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Abstract: In models with nuisance parameters, Bayesian procedures based on Markov
Chain Monte Carlo (MCMC) methods have been developed to approximate the posterior
distribution of the parameter of interest. Because these procedures require burdensome
computations related to the use of MCMC, approximation and convergence in these
procedures are important issues. In this paper, we explore Gibbs sensitivity by using an
alternative to the full conditional distribution of the nuisance parameter. The approximate
sensitivity of the posterior distribution of interest is studied in terms of an information
measure, including Kullback–Leibler divergence. As an illustration, we then apply these
results to simple spatial model settings.
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1. Introduction

Let d denote the data, which can be scalar- or vector-valued, and suppose that d ∼ p(d|θ, β),
where θ ∈ Θ is the parameter of interest and β ∈ B is a nuisance parameter. Realizations
from the joint posterior distribution π(θ, β|d) can be produced by independent sampling based on
π(θ, β|d) = π(θ|β, d) × π(β|d) or, if π(β|d) is intractable, by Gibbs sampling based on the full
conditional distributions π(θ|β, d) and π(β|θ, d). Since β is a nuisance parameter, our primary interest
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is in the marginal posterior distribution π(θ|d) =
∫
π(θ, β|d)dβ. In general, it may often be feasible to

integrate out some nuisance parameters either analytically or numerically. Missing data problems are
brought into this framework by augmenting the observed data d with latent data β.

The latent variable/nuisance parameter scenario is a commonly studied one in the literature. One issue
in nuisance parameter problems is the relationship between π(β|d) and π(θ|d). Our main interest lies
in the impacts on the sensitivity of inferences based on the target marginal posterior distribution π(θ|d)

compared with an approximation based on choosing π∗(β|d), an alternative to the posterior distribution
of the nuisance parameter, instead of π(β|d). The point is that π∗(β|d) is a flexible and manageable
approximation to an unmanageable π(β|d). For application to simple spatial model settings, we can
consider the Gaussian approximation or the Laplace approximation to π(β|d). For example, we can use

π∗(β|d) ∝ π(θ, β|d)

π̃G(θ|β, d)

∣∣∣
θ=θ̂(β)

,

where π̃G(θ|β, d) is the Gaussian approximation to π(θ|β, d). Under “standard conditions,” the Laplace
approximation of a marginal posterior density has the error rate O(n−1) [1].

State-of-the-art Markov Chain Monte Carlo (MCMC) approaches to posterior inference typically
revolve around reparameterizations. Yu and Meng introduce an alternative strategy for boosting MCMC
efficiency by simply interweaving—but not alternating—two parameterizations, namely the centered
parameterization and the non-centered parameterization, to ensure effective MCMC implementation [2].
Filippone and Girolamipresent a pseudo-marginal MCMC approach to account for uncertainty in the
model parameters when making model-based predictions on out-of-sample data [3]. Attias presents
the Variational Bayes framework, which provides a solution for the structure of models with latent
variables [4]. Here, Kullback–Leibler divergence is minimized between the posterior and a typically
exponential family approximation [4]. Expectation propagation is similar in nature [5]. The integrated
nested Laplace approximation is considered for the approximate Bayesian inference in latent Gaussian
models [6].

In this paper, we explore Gibbs sensitivity by using an alternative to the full conditional distribution
of the nuisance parameter. The approximate sensitivity of the posterior distribution of interest is studied
in terms of an information measure including Kullback–Leibler divergence. As an illustration, we
apply the proposed approach to PRUDENCE (Prediction of Regional scenarios and Uncertainties for
Defining EuropeaN Climate change risks and Effects; http://prudence.dmi.dk/) ensemble of regional
climate models over Central Europe (about 8000 grid points), which involves the analysis of large
quantities of data. Furrer and Sain combine two techniques, namely tapering and backfitting, to model
and analyze these spatial datasets [7]. Kim and Kimpropose an approximate likelihood function of the
spatial correlation parameter based on PRUDENCE data [8]. This paper thus provides some information
analysis for their approaches.

