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Abstract: The complexity of the description of a system is a function of the entropy of its 

symbolic description. Prior to computing the entropy of the system’s description, an 

observation scale has to be assumed. In texts written in artificial and natural languages, 

typical scales are binary, characters, and words. However, considering languages as 

structures built around certain preconceived set of symbols, like words or characters, limits 

the level of complexity that can be revealed analytically. This study introduces the notion of 

the fundamental description scale to analyze the essence of the structure of a language. The 

concept of Fundamental Scale is tested for English and musical instrument digital interface 

(MIDI) music texts using an algorithm developed to split a text in a collection of sets of 

symbols that minimizes the observed entropy of the system. This Fundamental Scale reflects 

more details of the complexity of the language than using bits, characters or words. Results 

show that this Fundamental Scale allows to compare completely different languages, such 

as English and MIDI coded music regarding its structural entropy. This comparative power 

facilitates the study of the complexity of the structure of different communication systems. 

Keywords: entropy; complexity; minimal entropy description; complexity profile; language 

evolution; observation scale 
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1. Introduction 

The understanding of systems and their complexity requires accounting for their entropy. The emergence 

of information upon the scale of observation has become a topic of discussion since it reveals much of the 

systems’ nature and structure. Bar Yam [1] and Bar-Yam et al. [2] have proposed the concept of complexity 

profile as a useful tool to study systems at different scales. Among others, Lopez-Ruiz et al. [3], and 

Prokopenko [4] focus on the change of the balance between the system disorder and self-organization 

for different scales of observation. In a different approach, Gell-Mann [5] considers complexity as a 

property associated to the irregularities of the physical system. But Gell-Mann sees both randomness 

and order as manifestations of regularity, and therefore quantities that offer the possibility for reducing 

the length of a description and hence the computed complexity of a system. 

These complexity concepts are all evaluated using arbitrarily selected symbol scales. The selected 

observation scale depends on the communication system used in the description; for example, systems 

described with human natural languages are prone to be analyzed with the characters and words scales 

because they hold the most meaning for humans. When the analysis of information is in the context of 

its transmission, it is common to find binary codes as the base of study. A possible consequence of this 

preselected scale of observation is the possible inclusion of our assumptions about the system’s structure, 

which skews our interpretation about system properties. 

Many studies have evaluated the entropy of descriptions based on a preconceived scale; in 1997  

Kontoyiannis [6] evaluated the description entropies at the scale of characters; in 2002 Montemurro and 

Zanette [7] studied the entropy as a function of the word-role; more recently Savoy [8],  

and Febres et al. [9,10] have studied the impact of the style of writing over entropy speeches using the 

word as the unit of the scale. In 2009 Piasecki and Plastino [10] studied entropy as a function of a  

2-dimensional domain. They explored the effects of multivariate distributions and calculate the entropy 

associated to several 2D patterns. All these studies share the same direction; assume a space for a domain 

and a scale and compute the entropy. The strategy of the present study is to set the same problem in a 

reversed fashion: given an entropy descriptor of a multivariate distribution defined for some domain 

space, what would be the best way to segment that domain space in order to reproduce the known entropy 

descriptor? The answer to this question would have a twofold value: (a) an indication to the scale that 

best represents the system expression as the distribution of sizes of the space segments, and (b) an 

approximation to the algorithmic complexity of the description. 

Algorithmic complexity as a concept does not consider the observation scale [5,11]. Algorithmic 

complexity―also called Kolmogorov’s complexity―is the length of the shortest string that completely 

describes a system. Since the shortest string is a characteristic impossible to guarantee, algorithmic 

complexity has been regarded as an unreachable figure. Nevertheless, estimating complexity by 

searching for a nearly uncompressible description of a system, would have the advantage of being 

independent of the observation scale. In fact, a method to search for a nearly uncompressible description 

could be achieved by adjusting the observation scale until the process discovers the scale that best 

comprises the original description. The result would lead to an approximation to the algorithmic 

complexity of the system. 

While these previous studies assume symbols as characters or words, in our present study we leave 

freedom to group adjacent characters, to form symbols in order to comply with a higher hierarchy 
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criterion, as is the minimization of the entropy. This study develops a series of algorithms to recognize 

the set of symbols that, according to their frequency, leads to a minimum entropy description. The 

method developed in this study mimics a simplified communication system’s evolution process. The 

proposed algorithm is tested with short example of English text, and two descriptions, the first is an 

English text and the second, a sound musical instrument digital interface (MIDI) file. This representation 

of the components may convey a description of a system and its structural essence. 

2. A Quantitative Description of a Communication System 

A version of Shannon’s entropy formula, generalized for communication systems comprised of ܦ 

symbols, is used to compute quantity of information in a descriptive text. To determine the symbols that 

make up the sequential text, a group of algorithms were developed. These algorithms are capable of 

recognizing the set of symbols which form the language used in the textual description. The number of 

symbols	ܦ represents not only the diversity of the language but also the fundamental scale used for the 

system description. 

2.1. Quantity of Information for a ܦ’nary Communication System 

We refer to language as the set of symbols used to construct a written message. The number of 

different symbols in a language will be referred as the diversity	ܦ. 

To compute the entropy ℎ of a language, that is, the entropy of the set of ܦ different symbols, used 

with a probability ݌௜ to form a written message, we use the Shannon’s entropy expression, normalized 

to produce values between zero and one: 

ℎ = −෍݌௜ · ஽݃݋݈ ௜஽݌
௜ୀଵ , (1)

Note that the base of the logarithm is equal to the language’s diversity	ܦ, whereas classical Shannon’s 

expression uses 2 as the base of the logarithm; also equal to the diversity of the binary language that he 

studied. Researchers such as Zipf [12], Kirby [13], Kontoyiannis [6], Gelbukh and Sidorov [14], 

Montemurro and Zanette [7], Savoy [15], Febres, Jaffe and Gershenson [9] and Febres and Jaffe [16], 

among others, have studied the relationship between the structure of some human and artificial 

languages, and the symbol probability distribution corresponding to written expressions of each type of 

language.  

All these studies assume symbols as characters or words, in our present study we leave freedom to 

group adjacent characters, to form symbols in order to comply with the minimization of the entropy ℎ as 

expressed in Equation (1). In the following sections we explain this optimization problem, and our approach 

to find a solution reasonably close to the set of symbols that produce an absolute minimum entropy. 

2.2. Scale and Resolution 

We propose a quantitative concept of scale: the scale of a system equals the diversity of the language 

used for its description. Thus, for example, if a picture is made with all available colors in an 8-bit-color 

map of pixels, then the diversity of the color language of the picture would equal	2଼, and the scale of the 

picture description, considering each color as a symbol, would be also	2଼. Another example would be a 
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binary language, a scale 2 communication system made up of only two symbols. Notice we have used 

the term “communication system” to refer to the media used to code information. 

Interestingly, the system’s description scale is determined, in first place, by the observer, and in a 

much smaller degree by the system itself. The presumably high complexity of a system, functioning with 

the actions and reactions of a large number of tiny pieces, simply dissipates if (a) the observer or the 

describer fails to see the details, (b) the observer or describer is not interested the details, and prefers to 

focus on the macroscopic interactions that regulate the whole system’s behavior, or (c) the system does 

not have sufficient different components, which play the role of symbols here, to refer to each type of 

piece. It is clear that any observed system scale implies the use of a certain number of symbols. It is also 

clear that the number of different symbols used in a description is linked with our intuitive idea of scale. 

There being no other known quantitative meaning of the word scale, we suggest its use as a descriptor 

of languages by specifying the number of symbols forming them. 

Resolution specifies the maximum accuracy of observation and defines the smallest observable piece 

of information. In the computer coded files we used to interpret descriptions, we consider the character 

as the smallest observable and non-divisible piece of information.  

Let ܧ denote the physical space that a symbol or a character occupies, and let the sub-index signal 

the object being referred to. Thus, considering a written message	ࡹ, constructed using ࡹܦ different 
symbols ܻ as	ࡹ = { ଵܻ, ଶܻ, … , ஽ܻࡹ}, we would say the message ࡹ occupies the space	ࡹܧ and each 

symbol 	 ௜ܻ occupies the space	ܧ௒೔. We define the length of all characters equal one. Therefore ܧ஼೔ ≡ 1 

for any	݅. Finally, if the number of characters in a message is	ܰ, each symbol ௜ܻ appears ܨ௒೔ times within 

the message, and the symbol diversity is	ࡹܦ, we can write the following constraints over the number of 

characters, symbols and the space they occupy: 

ࡹܧ	 = 	෍ ௒೔ܨ ∙ ࡹ௒೔஽ܧ
௜ୀଵ =෍ ஼೔ேܧ

௜ୀଵ = ܰ . (2)

2.3. Looking for a Proper Language Scale 

We see the scale of a language as the set of finite symbols that “best” serves to represent a written 

message. The qualification “best” refers to the capacity of the set of symbols to convey the message with 

precision in the most effective way. 

Take for example the western natural languages. Among their alphabets, there are only minor 

differences; too few differences to explain how far from each other those languages are. As Newman [17] 

observes, some letters may be the basic units of a language, but there are other units formed by groups 

of letters. 

