t e N e N e t E q t N e N e t N e N q tΓ≤ + Γ ≤ + + + Γ  (14)

That is: 



Entropy 2015, 17 1127 

 

 

1/

1/

( ( )) ω
0 10 0 20 1 2

[( ( )) ω] ω
0 10 0 20 1 0 10 0 20 2

( ) ( )[ / (1 ( ) )]

( ) ( ) / {[1 ( ) ] }

q

q

t q q t

t q q t

e t N e N e t N e N q t e

N e N e t N e N e N e t N q t e

Γ −

Γ −

≤ + + + Γ

= + + + + Γ
 (15)

Since 1/ω max[Reλ( α )] [ ( )] qA K q= − + > Γ , one has ω 0>  and 1/[ ( )] ω 0qqΓ − < . Therefore, 

0}])(1/{[)(lim,0)(lim 2200100
]))([(

1200100

/1

=Γ++=+
+∞→

−Γ

+∞→

tq

t

qt

t
etqNteNeNeNteNeN

q ωω

 
So: 

0)(lim =
+∞→

te
t

 (16)

Equation (16) indicates that the zero solution in error system (6) is asymptotically stable, so 
lim ( ) lim α ( ) ( ) 0
t t

e t y t x t
→+∞ →+∞

= − = . Hence, the projective synchronization between fractional-order 

chaotic system (1) and system (3) will be obtained. The proof is completed. □ 

We notice that some academics [27–29] have discussed complex dynamical networks with non-

delayed and delayed coupling, the application of chaos synchronization to secure communication, and 

Takagi-Sugeno fuzzy systems with multiple state delays. Applying our results to these issues is our 

ongoing work. 

3. Illustrative Example 

To demonstrate the effectiveness of the projective synchronization method proposed in Section 2, we 
apply the synchronization scheme to the fractional-order Lorenz chaotic system with fractional-order 1.1=q  

and the fractional-order modified Chua chaotic system with fractional-order 02.1=q , respectively. 

3.1. Projective Synchronization of Fractional-Order Lorenz Chaotic System with 21 << q . 

The fractional-order Lorenz system [30] is given by:  

1 2 1

2 1 2 1 3

3 1 2 3

σ( )

γ

β

qx

q

q

D x x x

D x x x x x

D x x x x

  − 
   = − −   

   −  

 (17)

where σ 10= , γ 28= , and β 8 / 3= . The fractional-order Lorenz system (17) displays a chaotic attractor 

with 1.1=q . The chaotic attractor is shown in Figure 1. 

In order to realize the projective synchronization for the fractional-order Lorenz chaotic system (17), 

the system (17) is selected as master system, so the slave system can be constructed as follows:  

1 2 1
1 1

2 1 2

3 3

σ( )

γ α (α ) [ α ( )]

β

q

q
l

q

D y y y

D y y y h y K H x e

D y y

− −

  − 
   = − + + −   

   −  

 (18)

where ( )T
321 eeee = , and α ( 1,2,3)i i ie y x i= − = . T  denotes the transposition for matrix: 

Obviously, 

σ σ 0

1 0

0 0 β

A

− 
 = γ − 
 − 

, 















−=

21

31

0

)(

yy

yyyh . 
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Use (α ) ( ) ( ) ( , )l nh y h x H x e H e x− = + , the matrix )(xHl  and matrix ),( xeH n  can be derived  

as follows:  
















−−=

0

0

000

)(

12

13

xx

xxxH l
, 

















−
=

21

31

0

),(

ee

eexeH n
 

According to exHKyxu l )]([),( 1−−= α , the controller ),( yxu  in slave system (18) is chosen as:  

e

xx

xxKyxu
































−−−= −

0

0

000

),(

2

13
1α  

Now, it is easy to verify the following:  

0

0

),(

021

310
=

















−
=

=

=

e

en

ee

eexeH  

and: 

12
3

2
2

2
1

22
1

2
21

2
31

2
3

2
2

2
1

2
21

2
31 )()()()()(),(

e
eee

eeeee

eee

eeee

e

xeH n =
++

++
≤

++

+
=  

Therefore:  

0),(
0

=
=en xeH , 0lim

),(
lim 1

00
=≤

→→
e

e

xeH
e

n

e
 

The above results imply that the Condition (i) in the Theorem are satisfied. 

(a) (b) 

Figure 1. Chaotic attractor of system (17) with 1.1=q . (a) Chaotic attractor in x2-x3 plane. 

(b) Chaotic attractor in x1-x2-x3 space. 

Based on the Theorem in Section 2, a suitable non-zero constant α  and constant real matrix K  can 
be selected such that Re[λ( α )] 0A K+ <  and 1/max[Reλ( α )] [ ( )] qA K q− + > Γ  are held, so the projective 
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synchronization between the fractional-order Lorenz chaotic system (17) and the controlled  

fractional-order Lorenz chaotic system (18) can be achieved. 

For example, let 















−

−
=

000

003/28

03/100

K , and α =3, respectively, so 1λ ( α ) 10A K+ = − , 

2λ ( α ) 1A K+ = − , 3λ ( α ) 8 / 3A K+ = − , and 1/1.1max[Reλ( α )] 1 [ (1.1)]A K− + = > Γ =0.9557, respectively. 

Simulation results are shown in Figure 2, in which the initial conditions are ),,( 302010 xxx  = (10, 20, 30), 

and ),,( 302010 yyy  = (10, 20, 30), respectively. In Figures 2a–c, the solid lines refer to attractors of  

system (17), the dashed ones refer to attractors of system (18). Projective synchronization errors between 

system (17) and system (18) are shown in Figure 2d. 

(a) (b) 

(c) (d) 

Figure 2. The PS result for fractional-order Lorenz chaotic system with 1.1=q  and α  = 3. 