The rest of the paper is organized as follows. In Section 2, we describe the approximation setting
in the Bayesian computation and discuss some of its sensitivity issues. Various theoretical results on
the information analysis are provided in the subsequent section. As an illustration, the results from
Section 3 are applied to simple spatial model settings in Section 4, and Section 5 concludes the study.
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2. Sensitivity Issues

Let π(θ|β, d) and π(β|θ, d) be the full conditional distributions for the joint posterior distribution
π(θ, β|d), which can be expressed in terms of these full conditional distributions. The consistency
conditions on the full conditional distributions are required to reconstruct the joint posterior distribution
(e.g., see the Hammersley–Clifford Theorem in [9]). Let π∗(β|θ, d) be an approximated full conditional
distribution of π(β|θ, d). Under the regulation condition with reference points β0 and θ0, the joint
posterior distributions can be written in the form

π(θ, β|d) ∝ π(β|θ = θ0, d)

π(β = β0|θ = θ0, d)

π(θ|β, d)

π(θ = θ0|β, d)
∝ g(β)π(θ|β, d)

and
π∗(θ, β|d) ∝ π∗(β|θ = θ0, d)

π∗(β = β0|θ = θ0, d)

π(θ|β, d)

π(θ = θ0|β, d)
∝ g∗(β)π(θ|β, d),

where
g(β) =

π(β|θ = θ0, d)

π(θ = θ0|β, d)
and g∗(β) =

π∗(β|θ = θ0, d)

π(θ = θ0|β, d)
.

Therefore,
π(β|d) = Cg(β) and π∗(β|d) = C∗g∗(β),

where C and C∗ are normalizing constants, that is,

C =

[∫
g(β)dβ

]−1

and C∗ =

[∫
g∗(β)dβ

]−1

.

Note that C and C∗ can be explicated by

C =
π(β = β0, θ = θ0|d)

π(β = β0|θ = θ0, d)
and C∗ =

π∗(β = β0, θ = θ0|d)

π∗(β = β0|θ = θ0, d)
,

where π(β = β0, θ = θ0|d) and π∗(β = β0, θ = θ0|d) can be obtained from a Monte Carlo computation.
Using an approximating density π∗(β|d) instead of the true density π(β|d) leads to an approximate

joint posterior distribution, π∗(θ, β|d) = π(θ|β, d)π∗(β|d). Define a simple pointwise difference
measure between the corresponding marginal posterior densities π(θ|d) and π∗(θ|d) as

dθ =
∣∣π(θ|d)− π∗(θ|d)

∣∣,
where π(θ|d) =

∫
π(θ, β|d)dβ and π∗(θ|d) =

∫
π∗(θ, β|d)dβ.

Alternatively, the bounds for the (log) ratio of π(θ|d) and π∗(θ|d) can be obtained in terms of the full
conditional distribution of the nuisance parameter π(β|θ, d) (see [10]).

Theorem 1. Suppose that for some set B0 ⊆ B and α ∈ <, 1 ≤ π(β|d)
π∗(β|d)

≤ 1 + α for all β ∈ B0. Then,
for all θ ∈ Θ,

P ∗(β ∈ B0|θ, d) ≤ π(θ|d)

π∗(θ|d)
≤ 1 + α

P (β ∈ B0|θ, d)
,

where P and P ∗ are the probability measures for the conditional distributions of β given θ and d, based
on π(β|d) and π∗(β|d), respectively.
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Proof. Since

π(θ|d) ≥
∫
B0

π(θ|β, d)π(β|d)dβ

≥
∫
B0

π(θ|β, d)π∗(β|d)dβ

= π∗(θ|d)P ∗(β ∈ B0|θ, d),

and

π∗(θ|d) ≥
∫
B0

π(θ|β, d)π∗(β|d)dβ

≥ 1

1 + α

∫
B0

π(θ|β, d)π(β|d)dβ

=
P (β ∈ B0|θ, d)

1 + α
π(θ|d),

thus,

P ∗(β ∈ B0|θ, d) ≤ π(θ|d)

π∗(θ|d)
and

π(θ|d)

π∗(θ|d)
≤ 1 + α

P (β ∈ B0|θ, d)
.