Chomsky’s syntactic structures [18], later called context-free grammar (CFG) [19] offers another 

representation of natural language structure. The CFG describes rules for the proper connections among 

words according to their specific function within the text. Thus, CFG is a grammar generator useful to 

study the structure of sentences. Chomsky himself treats a language as an infinite or finite set of 

sentences. CFG works at a much larger scale than the one we are looking for in this study. 

Regarding natural languages it is common to think that a word is the group of characters within a 

leading and a trailing blank-space. At some time a meaning was assigned to that word, and thereafter the 
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word’s meaning, as well as its writing, evolves and adopts a shape that works fine for us, the users of 

that language. Zipf’s principle of least effort [14] and Flesch’s reading ease score [20] certainly give 

indications about the mechanisms guiding words, as written symbols, to reduce the number of characters 

needed to be represented.  

From a quantitative linguistics perspective, this widely accepted method for recognizing words offers 

limited applicability. Punctuation signs, for example, have a very precise meaning and use. The 

frequency of their appearance in any western natural language compete with the most common words in 

English and Spanish [21]. However, punctuation signs are very seldom preceded by a blank-space and 

are normally written with just a single character, which promotes the false idea that they function like 

letters from the alphabet; they do not. They have meaning as well as common words have. Another 

situation revealing the inconvenience of this natural but too rigid conception of words, is the English 

contraction when using the apostrophe. It is difficult to count the number of words in the expression 

“they’re”. How many words are there, one or two? See Febres et al. [21] for a detailed explanation on 

English and Spanish word recognition and treatment for quantification purposes.  

Intuitively the symbols forming a description written using some language, should be those driving 

the whole message to low entropy when computed as the function of the symbols frequency. In this 

situation the message is fixed as fixed is also the text and the quantity of information it conveys. Then, 

there appears to be a conflict: while the information is constant because the message is invariant, any 

change to the set of symbols considered as basic units, alters the computed message entropy, as if the 

information had changed; it has not. To solve this paradox, we return to the question asked at the 

beginning of this section about the meaning of “best” in the context of this discussion. From the point 

of view of the message emitter, the term “best” considers the efficiency to transmit an idea. This is what 

Shannon’s work was intended for: to determine the amount of information, estimated as entropy, needed 

to transmit an idea. From the reader’s point of view the economy of the problem works different. The 

reader’s problem is to interpret the message received to maximize the information extracted. In other 

words, the reader focuses on the symbols which turn the script as an organized, and therefore easier to 

interpret message. If the reader is a human and there are words in the message, the focused symbols are 

most likely words because those are the symbols that add meaning for this kind of reader. But if there 

existed the possibility to select another set of symbols which makes the message look even more 

organized, the reader would rather use this set of symbols because it would require less effort to read.  

In conclusion, what the reader considers “best” is the set of symbols that maximizes the organization 

of the message while for the sender the “best” means the set of symbols needed to minimize the disorder 

of the message and thus the quantity of information processed. These statements are expressed as 

objective functions in Equations (3) where the best set of symbols is named	࡮, the message is	ࡹ, the 

message entopy is ℎࡹ and the message organization is	(1 − ℎࡹ): Sendersᇱobjective: min࡮ ℎࡹ Receiverᇱs objective: max࡮ (1 − ℎெ) =min࡮ ℎࡹ  
(3)

Following this reasoning, “best” means the same for both sides of the communication process. This 

may have important implications when considering languages as living organisms or colonies of 

organisms. Both parts of the communication process push the language to evolve in the same direction: 
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augmenting self-organization and the reducing of entropy of the messages. Both come together.  

Self-organization can be seen as one of the evolving directions of languages. Thus, self-organization is 

an indirect way to measure how deeply evolved a language is and what its capacity is to convey complex 

ideas or sensations. Finally, an objective function to search the most effective set of symbols―the set 

with minimal entropy―to describe a language has been found. It will be used to recognize the set of 

symbols that best describes a language used to write a description.  

2.4. Language Recognition 

Consider a description consisting of a message ࡹ built up with a sequence of ܰ characters or 

elementary symbols. The message ࡹ can be treated as an ordered set of characters ܥ௜ as: ࡹ = ,ଵܥ} ,ଶܥ … , ேܥ } . (4)

No restriction is imposed over the possibility of repeating characters. Consider also the language	࡮, 
consisting of a set of ࡮ܦ different symbols	 ௜ܻ, each formed with a sequence of ܧ௒೔	consecutive characters 

found with probability	ܲ( ௜ܻ) > 0 in message	ࡹ. Thus: ࡮ = { ଵܻ, ଶܻ, … , ஽ܻಳ, ܲ( ௜ܻ) } . (5)

௜ܻ = ,௝ܥ ,௝ାଵܥ … , ௝ାாೊ೔ିଵܥ } , 1 ≤ ݅ ≤ ࡮ܦ , 1 ≤ ݆ ≤ ܰ − ܻ݅ܧ + 1	. (6)

The symbol probability distribution ܲ( ௜ܻ)	 can be obtained dividing the frequency distribution ௜݂ by 

the total number of symbols ܰ in the message: ܲ( ௜ܻ) = ௜݂ܰ (7)

Language	࡮, used to convey the message	ࡹ, can now be specified as the set of ࡮ܦ different symbols 

and the probability density function ܲ( ௜ܻ) which establishes the relative frequencies of appearance of 

the symbols	 ௜ܻ. Each symbol ௜ܻ is constructed with a sequence of contiguous characters as indicated in 

Equation (6). The set of symbols that describes the message ࡹ with the least entropy comes after the 

solution of the following optimization problem: 

min࡮ −෍ܨ௒೔ ∙ ࡮௒೔ܰ஽ܧ
௜ୀଵ · ࡮஽݃݋݈ ௒೔ܨ ∙ ௒೔ܰܧ , 

Subject to: ࡮ = ൛ ଵܻ, ଶܻ, … ௜ܻ … , ஽ܻ࡮, )ࡼ ௜ܻ)	ൟ, for	݅ = 1, 2, … ,  ࡮ܦ

௜ܻ = 	 ൜ܥ௝, ,௝ାଵܥ … , ൠ	௝ାாೊ೔ିଵܥ , for	݅ = 1, 2,… , ݆	݀݊ܽ		࡮ܦ = 	1, 2, …ܰ − ௒೔ܧ + 1	, ∑ ௒೔ܨ	 ∙ ௜ୀଵ	࡮௒೔஽ܧ	 = ௒೔ܨ  ,	ܰ ≥ 1	, ௒೔ܧ	 ≥ 1	, ݎ݋݂ ݅ = 1, 2, 3,… ,  .࡮ܦ
(8)

The resulting language will be the best in the sense that it is the set of symbols that offers a maximum 

organization of the message. The symbol lengths will range from a minimum to a maximum defining a 

distribution of symbol lengths characteristic of this scale of observation which is referred to as the 

Fundamental Scale. 
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3. The Algorithm 

The optimization problem (8) is highly nonlinear and restrictions are coupled. A strategy for finding 

a solution has been devised. It is a computerized process compound of text-strings processing, entropy 

calculations, text-symbol ordering and genetic algorithms. Given a description consisting of a text of ܰ 

characters, the purpose of the algorithm is to build a set of symbols ࡮ whose entropy is close to a 

minimum. The process forms symbols by joining as many as ܸ adjacent characters in the text. A loop 

where ܸ is kept constant, controls the size of the symbols being incorporated to language	࡮. The process 

ends when the maximum symbol length of 	 ௠ܸ௫ characters is considered to form symbols. We add a sub-

index to language ࡮௏ to indicate the symbol size ܸ considered at each stage of its construction. We have 

defined several sections of the algorithm and we named them according to their similarity with a system 

where each symbol appears and ends up being part of a language, only if it survives the competence it 

must stand against other symbols. A pseudo-code of the fundamental scale algorithm is included in 

Appendix A. 

 

Figure 1. Major components of the fundamental scale algorithm. 
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3.1. Base Language Construction 

In the first stage, the message ࡹ is separated into single characters. The resulting set of characters 

along with their frequency distribution constitute the first attempt to obtain a good language and it will 

be denoted as	࡮ଵ. The sub-index indicates the maximum length that any symbol can achieve. 

3.2. Prospective Symbol Detection 

The prospective symbol detection consists of scanning the text looking for strings of exactly ܸ 

characters. All ܸ-long strings are considered as prospective symbols to join the previously constructed 

language ࡮௏ିଵ made of strings of up to ܸ − 1 characters. The idea is to find all possible different ܸ-long strings present in the message	ࡹ, which after complying with some entropy reduction criteria, 

would complement language	࡮௏ିଵ to form language	࡮௏. 

To cover all possibilities of character sequences forming symbols of length equal to	ܸ, several passes 

are done over the text. The difference from one pass to another is the character where the initial symbol 

starts, which will be called the phase of the pass. Figure 2 illustrates how the strategy covers all 

possibilities of symbol instances for any symbol size specification	ܸ. 