(a) The PS result in x1-x2 and y1-y2 plane; (b) The PS result in x1-x3 and y1-y3 plane;  

(c) The PS result in x2-x3 and y2-y3 plane; (d) The projective synchronization errors. 

3.2. Projective Synchronization of Fractional-Order Modified Chua’s Chaotic System with 21 << q . 

In 1971, Chua’s chaotic circuit was discovered by Chua [30]. In 2010, Muthuswamy and Chua [24] 

reported the simplest modified Chua chaotic circuit, which consists of a linear passive inductor,  

a linear passive capacitor, and a non-linear active memristor. The simplest modified Chua chaotic circuit 

system [24] can be shown as: 
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x

dtdx

dtdx
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Its fractional-order system is named fractional-order modified Chua chaotic system, and it can be 

described as follows:  

















+−−
−+−=

















3232

2
2
31

2

3

2

1

2.0

3.3/])1(7.1[

xxxx

xxx

x

xD

xD

xD

q

q

q

 (19)

The fractional-order modified Chua’s system (19) displays a chaotic attractor with 02.1=q .  

The chaotic attractor is shown in Figure 3. 

In order to realize the projective synchronization for the fractional-order chaotic system (19),  

the system (19) is chosen as master system, so the slave system can be constructed as follows: 

1 2
1 1

2 1 2

3 2 3

( 1.7 ) / 3.3 α ( ) [ α ( )]

0.2

q

q
l

q

D y y

D y y y h y K H x e

D y y y

− −

   
   = − − + α + −   

   − −  

 (20)

where ( )T
321 eeee = , and )3,2,1( =−= ixye iii α . 

(a) (b) 

Figure 3. Chaotic attractor of the fractional-order modified Chua system (19) with 02.1=q . 

(a) Chaotic attractor in x1-x2 plane; (b) Chaotic attractor in x2-x3 plane. 

Obviously, 
















−−
−=

2.010

033/1733/10

010
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−=

32

2
3233/17

0

)(

yy

yyyh . 

Use (α ) ( ) ( ) ( , )l nh y h x H x e H e x− = + , the matrix )(xHl and matrix ),( xeH n  can be derived  

as follows:  
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According to 1( , ) [ α ( )]lu x y K H x e−= − , the controller ),( yxu  in slave system (20) is chosen as:  

1 2
3 2 3

3 2

0 0 0

( , ) α 0 17 / 33 34 / 33

0

u x y K x x x e

x x

−

  
  = − − −  

  − −  

 

Now, it is easy to verify the following:  

033/])(2[17

0

),(

032

2
3223320

=















−+=

=

=

e

en

ee

eexxeexeH  

and: 
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1

2
32
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322332
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2
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1

2
32

22
322332
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2

2
1

2
32

22
322332

)())(2()(])(2[

)(}3.3/])(2[7.1{),(
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eee

eeeexxee

eee

eeeexxee

e

xeH n

++

+−+
≤

++

+−+
≤

++

+−+
=

 

According to the boundedness of modified Chua’s chaotic system, there exist a real positive constant 

M  such that ( )3 2 2 2max 2 , αM x x e y≥ − = . Symbol max is the maximum value. 

So: 

2
2

22
322

3

2
32

222
332

2
3

2
2

2
1

2
32

222
332

)(
)()()()(),(

eMee
e

eeMeee

eee

eeMeee

e

xeH n ++=
++

≤
++

++
≤  

Therefore: 

0),(
0

=
=en xeH , 0)(lim

),(
lim 2

2
22

32
00

=++≤
→→

eMee
e

xeH
e

n

e
 

The above results imply that the Conditions (i) in the Theorem are satisfied. 

Based on the above Theorem in Section 2, a suitable non-zero constant α 0.5= −  and constant real 
matrix K  can be selected such that Re[λ( α )] 0A K+ <  and 1/max[Reλ( )] [ ( )] αqA K q− + > Γ  hold, so the 

projective synchronization between the fractional-order modified Chua chaotic system (19) and the 

controlled fractional-order modified Chua chaotic system (20) can be achieved. 

For example, choose 
















−
=

420

033/16633/46

004

K , and α = − 0.5, respectively. So, λ ( α ) 2A K i± + = − ± , 

3λ ( α ) 2.2A K+ = − , and 1/1.02max[Reλ( α )] 2 [ (1.02)]A K− + = > Γ  = 0.9891, respectively. The numerical 

result is shown in Figure 4, in which the initial conditions are ),,( 302010 xxx  = (0.1, 0, 0.1), and 

),,( 302010 yyy  = (−1, 2, 1), respectively.  
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In Figures 4a–c, the solid lines refer to attractors of system (19), and the dashed lines refer to attractors 

of system (20), respectively. Projective synchronization errors between system (19) and system (20) are 

shown in Figure 4d. 

(a) (b) 

(c) (d) 

Figure 4. The PS result for fractional-order modified Chua’s chaotic system with 02.1=q  and 

α 0.5= − . (a) The PS result in x1-x2 and y1-y2 plane; (b) The PS result in x1-x3 and y1-y3 plane; 

(c) The PS result in x2-x3 and y2-y3 plane; (d) The projective synchronization errors.  

4. Conclusions 

In this paper, a projective synchronization approach is proposed for a class of fractional-order chaotic 

system with 21 << q . Our approach can be applied to a class of nonlinear fractional-order chaotic 

systems, in which the nonlinear terms in the chaotic system satisfy Equation (2). To demonstrate the 

effectiveness of proposed projective synchronization scheme, we apply the synchronization scheme to 

the fractional-order Lorenz chaotic system with 1.1=q  and Chua’s fractional-order modified chaotic 

system with 02.1=q , respectively. The numerical simulations show the validity and feasibility of the 

proposed scheme. 
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