Suppose that there exists γ ∈ < such that π(β|d)
π∗(β|d)

≤ γ for all β ∈ B. Then, for all β ∈ B,

P (β ∈ B \B0|θ, d)

P (β ∈ B0|θ, d)
≤ γ

P ∗(β ∈ B \B0|θ, d)

P ∗(β ∈ B0|θ, d)

and
π(β|θ, d)

π∗(β|θ, d)
≤ π(β|θ, d)

π∗(β|d)P ∗(β ∈ B0|θ, d)
.

This result can be extended to the Kullback–Leibler divergence of π∗(θ|d) from π(θ|d).
In practice, the marginal posterior distribution of the parameter of interest is hard to calculate

analytically. Suppose π(θ|β, d) is a smooth (positive) function of β. By using Laplace’s method, π(θ|d)

is approximated as

π(θ|d) =

∫
π(θ|β, d)exp[−nh(β)]dβ, where h(β) = − 1

n
log π(β|d).

Assume β̂ maximizes logπ(β|d), and define Σ =
(
− ∂2

∂β2h(β)
)−1

β=β̂
. Then, π(θ|d) can be well

approximated by Laplace’s method. That is,

π(θ|d) ≈ π(θ|β̂, d)π(β̂|d)
(2π

n

)m/2|Σ|1/2(1 +

∂2

∂β2π(θ|β, d)

2π(θ|β, d)

Σ

n

)
β=β̂

,

where m is the dimension of β. More generally, we have

π(θ|d) = π̂(θ|d)
[
1 +Oθ

( 1

n

)]
, where π̂(θ|d) = π(θ|β̂, d)π(β̂|d)

(2π

n

)m/2|Σ|1/2.
Laplace’s method requires three conditions, referred to as Laplace regularity: (1) the integrals in

the equation must exist and be finite; (2) the determinant of the Hessians must be bounded away from
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zero at the optimizers; and (3) the log-likelihood must be differentiable on the parameters and all the
partial derivatives be bounded in the neighborhood of the optimizers. These conditions imply, under
mild assumptions, the asymptotic normality of the posterior.

Based on the above results, the bounds for the differences between the marginal posterior distributions
can be approximated. Suppose that |π(β|d)− π∗(β|d)| has a unique maximum at β̂. Then,∫

|π(θ|d)− π∗(θ|d)|dθ ≤
(2π

n

)m/2|Σ̃|1/2∣∣π(β̂|d)− π∗(β̂|d)
∣∣[1 +O

( 1

n

)]
,

where O(n−1) does not depend on θ.

3. Information Analysis

3.1. Approximation to Kullback–Leibler Divergence

Kullback–Leibler divergence, or relative entropy, is a quantity that measures the difference between
two probability distributions [11]. The Kullback–Leibler divergence between π(θ, β|d) and π∗(θ, β|d) is
the same as that between π(β|d) and π∗(β|d). Theorem 1 provides the upper bound for the Kullback–
Leibler divergence between π(θ|d) and π∗(θ|d), denoted by I(π(θ|d), π∗(θ|d)):

I(π(θ|d), π∗(θ|d)) ≤ log(1 + α)− Eθ|d logP (β ∈ B0|θ, d).

For sufficiently large P (β ∈ B0|θ, d) and small α,

log(1 + α)− Eθ|d logP (β ∈ B0|θ, d) ≈
∫
β/∈B0

π(β|θ, d)π(θ|d)dθ.

Thus, the upper bound can be approximated by 1 − P (β ∈ B0|d) = P (β /∈ B0|d). However, the
analytic calculation of the Kullback–Leibler divergence between π(θ|d) and π∗(θ|d) is usually difficult.
Here, we introduce an approximation to Kullback–Leibler divergence based on Laplace’s method along
with its convergence properties.