 

Figure 2. Examples of reading a text to recognize prospective symbols with a sliding 

window of SymbolSize = 4 and reading Phase = 0, 1, and 3. Phase = 2 not shown. The 

message: “xMTrkbhÿXbÿYÿQñÖZbQñêrÿQÞgzÿQËQbØQËlÿQÿñQñpMTrkÿQ€ÿÿQ”. 

3.3. Symbol Birth Process 

Prospective Symbols detected in the previous stage whose likelihood to be an entropy reducer symbol 

is presumed too low, are discarded and never inserted as part of the language. Interpreting entropy 

Equation (1) as the summation of contributions of the uncertainty due to each symbol, we can intuit that 

minimum total uncertainty―minimum entropy―occurs when each symbol uncertainty contribution is 

about the same. Thus, any Prospective Symbol must be close to the average uncertainty per symbol in 

order to have some opportunity to actually reduce the entropy after its insertion. The average contribution 

of the uncertainty ݑ௜ for symbol ݅ can be estimated as: ݑ௜ = ௜݌− ܸ࡮஽݃݋݈ ௜݌ = ℎܸ࡮ܦ , (9)
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This leads us to look for symbols complying with condition shown in Equation (10), and save 

processing time whenever a prospective symbol is not within a 2λ-width band of around the average 

uncertainty value: ℎܸ࡮ܦ − λ < ௜ݑ < ℎܸ࡮ܦ + λ . (10)

Parameter ߣ can be adjusted to avoid improperly rejecting entropy reducer symbols or to operate in 

the safe side at the expense on processing time. 

3.4. Conservation of Symbolic Quantity 

The inclusion of prospective symbols into the arrays of symbols representing the language	࡮, is 

performed to avoid the overlap of the newly inserted symbols and the previous language existing 

symbols. Therefore, every time a prospective symbol is inserted into the stack of symbols, the instances 

of former symbols occupying the space the new symbols, must be released. Sometimes this freed string 

is only a fraction of a previously existing symbol. Thus, the insertion of a symbol may produce a break 

up of other symbols, generating empty spaces for which recovered symbols must be reinserted in order 

to keep the original text intact. 

3.5. Symbol Survival Process 

A final calculation is performed to confirm the entropy reduction achieved after the insertion of a 

symbol into the language being formed. Those symbols not producing an entropy reduction, are rejected 

and the Language ࡮ is reverted to its condition prior to the last insertion of a symbol. 

3.6. Controlling Computational Complexity 

The computational complexity of this algorithm is far beyond polynomial. A rough estimation sets 

the number of steps required above	the factorial of the diversity of the language treated. Thus, 

segmenting the message into shorter pieces, allows the algorithm to find a feasible solution and to keep 

affordable processing times for large texts. This strategy is in fact a sort of parallel processing which 

significantly reduces the algorithm’s computational complexity down to becoming an applicable tool. A 

complex system software platform has been developed along with this study to deal with the 

complexities of this algorithm, and the structure needed to maintain record of every symbol of each 

description within a core of very many texts. This experimental software, is named Monet and a brief 

description of it can be found in [21]. 

The noise introduced when cutting the original description in pieces, is limited. At most two symbols 

may be fractured for each segment. Very low compared to the number of symbols making each segment. 

The algorithm calculates the entropy of each description chunk. But, as Grabchak et al. [22] explain, the 

estimation of the description’s entropy must consider the bias introduced when short text samples are 

evaluated. Taking advantage of the extensive list of symbols and frequencies available and organized by 

means of the software Monet, we used the alternative of calculating the description entropy using the 

joint sets of symbols for each description partition, an then forming the whole description. As a result, 

no bias has to be corrected. 
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4. Tests and Results 

In order to compare the differences obtained when observing a written message at the scales of 

characters, words and the fundamental scale, we designed an Example Text. Table 1 shows the symbols 

obtained after the analysis of the Example Text at the three observation scales used in this study. The 

entropies calculated at the scales of characters and words were 0.81 and 0.90 respectively, the entropy 

at the fundamental scale was 0.76; an important reduction of the information required to describe the 

same message. 

These results also get along with our intuition. Clearly, the selection of a certain character-string as a 

fundamental symbol, is favored by the frequency of appearance of the string of characters. As a result, 

the “space character” (represented as ø in the table) is recognized as the most frequent fundamental 

symbol. It indeed is an important structural piece in any English text, since it defines the beginning and 

the end of natural words. The length of the string of characters also favors the survival of the symbol in 

its competence with other prospective symbols. The string “describ”, for example, appears twice in the 

Example Text and the algorithm recognized it as a symbol. On the other hand, the 11-char long string 

“An adverb” also appears two times, but the algorithm found it more effective in reducing the overall 

entropy, to break that phrase apart and increase the appearances of other symbols. A similar case is that 

of the word “adverb”, which appears in nine instances (not including those written with the first capital 

letter) on the Example Text. But the entropy minimization problem found a more important entropy 

reduction by splitting the word “adverb” in shorter and more frequent symbols as “dv” (10 times), or the 

characters as “e” (70 times), “a” (40 times), ), “r” (33 times), and “b”(12 times). 

In another experiment, we contrasted two different types of communication systems by performing 

tests over full real messages. The first test is based on a text description written in English and the second 

in test based on the text file associated to music coded using the MIDI format. The English text is a 

speech by Bertrand Russell given in 1950 during the Nobel Prize ceremony. The MIDI music is a version 

of the 4th movement of Beethoven’s ninth symphony. The sizes of these descriptions are near the limit 

of applicability of the algorithm. English descriptions of 1300 words or less can be processed in short 

times of less than a minute. Larger English texts have to be segmented using the control computational 

complexity criteria mentioned in Section 3.6 to reach reasonable working times. Bertrand Russell’s 

speech was fractioned in seven pieces. For MIDI music files, the processing times show an attitude of 

sharp increase starting for music pieces lasting about 3 min. The version of 4th movement of Beethoven’s 

ninth symphony used, is a 25 min long piece. It was necessary to process it by fractioning in 20 segments. 

To reveal the differences of descriptions when observed at different scales, symbol frequency 

distributions were produced. For the English text, characters, words and the fundamental scale were 

applied. For the MIDI music text distributions at character and fundamental scale were constructed. 

Words do not exist as scale for music. The corresponding detailed set of fundamental symbols can be 

seen in Appendix B. The frequency distributions were ordered upon the frequency rank of the symbols, 

thus the obtained were Zipf’s profiles.  
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Table 1. Results of the analysis of the Example Text at the three scales studied. 

Example Text: symbol sets at different scales. 

-What is an adverb? An adverb is a word or set of words that modifies verbs, adjectives, or other adverbs. An adverb answers 
how, when, where, or to what extent, how often or how much (e.g., daily, completely). Rule 1. Many adverbs end with the 
letters “ly”, but many do not. An adverb is a word that changes or simplifies the meaning of a verb, adjective, other adverb, 
clause, or sentence expressing manner, place, time, or degree. Adverbs typically answer questions such as how?, in what why?, 
when?, where?, and to what extent?. Adverbs should never be confused with verbs. While verbs are used to describe actions, 
adverbs are used describe the way verbs are executed. Some adverbs can also modify adjectives as well as other adverbs. ܨ௒ = Frequency, ܧ௒ = Space occupied, ܰ = Message length, ø =space, ௠ܸ௫ = max. symb. length = 13 

Char scale Word scale Fundamental scale 
D = 38 h = 0.8080 Diversity D = 82 Entropy h = 0.9033 Diversity D = 80 h = 0.7628

d = 0.0486 N = 782 Specific diversity d = 82 Length N = 171 Specific diversity d = 1384 Length N = 578
Idx. Symbol FY Idx. Symbol FY Idx. Symbol FY Idx. Symbol FY EY Idx. Symbol FY EY 