Theorem 2. Suppose that β̂ and β̂∗ maximize π(β|d) and π∗(β|d), respectively. Then, we have

I(π, π∗) ≡ I(π(θ|d), π∗(θ|d)) = Î1(π, π∗)
[
1 +O

( 1

n

)]
,

where

Î1(π, π∗) =

∫ (2π

n

)m/2|Σ|1/2π(θ|β̂, d)π(β̂|d)log
|Σ|1/2π(θ|β̂, d)π(β̂|d)

|Σ∗|1/2π(θ|β̂∗, d)π∗(β̂∗|d)
dθ

and

Σ =
∂2

∂β2

1

n
log π(β|d)

∣∣∣
β=β̂

and Σ∗ =
∂2

∂β2

1

n
log π∗(β|d)

∣∣∣
β=β̂∗

.

It is noted that Î1(π, π∗) ≥ 0 when |Σ| ≥ |Σ∗|. Furthermore, if β̂ = β̂∗ and |Σ|1/2 = |Σ∗|1/2, then

Î1(π, π∗) =
(2π

n

)m/2|Σ|1/2π(β̂|d) log
π(β̂|d)

π∗(β̂|d)
≥ 0.



Entropy 2015, 17 1446

Proof. Since

I(π, π∗) ≡
∫
π(θ|d)log

π(θ|d)

π∗(θ|d)
dθ

=

∫
π̂(θ|d)

[
1 +Oθ

( 1

n

)]
log

π̂(θ|d)
[
1 +Oθ

(
1
n

)]
π̂∗(θ|d)

[
1 +Oθ

(
1
n

)]dθ
=

∫
π̂(θ|d)log

π̂(θ|d)

π̂∗(θ|d)

[
1 +Oθ

( 1

n

)]
dθ

=

∫
π̂(θ|d)log

π̂(θ|d)

π̂∗(θ|d)
dθ
[
1 +O

( 1

n

)]
and∫
π̂(θ|d)log

π̂(θ|d)

π̂∗(θ|d)
dθ =

∫
π(θ|β̂, d)π(β̂|d)

(2π

n

)m/2|Σ|1/2 × log
π(θ|β̂, d)π(β̂|d)

(
2π
n

)m/2|Σ|1/2
π(θ|β̂∗, d)π∗(β̂∗|d)

(
2π
n

)m/2|Σ∗|1/2dθ,
where

Σ =
(
− ∂2

∂β2

1

n
logπ(β|d)

)−1

β=β̂
and Σ∗ =

(
− ∂2

∂β2

1

n
logπ∗(β|d)

)−1

β=β̂∗
,

we have
I(π, π∗) = Î1(π, π∗)

[
1 +O

( 1

n

)]
,

where

Î1(π, π∗) =

∫ (2π

n

)m/2|Σ|1/2π(θ|β̂, d)π(β̂|d) log
|Σ|1/2π(β̂|d)

|Σ∗|1/2π∗(β̂|d)
dθ

=
(2π

n

)m/2|Σ|1/2π(β̂|d) log
|Σ|1/2π(β̂|d)

|Σ∗|1/2π∗(β̂|d)
.

Under the weak conditions allowing the exchange of integral and limit, it can be shown that
Î1(π, π∗) converges to I(π, π∗). Suppose that both π(β|d) and π∗(β|d) are maximized at β̂, a posterior
mode. Then,

|Î1(π, π∗)− I(π, π∗)| → 0 as n→∞.

Since supθ |π̂(θ|d) − π(θ|d)| → 0 and supθ |π̂∗(θ|d) − π∗(θ|d)| → 0 as n → ∞, continuity
implies that ∣∣∣ ∫ π̂(θ|d) log

π̂(θ|d)

π̂∗(θ|d)
dθ −

∫
π(θ|d) log

π(θ|d)

π∗(θ|d)
dθ
∣∣∣

≤
∫ ∣∣∣π̂(θ|d) log

π̂(θ|d)

π̂∗(θ|d)
− π(θ|d) log

π(θ|d)

π∗(θ|d)

∣∣∣dθ → 0 as n→∞.