1 ø 169 1 , 21 41 completely 1 1 ø 100 1 41 ul 2 2 
2 e 86 2 . 11 42 ) 1 2 e 70 1 42 wi 2 2 
3 a 45 3 or 7 43 Rule 1 3 a 40 1 43 io 2 2 
4 s 44 4 adverbs 7 44 1 1 4 s 36 1 44 ie 2 2 
5 r 44 5 ? 6 45 end 1 5 t 36 1 45 im 2 2 
6 t 39 6 adverb 5 46 letters 1 6 r 33 1 46 whe 2 3 
7 o 34 7 verbs 4 47 ly 1 7 o 22 1 47 øan 2 3 
8 d 32 8 how 4 48 but 1 8 n 21 1 48 dif 2 3 
9 n 30 9 an 4 49 do 1 9 , 18 1 49 uch 2 3 
10 h 28 10 what 4 50 not 1 10 h 17 1 50 ,øc 2 3 
11 i 25 11 is 3 51 changes 1 11 b 12 1 51 anyø 2 4 
12 v 21 12 a 3 52 simplifies 1 12 dv 10 2 52 wordø 2 5 
13 b 21 13 other 3 53 meaning 1 13 d 9 1 53 describ 2 7 
14 w 21 14 to 3 54 verb 1 14 c 8 1 54 .øAdverb 2 8 
15 , 21 15 the 3 55 adjective 1 15 u 7 1 55 ød 1 2 
16 c 17 16 as 3 56 clause 1 16 l 6 1 56 øv 1 2 
17 l 16 17 are 3 57 sentence 1 17 ? 6 1 57 word 1 4 
18 . 11 18 word 2 58 expressing 1 18 wh 6 2 58 yø 1 2 
19 u 11 19 of 2 59 manner 1 19 w 5 1 59 ma 1 2 
20 m 10 20 that 2 60 place 1 20 i 5 1 60 f 1 1 
21 y 10 21 adjectives 2 61 time 1 21 . 4 2 61 ns 1 2 
22 f 7 22 when 2 62 degree 1 22 g 4 1 62 An 1 2 
23 ? 6 23 where 2 63 typically 1 23 x 4 1 63 w 1 2 
24 A 5 24 extent 2 64 answer 1 24 ly 4 2 64 b, 1 2 
25 g 5 25 with 2 65 questions 1 25 m 4 1 65 v 1 1 
26 p 5 26 “ 2 66 such 1 26 verbs 4 5 66 - 1 1 
27 x 4 27 used 2 67 in 1 27 y 3 1 67 ( 1 1 
28 j 3 28 describe 2 68 why 1 28 p 3 1 68 ) 1 1 
29 W 2 29 many 2 69 and 1 29 dj 3 2 69 R 1 1 
30 " 2 30 - 1 70 should 1 30 øof 3 3 70 1 1 1 
31 - 1 31 set 1 71 never 1 31 ctiv 3 4 71 M 1 1 
32 ( 1 32 words 1 72 be 1 32 .øA 2 3 72 q 1 1 
33 ) 1 33 modifies 1 73 confused 1 33 . 2 1 73 S 1 1 
34 R 1 34 answers 1 74 While 1 34 W 2 1 74 ho 1 2 
35 1 1 35 often 1 75 actions 1 35 " 2 1 75 øm 1 2 
36 M 1 36 much 1 76 way 1 36 ow 2 2 76 ng 1 2 
37 q 1 37 € 1 77 executed 1 37 me 2 2 77 if 1 2 
38 S 1 38 e 1 78 Some 1 38 le 2 2 78 in 1 2 
   39 g 1 79 can 1 39 øi 2 2 79 on 1 2 
   40 daily 1 80 also 1 40 pl 2 2 80 si 1 2 
      81 modify 1         
      82 well 1         
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Table 2 shows the length	ܰ, the diversity ܦ and the entropy ℎ obtained for these two descriptions 

analyzed at several scales and Figure 3 shows the corresponding Zipf’s profiles for Bertrand Russell’s 

speech English speech and Beethoven’s 9th Symphony’s 4th movement. Both descriptions’ profiles are 

presented at the scales they were analyzed: character-scale and the fundamental scale for both, English 

and music, and the word-scale only for English.  

In Figures 3a and 3b, the character scale exhibit the smallest diversity range. Taking only the characters 

as allowable symbols, leaves out any possibility of combination to form more elaborated symbols and 

excluding any possibility of representing how the describing information of a system arranges to create 

what could be loosely called the “language genotype”. Allowing the composition of symbols as the 

conjunction of several successive characters, dramatically increases the diversity of symbols.  

The selection of the symbols to build an observation scale holding the criteria of minimizing the 

resulting frequency distribution entropy, bounds the final symbolic diversity in a scale while capturing 

a variety of symbols that represents the way characters are organized to represent the language structure. 

The fundamental scale appears as the most effective scale, since with it, the original message can be 

represented with the most compressed information, expressed as the lowest entropy measured for all 

scales in both communication systems evaluated. 

Table 2. Details of two descriptions used to test the fundamental scale method. 

  Name of scale 
  Characters Fundamental Words 

Text tag 
Communication 

System 
Length 

N 
Diversity 

D 
Entropy 

h 
Length 

N 
Diversity 

D 
Entropy 

h 
Length 

N 
Diversity 

D 
Entropy 

h 

.Bertrand Russell 
1950.NobelLecture 

English 32,621 68 0.7051 26,080 1227 0.5178 6476 1590 0.8215 

Beethoven. 
Symphony9.Mov4 

MIDI Music 103,564 160 0.6464 84,645 2824 0.4658 not defined 

 

Figure 3. Symbol profiles for an English text (a) and a MIDI music text (b) at different 

scales of observation. 
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Figure 4. Bertrand Russell’s 1950 Nobel ceremony speech behavior according symbol 

length. (a) At fundamental scale symbol occurrences vs symbol length. (b) At fundamental 

scale symbol-length frequency distribution. (c) At word-scale symbol occurrences vs. 

symbol length. (d) At word-scale symbol-length frequency distribution. 

 

Figure 5. Beethoven’s 9th symphony 4th movement MIDI music language behavior 

according symbol length. (a) At fundamental scale symbol occurrences vs. symbol length. 

(b) At fundamental scale symbol-length frequency distribution. 
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Any scale of observation has a correspondence with the size of the symbols focused at that scale. 

When that size is the same for all symbols, the scale can be regarded as a regular scale and specified 

indicating its size. If on the contrary, the scale does not correspond to a constant symbol size, then a 

symbol frequency distribution based on the sizes is a valid depiction of the scale. That is the case of the 

scales of words for English texts and the fundamental scale for our two examples. Figures 4 and 5 show 

those distributions and are useful to interpret the fundamental scales of both examples. 

5. Discussion 

The results clearly showed the calculus of the entropy content of a communication system varies in 

important ways, depending on the scale of analysis. Looking at a language at the scale of characters 

provides a different picture than examining it at the level of words, or at the here described fundamental 

scale. Thus, in order to compare different communication systems, we need to use a similar scale 

applicable to each communication system. We showed that the fundamental scale presented here is 

applicable to very different communication systems, such as music, computer programs, and natural 

languages. This allows us to perform comparative studies regarding the systems entropy and thus to infer 

about the relative complexity of different communication systems. 

In both examples analyzed, the profiles at the scale of characters and the fundamental scale run close 

to each other, within the range of the most frequent symbols to the symbols with a rank placed near the 

mid logarithmic scale. For points with lower ranking, the fundamental-scale profile extends its tail 

toward the region of low symbol frequencies. The closeness of fundamental and character scaled profiles 

in the high frequency region, indicates that the character-scaled language B1 is a subset of the 

fundamental scale language. The language at fundamental scale, having a greater symbolic diversity and 

therefore more degrees of freedom, finds a way to generate a symbol frequency distribution with a lower 

entropy as compared to the minimal entropy distribution when the description is viewed at the scale of 

words. Focusing in the fundamental scale profiles, the symbols located in the lower rank region―the 

tail of the profile―tend to be longer symbols formed by more than one character. These multi-character 

symbols, which cannot exist at the character scale, are formed at the expense of instances of single 

character symbols typically located in the profile’s head. This explains the nearly constant gap between 

the two profiles in the profiles’ heads.  

The English description, observed at the scale of words, produces a symbol profile incapable of 

showing short symbols―fragments of a word―which would represent important aspects of a spoken 

language as syllabus and other typical fundamental language sounds. On the opposite extreme, by 

observing at the character scale, the profile forbids considering strings of characters as symbols, thus 

meaningful words or structures cannot appear at this scale, missing important information about the 

structure of the described system. 

The fundamental scale, on the other hand, appears as an intermediate scale capable of capturing the 

essence of the most elementary structure of a language, as its alphabet, as well as larger structures which 

represent the result of language evolution in its way to form more specialized and complex symbols. The 

same applies for music MIDI representation. There is no word scale for music, but clearly the character 

scale does not capture the richness that undoubtedly is present in this type of language. 
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Another difference between the fundamental scale, and other scales is the sensitivity to the order of 

the symbols as they appear in the text. At the scale of words or the scale of characters, the symbol 

frequency profile does not vary as the symbol order. The profiles depend only on the number of 

appearances of each symbol, word or character, depending on the subject scale. The profile built at the 

fundamental scale does change as the symbol order is altered, not because of the symbol order itself, but 

because the symbol set recognized as fundamental, changes when the order or words or characters are 

modified. As a consequence, the character and word scales do not have any sense of grammar. The 

fundamental scale and its corresponding profile, on the other hand, is affected by the order in which 

words are organized—or disorganized—and is therefore sensitive to the rules of grammar. Other 

communication systems may not have words, but they must have some rules or the equivalence of a 

grammar. Assuming rigid rules as symbol size or symbol delimiters seems to be a barrier when studying 

the structure of system descriptions. 

In the search for symbols, the fundamental scale method accounts for frequent sequences of strings 

which result from grammar rules. The string “ing”, for example appears at the end of words representing 

verbs or actions. Moreover, it normally comes followed by a space character (“ ”). As the sequence 

appears with noticeable frequency, the fundamental scale method recognizes the char sequence “ing” 

(ending with a space) as an entropy reducer token and therefore an important descriptive piece of English 

as a language. The observation of a description at its fundamental scale is therefore, sensitive to the order in 

which char-strings appear within the description. The fundamental scale method detects the internal grammar 

which has been ignored when analyzing Zipf’s profiles at the scale of words in many previous studies. 