Therefore, ∣∣∣(2π

n

)m/2|Σ|1/2π(β̂|d) log
|Σ|1/2π(β̂|d)

|Σ∗|1/2π∗(β̂|d)
− I(π, π∗)

∣∣∣→ 0 as n→∞.
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Note that the first-order approximation Î1(π, π∗) depends only on the marginal posterior distribution
of the nuisance parameters π(β|d) and π∗(β|d) but not the full conditional distribution of the parameter
of interest π(θ|β, d). Based on the asymptotic properties of the posterior distributions (which can
be achieved easily under fairly general conditions when the true value of the parameter is in the
support of the prior), a Gaussian distribution with mean β̂, the generalized MLE of β, and variance(
− ∂2

∂β2 log π(β|d)
)−1

β=β̂
can be considered as π∗(β|d). That is,

π∗(β|d) ∝ exp
(
− 1

2
(β − β̂)′Hβ(β − β̂)

)
, where Hβ ≡

∂2

∂β2
log π(β|d).

For a sufficiently large n, π∗(β|d) is maximized at β̂, the posterior mode of π(β|d), and
∂2

∂β2 log π(β|d)
∣∣
β=β̂
≈ ∂2

∂β2 log π∗(β|d)
∣∣
β=β̂

.

3.2. Higher-Order Approximations to Kullback–Leibler Divergence

To improve accuracy, second-order approximations can be considered in Laplace’s method [1]. Let β̂1,
β̂∗1 , Σ1, and Σ∗1 be defined as above in the case of the first-order approximations. Let β̂2 and β̂∗2 maximize
log[π(θ|β, d)π(β|d)] and log[π(θ|β, d)π∗(β|d)], respectively. While the second-order approximations to
π(θ|d) and π(θ|d)∗ are more accurate, the second-order approximation to I(π, π∗) is quite difficult to
calculate since both β̂2 and β̂∗2 are functions of θ, that is, β̂2 = β̂2(θ) and β̂∗2 = β̂∗2(θ).

Assume that both β̂ and β̂∗ maximize π(θ|β, d)π(β|d) and π(θ|β, d)π∗(β|d), respectively, regardless
of θ. Then, it can be shown that

I(π, π∗) = Î2(π, π∗)
[
1 +O

( 1

n2

)]
or

|Î2(π, π∗)− I(π, π∗)| → 0 as n→∞,

where

Î2(π, π∗) ≡
∫
|Σ2|1/2

|Σ1|1/2
π(θ|β̂2, d)π(β̂2|d)

π(β̂1|d)
log

|Σ2|1/2
|Σ1|1/2

π(θ|β̂2,d)π(β̂2|d)

π(β̂1|d)

|Σ∗
2|1/2
|Σ∗

1|1/2
π(θ|β̂∗

2 ,d)π∗(β̂∗
2 |d)

π∗(β̂∗
1 |d)

dθ,

Σ2 =
(
− ∂2

∂β2

1

n
log[π(θ|β, d)π(β|d)]

)−1

β=β̂2
,

and

Σ∗2 =
(
− ∂2

∂β2

1

n
log[π(θ|β, d)π∗(β|d)]

)−1

β=β̂∗
2

.

If both log[π(θ|β, d)π(β|d)] and log[π(θ|β, d)π∗(β|d)] are maximized at β̂2, then the second-order
approximation to I(π, π∗) can be simplified to

Î2(π, π∗) =
|Σ2|1/2

|Σ1|1/2
π(β̂2|d)

π(β̂1|d)
log

|Σ2|1/2
|Σ1|1/2

π(β̂2|d)

π(β̂1|d)

|Σ∗
2|1/2
|Σ∗

1|1/2
π∗(β̂∗

2 |d)

π∗(β̂∗
1 |d)

.