Despite the concept of fundamental scale being applicable to descriptions built over multidimensional 

spaces, the fundamental scale method and the algorithm developed is devised for 1-dimensional 

descriptions. The symbol search process implemented scans the description along the writing dimension 

of the text file being analyzed. This means that the fundamental symbols constituting 2D descriptions 

like pictures, photographs or plain data tables cannot be discovered with the algorithm as developed. To 

extend the fundamental scale algorithm to descriptions of more than one dimension, the restriction (8c) 

must be modified or complemented, to incorporate the sense of indivisible information unit―as has been 

the character in the development of this study―and the allowed symbol boundary shape in the 

description-space considered. This adjustment is a difficult task to accomplish because establishing 

criteria for the shapes of the boundaries becomes a hard to solve topology problem, especially in higher 

dimensional spaces. 

There are other limitations for the analysis of descriptions of one dimension. Some punctuation signs 

which belong more to the writing system than to the language itself, work in pairs. Parenthesis, quotes, 

admiration and question marks are some of the written punctuation signs which work in couples. 

Intuition indicates that each one of them is a half-symbol belonging to one symbol. In these cases, not 

considering each half as part of the same symbol most likely increases the entropy associated to the set 

of symbols discovered, thus becoming a deviation of the ideal application of the method. Nevertheless, 

for English, Spanish and human natural languages, in general, the characters which work in couples, 

appear infrequently as compared to the rest of characters. Thus the minimal entropy distortion introduced 

by this effect is small. 

Practical use of the algorithm is feasible up to some description lengths. The actual limit depends on 

the nature of the language used in the description. For syllabic human natural languages the algorithm 
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can be directly applied to texts of 40,000 characters or less. Longer texts, however, can be analyzed by 

partitioning. Thus the application limit for texts expressed in human natural languages, covers most 

needs. For the analysis of music, the use of the algorithm is limited to the MIDI format, result in large 

processing times even for powerful computers available today. The problem of scanning all possible sets 

of symbols in a sequence of characters grows as a combinatorial number. The Problem rapidly gets too 

complex in the computational sense, and its practical application is only feasible for representations of 

music in reduced sets of digitized symbols like the MIDI coding. Using more comprehensive formats 

like .MP3, a compressing technology capable of reducing the size of a music pack while keeping 

reasonably good sound quality, would be enough to locate the solution of the problem beyond our 

possibilities of performing experiments with large sets of musical pieces. Yet, the fundamental scale 

method provides new possibilities for discovering the most representative dimension of small sized 

textual descriptions, allowing us to advance in our understanding of languages.  

The Fundamental Scale, as a concept and as a method to find a quantitative approximation to the 

description of communication systems promises to be fruitful in further research. Tackling the barriers 

of the algorithm by finding ways to reduce the number of loops and augmenting the assertiveness of the 

criteria used, may extend the space of practical use of the notion of a description’s fundamental scale. 

Here we showed that the method reveals structural properties of languages and other communication 

systems, offering a path for comparative studies of the complexity of communication. 
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Appendix A. The Fundamental Scale Algorithm Pseudo-Code 

The following are a series of pseudo-codes of routines to determine the Fundamental Scale of any 

sequence of characters. 

BlueLetterPhrases: refers to computer instructions: Routine names, control loops and conditional 

statements. 

BlackItalicLetterPhrases: refers to variables. 1D Arrays are followed by [], and 2D arrays are 

followed by [,]. GreyLetterPhrases: Comments and NAME OF PROCESS STAGES. 
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PROSPECTIVE SYMBOL DETECTION
ScanTextStartingAtAPhase( TheText, SymbolSize, Phase, Symbol[], SymbolFrequency[], SymbolPosition[,] )

CursorPosition  = Phase " CursorPosition  = the position of the cursor in the process of reading a text
StillSomeCharsToRead = true
if CursorPosition  > TextLength - Phase  then

StillSomeCharsToRead = false
i = 0

end if
while StillSomeCharsToRead

SymbolJustRead = TheSequenceOfSymbolSize CharsReadAt CursorPosition
ThisIsANewSymbol = true
if SymbolJustRead  IsNotAnElementOfArray Symbol[I]   then ThisIsANewSymbol  = false
if ThisIsANewSymbol  then

i = i + 1
Symbol(i) = SymbolJustRead
SymbolFrequency[i] = 1

else
IndexOfExistingSymbol  = IdentifyIndexOfSymbolJustRead
SymbolFrequency[IndexOfExistingSymbol] =  SymbolFrequency[IndexOfExistingSymbol] + 1

end if
CursorPosition = CursorPosition + Phase
MoveCursorToPosition CursorPosition
if CursorPosition  > TextLength - Phase  then StillSomeCharsToRead  = false

end while

Scans TheText  looking for a chracaters sequences of SymbolSize characters, starting the reading at the 
character position Phase . Returns the array of different Symbol[] with size = SymbolSize,  their frequency 
of appearance at this scan Phase, SymbolFrequency[],  and the array of SymbolPosition[,] .
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BIRTH AND SURVIVAL PROCESSES

i = 0
Entropy  = 0
EntropyOfASymbolSet(SymbolFrequency[], Entropy )
D  = UpperBound of array Symbol[] (+1 deppending on the coding language)
UncertaintyPerSymbol = Entropy / D
Lambda = 0.01
for each i   " for each ProspectiveSymbol[]

P[i]  = SymbolFrequency[]  / N
PropectSymbolUncertainty[ i ]  = - P[i] * log(P[i] )	/	log(D )
if  UncertaintyPerSymbol - Lambda  <  PropectSymbolUncertainty[i] <  UncertaintyPerSymbol + Lambda

BIRTH PROCESS
j = 0
for each PropectSymbolPosition[i,j] " for each PropectSymbolPosition[i,j]

Copy established arrays
EstablishedSymbol[]  = Symbol[] 
EstablishedSymbolFrequency[]  = SymbolFrequency[] 
EstablishedSymbolPosition[,]  = SymbolPosition[,] 

CONSERVATION OF SYMBOLIC QUANTITY
Locate the Symbol[k]  and the instaces m affected by (conflicting with) the insertion

 of the Symbol[i] " There may be more than one Symbol[] affected

for each k       " for each Symbol[k]  affected by insertion of ProspectiveSymbol[i]
for each m       " for each instance m  of Symbol[k] affected by some insertion.

Delete the instace m  of Symbol[k] located at ProspectSymbolPosition[k,m]
Update arrays SymbolFrequency[] and SymbolPosition[,]

end for
end for
Insert ProspectiveSymbol[i]  into array Symbol[]
Update arrays SymbolFrequency[] and	SymbolPosition[,]

SURVIVAL PROCESS
EntropyOfASymbolSet(SymbolFrequency[], Entropy )
if Entropy < EstablishedEntropy then  Entropy  decreased

EstablishedEntropy  = Entropy
else  Entropy increased

Reject ProspectiveSymbol  just inserted and Revert to Previous arrays
Symbol[] = EstablishedSymbol[]
SymbolFrequency[] = EstablishedSymbolFrequency[]
SymbolPosition[,] = EstablishedSymbolPosition[,]

end if
end for
EntropyOfASymbolSet(SymbolFrequency[], Entropy )
EstablishedEntropy  = Entropy

else " PropectSymbolUncertainty[i]  out of band
" Prospective Symbol has no oportunity to survive

end if
end for

BirthAndSurvival(Symbol[], SymbolFrequency[], SymbolPosition[], Propective Symbol[], PropectSymbolFreq[], 
PropectSymbolPosition[], N )
Inserts ProspectiveSymbol[i] into the arrays Symbol[]  if favorable condirions for an entropy reduction are 
observed. Every time a ProspectiveSymbol[i] is inserted into the Symbol[]  array, an entropy test is 
performed. If no entropy decrease is observed, the lastly inserted symbol is deleted and arrays are 
reverted to their condition prior to the  insertion. Returns the updated arrays Symbol[], 
SymbolFrequency[], SymbolPosition[] .
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Appendix B 

B.1. Bertrand Russell’s speech given at the 1950 Nobel Award Ceremony: 

 Word-scale profile Complete List. Speech text.  
 Total number of symbols [words]: 5716. Diversity: 1868. 

Rank Symbol Occurrences Length Rank Symbol Occurrences Length 
1 , 412 1 51 or 20 2 
2 the 342 3 52 some 20 4 
3 . 256 1 53 no 19 2 
4 of 218 2 54 so 18 2 
5 to 172 2 55 was 18 3 
6 is 140 2 56 our 18 3 
7 and 132 3 57 human 18 5 
8 a 106 1 58 can 17 3 
9 in 105 2 59 these 17 5 
10 that 84 4 60 very 16 4 
11 are 80 3 61 may 16 3 
12 it 66 2 62 many 16 4 
13 be 64 2 63 ; 15 1 
14 they 53 4 64 than 15 4 
15 not 52 3 65 such 15 4 
16 as 51 2 66 fear 15 4 
17 which 46 5 67 motives 14 7 
18 if 44 2 68 war 14 3 
19 I 43 1 69 life 13 4 
20 have 42 4 70 people 13 6 
21 we 40 2 71 however 13 7 
22 by 38 2 72 because 12 7 
23 you 37 3 73 « 12 1 
24 he 37 2 74 his 12 3 
25 but 37 3 75 excitement 12 10 
26 for 35 3 76 hate 12 4 
27 will 34 4 77 most 12 4 
28 their 33 5 78 your 12 4 
29 ¹ 32 1 79 great 12 5 
30 with 32 4 80 an 12 2 
31 from 30 4 81 think 11 5 
32 power 30 5 82 become 11 6 
33 this 29 4 83 been 11 4 
34 when 28 4 84 motive 11 6 
35 would 27 5 85 herd 11 4 
36 more 27 4 86 much 11 4 
37 one 27 3 87 out 10 3 
38 there 27 5 88 should 10 6 
39 who 26 3 89 could 10 5 
40 has 26 3 90 those 10 5 
41 them 25 4 91 politics 10 8 
42 men 25 3 92 vanity 10 6 
43 do 25 2 93 political 9 9 
44 at 25 2 94 were 9 4 
45 all 25 3 95 upon 9 4 
46 what 25 4 96 desires 9 7 
47 on 24 2 97 wish 8 4 
48 other 24 5 98 ? 8 1 
49 love 24 4 99 man 8 3 
50 had 22 3 100 desire 8 6 
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Rank Symbol Occurrences Length Rank Symbol Occurrences Length 
201 boredom 4 7 301 preference 3 10 
202 time 4 4 302 various 3 7 
203 better 4 6 303 type 3 4 
204 while 4 5 304 obvious 3 7 
205 gambling 4 8 305 sometimes 3 9 
206 serious 4 7 306 sank 3 4 
207 long 4 4 307 away 3 4 
208 found 4 5 308 cause 3 5 
209 hand 4 4 309 end 3 3 
210 old 4 3 310 killed 3 6 
211 taken 4 5 311 innocent 3 8 
212 members 4 7 312 believe 3 7 
213 destructive 4 11 313 themselves 3 10 
214 above 4 5 314 desired 3 7 
215 within 4 6 315 step 3 4 
216 enemies 4 7 316 wars 3 4 
217 French 4 6 317 kind 3 4 
218 way 4 3 318 where 3 5 
219 communists 4 10 319 passions 3 8 
220 effective 4 9 320 instinctive 3 11 
221 sympathy 4 8 321 brothers 3 8 
222 self 4 4 322 feeling 3 7 
223 Nation 4 6 323 Russians 3 8 
224 selfishness 4 11 324 enemy 3 5 
225 moralists 4 9 325 ways 3 4 
226 general 4 7 326 conflict 3 8 
227 although 4 8 327 altruistic 3 10 
228 politicians 4 11 328 against 3 7 
229 since 4 5 329 operation 3 9 
230 ideologies 4 10 330 fall 3 4 
231 government 4 10 331 hunger 3 6 
232 account 3 7 332 history 3 7 
233 population 3 10 333 rivalry 3 7 
234 South 3 5 334 current 2 7 
235 North 3 5 335 theory 2 6 
236 books 3 5 336 psychology 2 10 
237 sort 3 4 337 facts 2 5 
238 person 3 6 338 constitutional 2 14 
239 between 3 7 339 began 2 5 
240 cannot 3 6 340 right 2 5 
241 politician 3 10 341 average 2 7 
242 frequently 3 10 342 income 2 6 
243 causes 3 6 343 want 2 4 
244 action 3 6 344 tell 2 4 
245 another 3 7 345 heard 2 5 
246 far 3 3 346 questions 2 9 
247 too 3 3 347 remote 2 6 
248 wholly 3 6 348 scientific 2 10 
249 duty 3 4 349 constantly 2 10 
250 sense 3 5 350 thinking 2 8 
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Rank Symbol Occurrences Length Rank Symbol Occurrences Length 
501 designed 2 8 551 century 2 7 
502 deceive 2 7 552 feel 2 4 
503 condemn 2 7 553 hatred 2 6 
504 form 2 4 554 strange 2 7 
505 appropriate 2 11 555 methods 2 7 
506 feared 2 6 556 best 2 4 
507 fellow 2 6 557 thoroughly 2 10 
508 leads 2 5 558 produced 2 8 
509 exciting 2 8 559 ill 2 3 
510 provide 2 7 560 treated 2 7 
511 rabbits 2 7 561 Western 2 7 
512 impulse 2 7 562 countries 2 9 
513 big 2 3 563 sum 2 3 
514 contain 2 7 564 expensive 2 9 
515 small 2 5 565 Germans 2 7 
516 enmity 2 6 566 victors 2 7 
517 actual 2 6 567 secured 2 7 
518 member 2 6 568 advantages 2 10 
519 mechanism 2 9 569 B 2 1 
520 nations 2 7 570 large 2 5 
521 regards 2 7 571 disguised 2 9 
522 international 2 13 572 conclusion 2 10 
523 discovered 2 10 573 intelligence 2 12 
524 degree 2 6 574 ladies 2 6 
525 says 2 4 575 economic 2 8 
526 am 2 2 576 nor 2 3 
527 line 2 4 577 mankind 2 7 
528 Rhine 2 5 578 court 2 5 
529 essential 2 9 579 civilized 2 9 
530 danger 2 6 580 dance 2 5 
531 TRUE 2 4 581 none 2 4 
532 might 2 5 582 killing 2 7 
533 regard 2 6 583 Royal 1 5 
534 Mother 2 6 584 Highness 1 8 
535 Nature 2 6 585 Gentlemen 1 9 
536 cooperation 2 11 586 chosen 1 6 
537 easily 2 6 587 subject 1 7 
538 schools 2 7 588 lecture 1 7 
539 turning 2 7 589 tonight 1 7 
540 cruelty 2 7 590 discussions 1 11 
541 everyday 2 8 591 insufficient 1 12 
542 atom 2 4 592 statistics 1 10 
543 bomb 2 4 593 organization 1 12 
544 wicked 2 6 594 set 1 3 
545 rival 2 5 595 forth 1 5 
546 hating 2 6 596 minutely 1 8 
547 burglars 2 8 597 difficulty 1 10 
548 disapprove 2 10 598 finding 1 7 
549 attitude 2 8 599 able 1 4 
550 irreligious 2 11 600 ascertain 1 9 
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B.2. Bertrand Russell’s speech given at the 1950 Nobel Award Ceremony: 

Fundamental-scale profile: Complete profile. Speech text. 
Total number of symbols [Fundamental Symbols]: 25,362. Diversity: 1247. 

Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length 
1 ø 0.192475 5020 1 51 pr 0.000513 13 2 
2 e 0.099270 2589 1 52 B 0.000512 13 1 
3 t 0.077074 2010 1 53 fo 0.000512 13 2 
4 n 0.050588 1319 1 54 .øTh 0.000485 13 4 
5 a 0.050490 1317 1 55 ot 0.000479 12 2 
6 o 0.049389 1288 1 56 st 0.000477 12 2 
7 i 0.049202 1283 1 57 ly 0.000475 12 2 
8 s 0.047820 1247 1 58 ¹ 0.000475 12 1 
9 h 0.047428 1237 1 59 ur 0.000474 12 2 