Î2(π, π∗) ≥ 0 when |Σ2|
|Σ1| ≥

|Σ∗
2|
|Σ∗

1|
and π(β̂1|d) ≥ π∗(β̂∗1 |d).
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3.3. Approximation to Other Information Measures

Instead of Kullback–Leibler divergence, other useful information measures based on uncertainty
functions or the entropy function can be used. One information measure based on uncertainty functions
[12] is

I = EV ar(β|d)− EV ar∗(β|d) or I = E log
V ar(β|d)

V ar∗(β|d)
.

Another information measure is based on Renyi’s entropy function [13] :

Iα(π(θ|d), π∗(θ|d)) =
1

1− α
log

∫
[π(θ|d)]α[π∗(θ|d)]1−αdθ.

Theorem 3. Suppose that β̂ maximizes both π(β|d) and π∗(β|d). Then,

Iα(π(θ|d), π∗(θ|d)) =
1

1− α
log J

(
1 +O

( 1

n

))
,

where
J ≡

(2π

n

)m/2|Σ|1/2[π(β̂|d)]α[π∗(β̂|d)]1−α.

Proof. Let
δα(π(θ|d), π∗(θ|d)) = exp

[
(1− α)Iα((π(θ|d), π∗(θ|d))

]
.

Then, it suffices to show that

δα(π(θ|d), π∗(θ|d)) =

∫
[π(θ|d)]α[π∗(θ|d)]1−αdθ

=

∫ [ ∫
π(θ|β, d)π(β|d)dβ

]α[ ∫
π(θ|β, d)π∗(β|d)dβ

]1−α
dθ

=

∫
π(θ|β̂, d)

(2π

n

)m/2|Σ|1/2(1 +Oθ

( 1

n

))
[π(β̂|d)]α[π∗(β̂|d)]1−αdθ,

=
(2π

n

)m/2|Σ|1/2[π(β̂|d)]α[π∗(β̂|d)]1−α
(

1 +O
( 1

n

))
.

Under similar conditions to those in Theorem 2, it can be shown that∣∣∣ 1

1− α
log J − Iα(π(θ|d), π∗(θ|d))

∣∣∣→ 0 as n→∞.

4. Illustrative Example

We consider an approach to approximating the likelihood function of the spatial correlation parameters in
the Gaussian random field. Consider the simple Gaussian random field Z ∼ MVN(0,Σ(θ)), where
Σ(θ) is parameterized by a variance term and a correlation function. That is, Σ(θ) = σ2R(θ). Then, the
likelihood function of (σ2, θ) is

L(σ2, θ) ∝ |σ2R(θ)|−1/2 exp

(
− 1

2σ2
Z′R−1(θ)Z

)
. (1)
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Note that in the problem with a large spatial domain, it is not computationally feasible to compute the
likelihood function of the spatial correlation parameters because of R−1.

The proposed approaches are also illustrated in regional climate models, which are used to model
the evolution of a climate system over a limited area. These models address smaller spatial regions
than global climate models. However, the higher resolution of regional climate models better captures
the impact of local features such as lakes and mountains as well as the subgrid-scale atmospheric
process. The PRUDENCE project involves regional models over Europe from various climate research
centers (http://prudence.dmi.dk/) and employs a major archive of data of a 25-km resolution covering the
1951–2100 transient periods. In the analysis, spatial parameters are estimated based on the approximated
likelihood approach using PRUDENCE data (about 8000 grid points). Here, the mean trend in the surface
temperature change is modeled as follows:

T (s) = β0 + β1Iland/sea(s) + β2P (s) + β3lon(s) + β4lat(s) + β5elev(s), (2)

where Iland/sea(s) is an indicator function for the sea and land, P (s) is the amount of seasonal
precipitation, lon(s) is the longitude, lat(s) is the latitude, and elev(s) is the elevation in location s.
For the detrended surface temperature field, we consider a stationary Gaussian spatial process with
an exponential covariance function, σ2 exp