10 r 0.037977 990 1 60 ll 0.000473 12 2 
11 d 0.017566 458 1 61 if 0.000472 12 2 
12 l 0.017226 449 1 62 co 0.000471 12 2 
13 f 0.015580 406 1 63 as 0.000471 12 2 
14 c 0.015178 396 1 64 S 0.000471 12 1 
15 w 0.013417 350 1 65 E 0.000469 12 1 
16 m 0.010668 278 1 66 to 0.000439 11 2 
17 y 0.009954 260 1 67 politic 0.000439 11 7 
18 , 0.009707 253 1 68 F 0.000436 11 1 
19 u 0.008401 219 1 69 ra 0.000433 11 2 
20 p 0.007610 198 1 70 ca 0.000433 11 2 
21 g 0.006424 168 1 71 øf 0.000432 11 2 
22 v 0.006262 163 1 72 ce 0.000430 11 2 
23 b 0.004462 116 1 73 K 0.000428 11 1 
24 . 0.004066 106 1 74 will 0.000425 11 4 
25 I 0.001695 44 1 75 øb 0.000399 10 2 
26 k 0.001421 37 1 76 um 0.000398 10 2 
27 nd 0.001258 33 2 77 em 0.000397 10 2 
28 be 0.001149 30 2 78 M 0.000395 10 1 
29 ma 0.000831 22 2 79 av 0.000395 10 2 
30 of 0.000829 22 2 80 ev 0.000395 10 2 
31 A 0.000827 22 1 81 su 0.000394 10 2 
32 x 0.000826 22 1 82 ol 0.000394 10 2 
33 T 0.000787 21 1 83 ver 0.000393 10 3 
34 un 0.000747 19 2 84 se 0.000393 10 2 
35 us 0.000713 19 2 85 whic 0.000390 10 4 
36 .øI 0.000668 17 3 86 woul 0.000363 9 4 
37 by 0.000633 17 2 87 pp 0.000357 9 2 
38 s, 0.000629 16 2 88 de 0.000356 9 2 
39 mo 0.000627 16 2 89 im 0.000356 9 2 
40 me 0.000626 16 2 90 ua 0.000355 9 2 
41 ed 0.000599 16 2 91 ac 0.000355 9 2 
42 ad 0.000592 15 2 92 op 0.000355 9 2 
43 lo 0.000592 15 2 93 wi 0.000354 9 2 
44 ve 0.000588 15 2 94 from 0.000354 9 4 
45 om 0.000587 15 2 95 com 0.000354 9 3 
46 ød 0.000586 15 2 96 øp 0.000353 9 2 
47 W 0.000553 14 1 97 no 0.000353 9 2 
48 ri 0.000551 14 2 98 hi 0.000353 9 2 
49 ag 0.000514 13 2 99 so 0.000353 9 2 
50 ; 0.000513 13 1 100 ho 0.000352 9 2 
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Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length 
776 øgr 7.87×10−5 2 3 1001 nm 4.00×10−5 1 2 
777 lec 7.87×10−5 2 3 1002 fl 4.00×10−5 1 2 
778 lki 7.87×10−5 2 3 1003 rø 4.00×10−5 1 2 
779 ødea 7.87×10−5 2 4 1004 du 4.00×10−5 1 2 
780 ?øAn 7.87×10−5 2 4 1005 8 4.00×10−5 1 1 
781 rimi 7.87×10−5 2 4 1006 J 4.00×10−5 1 1 
782 day, 7.87×10−5 2 4 1007 øu 4.00×10−5 1 2 
783 joym 7.87×10−5 2 4 1008 nu 4.00×10−5 1 2 
784 stsø 7.87×10−5 2 4 1009 ob 4.00×10−5 1 2 
785 firs 7.87×10−5 2 4 1010 cke 4.00×10−5 1 3 
786 forø 7.87×10−5 2 4 1011 oul 4.00×10−5 1 3 
787 notø 7.87×10−5 2 4 1012 ari 4.00×10−5 1 3 
788 mora 7.87×10−5 2 4 1013 til 4.00×10−5 1 3 
789 eøol 7.87×10−5 2 4 1014 le. 4.00×10−5 1 3 
790 hand 7.87×10−5 2 4 1015 mun 4.00×10−5 1 3 
791 zedøm 7.87×10−5 2 5 1016 war 4.00×10−5 1 3 
792 løref 7.87×10−5 2 5 1017 tho 4.00×10−5 1 3 
793 uchøa 7.87×10−5 2 5 1018 rth 4.00×10−5 1 3 
794 produc 7.87×10−5 2 6 1019 døw 4.00×10−5 1 3 
795 inøcon 7.87×10−5 2 6 1020 slav 4.00×10−5 1 4 
796 lømake¹up 7.87×10−5 2 9 1021 øint 4.00×10−5 1 4 
797 heødevilø 7.87×10−5 2 9 1022 aløs 4.00×10−5 1 4 
798 shouldøbe 7.87×10−5 2 9 1023 nalø 4.00×10−5 1 4 
799 y¹fiveømil 7.87×10−5 2 10 1024 ty.ø 4.00×10−5 1 4 
800 seriousness 7.87×10−5 2 11 1025 tern 4.00×10−5 1 4 
801 fromøboredom 7.87×10−5 2 12 1026 erty 4.00×10−5 1 4 
802 not,øperhaps, 7.87×10−5 2 13 1027 lyøf 4.00×10−5 1 4 
803 uch 7.86×10−5 2 3 1028 ent, 4.00×10−5 1 4 
804 ry 7.86×10−5 2 2 1029 ryøg 4.00×10−5 1 4 
805 arø 7.84×10−5 2 3 1030 eøk 3.96×10−5 1 3 
806 ' 7.84×10−5 2 1 1031 pulse 3.96×10−5 1 5 
807 llø 7.83×10−5 2 3 1032 øwould 3.96×10−5 1 6 
808 rad 7.83×10−5 2 3 1033 unl 3.96×10−5 1 3 
809 dr 7.83×10−5 2 2 1034 you, 3.96×10−5 1 4 
810 D 7.83×10−5 2 1 1035 oføex 3.96×10−5 1 5 
811 øun 7.79×10−5 2 3 1036 igh 3.96×10−5 1 3 
812 wil 7.79×10−5 2 3 1037 rav 3.96×10−5 1 3 
813 about 7.79×10−5 2 5 1038 øev 3.96×10−5 1 3 
814 y,øa 7.79×10−5 2 4 1039 øsp 3.96×10−5 1 3 
815 Gr 7.79×10−5 2 2 1040 eøt 3.96×10−5 1 3 
816 oe 7.79×10−5 2 2 1041 xci 3.96×10−5 1 3 
817 lov 7.79×10−5 2 3 1042 let 3.96×10−5 1 3 
818 øMa 7.79×10−5 2 3 1043 ud 3.96×10−5 1 2 
819 iew 7.79×10−5 2 3 1044 nn 3.96×10−5 1 2 
820 agr 7.79×10−5 2 3 1045 hr 3.96×10−5 1 2 
821 ivi 7.79×10−5 2 3 1046 ug 3.96×10−5 1 2 
822 ,ø« 7.79×10−5 2 3 1047 gg 3.96×10−5 1 2 
823 .øO 7.79×10−5 2 3 1048 ead 3.96×10−5 1 3 
824 esu 7.79×10−5 2 3 1049 ,øe 3.96×10−5 1 3 
825 oøi 7.79×10−5 2 3 1050 eed 3.96×10−5 1 3 

 
  



Entropy 2015, 17 1630 

 
B.3. Beethoven 9th Symphony, 4th movement: 
 Fundamental -scale profile: Complete profile. Complete text. Listen MIDI Version.  
 Total number of symbols [Fundamental Symbols]: 84645. Diversity: 2824. 

Rank Symbol Probability Occurrence Length Rank Symbol Probability Occurrence Length 
1 ² 0.38332 32446 1 51 1 0.00287 243 1 
2 x 0.03896 3298 1 52 ] 0.00278 235 1 
3 Φ 0.03870 3276 1 53 5 0.00273 231 1 
4 n 0.03320 2810 1 54 + 0.00267 226 1 
5 @ 0.01921 1626 1 55 [ 0.00265 224 1 
6 ³ 0.01916 1622 1 56 A 0.00259 219 1 
7 d 0.01769 1497 1 57 0 0.00261 221 1 
8 9 0.01454 1231 1 58 ! 0.00205 173 1 
9 2 0.01359 1151 1 59 . 0.00189 160 1 

10 ? 0.01358 1149 1 60 8 0.00167 142 1 
11 - 0.01321 1118 1 61 W 0.00160 135 1 
12 é 0.01304 1104 1 62 P 0.00158 134 1 
13 J 0.01221 1033 1 63 - 0.00150 127 1 
14 E 0.01212 1026 1 64 D 0.00148 125 1 
15 B 0.01108 938 1 65                    0.00123 104 1 
16 L 0.00997 844 1 66 ¿ 0.00117 99 1 
17 Q 0.00979 828 1 67 Y 0.00115 97 1 
18 N 0.00944 799 1 68 3 0.00107 91 1 
19 / 0.00899 761 1 69 % 0.00100 84 1 
20 6 0.00877 742 1 70                    0.00087 73 7 
21 ; 0.00826 699 1 71 # 0.00081 69 1 
22 C 0.00815 690 1 72 °@ 0.00078 66 2 
23 = 0.00801 678 1 73 w 0.00073 62 1 
24 O 0.00773 654 1 74 ½ 0.00070 59 1 
25 V 0.00748 633 1 75 $ 0.00064 54 1 
26 K 0.00746 631 1 76  0.00064 54 1 
27 ã 0.00671 568 1 77  0.00063 53 1 
28 ’ 0.00658 557 1 78  0.00057 48 1 
29 4 0.00635 537 1 79  0.00057 48 1 
30 ¾ 0.00600 508 1 80                    0.00056 47 8 
31 Z 0.00594 503 1 81 ú 0.00054 46 1 
32 7 0.00590 499 1 82                    0.00054 46 4 
33 G 0.00582 492 1 83 ‚ 0.00054 46 1 
34 I 0.00576 488 1 84                    0.00053 44 4 
35 ° 0.00517 438 1 85 ¤ 0.00050 43 1 
36 & 0.00454 385 1 86  0.00050 43 1 
37 F 0.00426 360 1 87 4¾'4 0.00049 41 4 
38 R 0.00410 347 1 88 ƒ 0.00048 41 1 
39 X 0.00409 346 1 89  0.00047 40 0 
40  0.00401 340 1 90 _ 0.00047 40 1 
41 * 0.00369 312 1 91 " 0.00047 40 1 
42   0.00345 292 1 92 let 0.00046 39 1 
43 S 0.00323 274 1 93 ` 0.00044 37 1 
44 T 0.00322 273 1 94 nn 0.00044 37 1 
45 : 0.00320 271 1 95 @³ 0.00043 37 2 
46 H 0.00318 269 1 96 °@³ 0.00043 36 3 
47 f 0.00302 255 1 97 Á 0.00042 36 1 
48 M 0.00299 253 1 98 í 0.00042 36 1 
49 U 0.00285 241 1 99 -¾'- 0.00038 32 4 
50  0.00285 241 1 100 v 0.00038 32 1 
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Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length 
401 S?²G 0.00006 5 4 651 ¿²ΦR¾ 0.00004 3 5 
402 ²9Zn 0.00006 5 4 652 H?nM² 0.00004 3 5 

403 d 0.00006 5 2 653 
²Y¾²M¾n

V 
0.00004 3 8 

404 ²é 0.00006 5 2 654 "²‚r.¾²"¾‚ 0.00004 3 10 
405 † 0.00006 5 1 655 V 0.00004 3 2 
406 ²‚ 0.00006 5 2 656 [ 0.00004 3 2 
407 Φ8x 0.00006 5 3 657 3 0.00004 3 2 
408 ãΦ 0.00006 5 2 658 N 0.00004 3 2 
409 ΦB 0.00005 5 2 659 1 0.00004 3 2 
410 Φ’ 0.00005 5 2 660 7 0.00004 3 2 
411 ã 0.00005 5 2 661 ;x²7x 0.00004 3 5 
412 X³ 0.00005 5 2 662 GxãS 0.00004 3 5 
413 &³ 0.00005 5 2 663 ;²²7 0.00004 3 5 
414 #³ 0.00005 5 2 664 %²Φ2x 0.00004 3 5 
415 ?²-?n 0.00005 4 5 665 &²ΦUx 0.00004 3 5 
416 -; 0.00005 4 2 666 ¾²ΦEx 0.00004 3 5 
417 1³2= 0.00005 4 4 667 ²&xã 0.00004 3 5 
418 L³²@ 0.00005 4 4 668 ²E²ΦS 0.00004 3 5 
419 8³2D 0.00005 4 4 669 ¾xãQ 0.00004 3 5 
420 6³2B 0.00005 4 4 670 ΦJx²é 0.00004 3 5 
421 édnN 0.00005 4 4 671 ãfX²² 0.00004 3 5 
422 =³nU² 0.00005 4 5 672 Φ]x²Q 0.00004 3 5 
423 ;³nS² 0.00005 4 5 673 ²Φ4x 0.00004 3 4 
424 L?²C? 0.00005 4 5 674 xãfZ² 0.00004 3 5 
425 d-N²ΦLd-L²ΦJd-J 0.00005 4 15 675 +xãQ 0.00004 3 5 
426 E? 0.00005 4 2 676 ΦZx²] 0.00004 3 5 
427 &²Φ¾ 0.00005 4 4 677 2²Φ@x 0.00004 3 5 
428 NxnN 0.00005 4 4 678 é/ 0.00004 3 2 
429 2-²Φ9-29²Φ---R 0.00005 4 14 679 62 0.00004 3 2 
430 Sx 0.00005 4 2 680 72 0.00004 3 2 
431 éx 0.00005 4 2 681 ãfI 0.00004 3 3 
432 2Q 0.00005 4 2 682 7d²+d 0.00004 3 5 
433 3² 0.00005 4 2 683 ;x²@x 0.00004 3 5 
434 //ãf 0.00005 4 4 684 O2²L2 0.00004 3 5 
435 /²-/ãf9 0.00005 4 7 685 Gx²;x²V 0.00004 3 7 
436  Q²ΦQxnQ 0.00005 4 8 686 ;/²é/²9/ 0.00004 3 8 
437 Q/²E/ãfQ 0.00005 4 8 687 Qx 0.00004 3 2 
438 ]x²Bx²9xn] 0.00005 4 10 688 L 0.00004 3 2 
439 7xn7²Φ-xnE 0.00005 4 10 689 J 0.00004 3 2 
440 xã 0.00005 4 2 690 Φ- 0.00004 3 2 
441 Φ] 0.00005 4 2 691 Bd 0.00004 3 2 
442 @ã 0.00005 4 2 692 Y²²M² 0.00004 3 5 
443 ²ã.¾ã 0.00005 4 6 693 ²;xnK 0.00004 3 5 
444 .¾ãf 0.00005 4 4 694 ²2xã 0.00004 3 5 
445 K¾nT 0.00005 4 4 695 ²/xnW 0.00004 3 5 
446 Kãf5 0.00005 4 4 696 °@³Z 0.00004 3 5 
447 VZ²JZ 0.00005 4 5 697 ΦZxnZ 0.00004 3 5 
448 é?².?ãf 0.00005 4 7 698 /xãf]² 0.00004 3 6 
449 ?²:?ãf: 0.00005 4 7 699 :xn 0.00004 3 3 
450 .¾²"¾‚úJ 0.00005 4 8 700 C²² 0.00004 3 3 
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Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length 
2101 2dZ 0.00002 2 4 2771 4?-4 0.00001 1 4 
2102 V² 0.00002 2 4 2772 ²4?- 0.00001 1 4 
2103 Xd²P 0.00002 2 4 2773 9d²- 0.00001 1 4 
2104 !²²[ 0.00002 2 4 2774 -²Φ/ 0.00001 1 4 
2105 2dn& 0.00002 2 4 2775 -4²Φ 0.00001 1 4 
2106 4V² 0.00002 2 4 2776 ² 0.00001 1 2 
2107 E²] 0.00002 2 4 2777 K²7Kn 0.00001 1 5 
2108 ²OKn 0.00002 2 4 2778 K²NK 0.00001 1 4 
2109  Bd² 0.00002 2 4 2779 éK²7 0.00001 1 4 
2110 °@³ 0.00002 2 4 2780 xE 0.00001 1 2 
2111 ²ΦGK 0.00002 2 4 2781 QK² 0.00001 1 3 
2112 :d²N 0.00002 2 4 2782 Xd 0.00001 1 2 
2113 !dnU 0.00002 2 4 2783 OK 0.00001 1 2 
2114 Ld²* 0.00002 2 4 2784 ² 0.00001 1 2 
2115 ¾²²4 0.00002 2 4 2785 dx 0.00001 1 2 
2116 EdSE 0.00002 2 4 2786 dI 0.00001 1 2 
2117 Z²N²oN 0.00002 2 8 2787 Un 0.00001 1 2 
2118 K²NK²EKã 0.00002 2 8 2788 ã* 0.00001 1 2 
2119 ²LKãfC²² 0.00002 2 8 2789 Jd 0.00001 1 2 
2120 ²4dxX²²P 0.00002 2 8 2790 ¼ 0.00001 1 1 
2121 CK²LK²GK 0.00002 2 8 2791 Q 0.00001 1 2 
2122 ²;K²7Kn@ 0.00002 2 8 2792 ²/ 0.00001 1 2 
2123 X²ÁO²[ 0.00002 2 8 2793 dn[ 0.00001 1 3 
2124 [²O²"-d 0.00002 2 9 2794 2dã 0.00001 1 3 
2125 Φ=Kn=²²7² 0.00002 2 9 2795 J- 0.00001 1 2 
2126 d²]dÉ2²Y& 0.00002 2 9 2796 ú@² 0.00001 1 3 
2127 ãf=²Φ@Kãf 0.00002 2 9 2797 ²¿³ 0.00001 1 3 
2128 ]²jZd²Qd²] 0.00002 2 10 2798  F 0.00001 1 2 
2129 &d²2dIQ²V 0.00002 2 10 2799 [° 0.00001 1 2 
2130 -‚ 0.00002 2 2 2800 °@ 0.00001 1 3 
2131 …F 0.00002 2 2 2801 4²Φ 0.00001 1 3 
2132 ²6 0.00002 2 2 2802 ¿³ 0.00001 1 2 
2133 2³ 0.00002 2 2 2803 ΦT 0.00001 1 2 
2134 E- 0.00002 2 2 2804 $- 0.00001 1 2 
2135 ²A 0.00002 2 2 2805 -ƒ 0.00001 1 2 
2136 ²¿ 0.00002 2 2 2806 ¡ 0.00001 1 1 
2137  R  0.00002 2 2 2807 -‚ú 0.00001 1 3 
2138 ²L 0.00002 2 2 2808 ãé 0.00001 1 3 
2139 ° 0.00002 2 2 2809 ¿³ã 0.00001 1 3 
2140 ã@ 0.00002 2 3 2810 ²²6 0.00001 1 3 
2141 ²²’ 0.00002 2 3 2811 Φ@³ 0.00001 1 3 
2142 ²J² 0.00002 2 3 2812 0-²$ 0.00001 1 4 
2143 ³²L 0.00002 2 3 2813 …Fé² 0.00001 1 4 
2144 ‚úé 0.00002 2 3 2814 ³Φ 0.00001 1 2 
2145 VE² 0.00002 2 3 2815 š 0.00001 1 1 
2146 -²@ 0.00002 2 3 2816 Ó 0.00001 1 1 
2147 ƒV7 0.00002 2 3 2817 ~ 0.00001 1 1 
2148 Φ@- 0.00002 2 3 2818   0.00001 1 1 
2149 X°@ 0.00002 2 3 2819 ³‡6 0.00001 1 3 
2150 ²ã¤ 0.00002 2 3 2820 ²7³ 0.00001 1 3 
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