(
− d2

2ξ2

)
. For simplicity, we also assume that σ2 is known

and θ = 2ξ2.
Now we consider an approximated likelihood function for θ. Considering a log transformation for the

correlation function ρ leads to

θ̂ ∼approx N

θ, θ−4

(∑
d∈D

d2

σ2
d

)−1
 , (3)

where θ̂ is the MLE of the spatial parameter θ,

θ̂ = −

∑
d∈D

d2

σ2
d∑

d∈D
d
σd

log ρ(d)
. (4)

Note that the model coefficients (β0, β1, β2, β3, β4) are the parameters of interest and that the
correlation parameter θ is the nuisance parameter in this example. Here, the full conditional distribution
of the parameter of interest, π(β0, β1, β2, β3, β4|θ, d), can be obtained based on the model of the mean
trend in the surface temperature change, while the true marginal density of the nuisance parameter,
π(β|d), and approximate marginal density of the nuisance parameter, π∗(β|d), can be computed by
using likelihood functions (1) and (3), respectively. Therefore, the full conditional distribution of the
parameter of interest, (β0, β1, β2, β3, β4), can be expressed as

[β0, β1, β2, β3, β4|D, θ] ∝ |σ2R(θ)|−1/2 exp

(
− 1

2σ2
(D−T)′R−1(θ)(D−T)

)
, (5)

where D = {d(1), d(2), . . . , d(n)} is the observation vector and T = {T (1), T (2), . . . , T (n)} is the
mean trend vector in (2). The approximated full conditional distribution of the correlation parameter θ
is of the form

[θ|D, β0, β1, β2, β3, β4] ∝ exp

(
−1

2

(θ̂ − θ)2

θ4
∑

d∈D
d2

σ2
d

)
, (6)
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whereas the exact full conditional distribution is quite similar to (5). Further, θ̂ is the MLE of the
spatial parameter θ in (4). The reference points for (β0, β1, β2, β3, β4) and θ are randomly chosen in the
neighborhood of the MLEs of the parameters. For more details, see [8].

In the next step, various grid points (n = 400, 900, 1600) are randomly chosen and then eliminated
as in the simulation study. Table 1 provides the first-order-approximated Kullback–Leibler divergence
along with the exact Kullback–Leibler divergence under various settings. The estimated information
measures are quite efficient and competitive because the seasonal mean surface temperature fields
from the global climate model are already smoothed. Further, the approximated likelihood function
of the correlation parameter is not well estimated, particularly when the number of observations is less
than 100.

Sampled Grid Size
First-Order-Approximated Exact
Kullback–Leibler Distance Kullback–Leibler Distance

400 0.482 0.425
900 0.279 0.251

1600 0.121 0.108

Table 1. First-order-approximated Kullback–Leibler divergence and the exact Kullback–Leibler
divergence under the various settings of the grid points.

5. Summary

We introduced various ways of checking the sensitive effects on the target posterior distribution
of the parameter of interest by using an alternative to the full conditional distribution of the nuisance
parameter. By using Laplace’s method, approximated Kullback–Leibler divergence between π(θ|d) and
π∗(θ|d) was also calculated in terms of the entropy of π(β|d) and π∗(β|d) at the generalized MLE β̂.
Other information measures provided similar results. However, it is still difficult to check analytically
the robustness of the marginal posterior distribution of interest, π(θ|d), according to the choice of the
full conditional distribution of the nuisance parameter, π(β|θ, d). Nonetheless, for the general class
of available marginal posterior distributions of the nuisance parameters, the sensitivity and robustness
to the marginal posterior distribution of the parameters of interest can be checked approximately. In
addition, we can find a reasonable and flexible substitute for the complicated full conditional distribution
of the nuisance parameter under the sensitivity and robustness criteria to the target distribution and then
perform inference based on this substitute. Our approach can be applied to future sensitivity analysis
on the posterior predictive distribution by using an approximated posterior distribution, Bayes factor
or marginal density by using the choice of prior distribution, and expected loss or utility by using an
approximated posterior distribution.
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