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Abstract: The kappa distributions, or their equivalent, the q-exponential distributions,  

are the natural generalization of the classical Boltzmann-Maxwell distributions, applied to 

the study of the particle populations in collisionless space plasmas. A huge step in the 

development of the theory of kappa distributions and their applications in space plasma 

physics has been achieved with the discovery that the observed kappa distributions are 

connected with the solid statistical background of non-extensive statistical mechanics.  

Now that the statistical framework has been identified, it is straightforward to improve our 

understanding of the nature of the kappa index (or the entropic q-index) that governs these 

distributions. One critical topic is the dependence of the kappa index on the degrees of 

freedom. In this paper, we first show how this specific dependence is naturally emerged, 

using the formalism of the N-particle kappa distribution of velocities. Then, the result is 

extended in the presence of potential energies. It is shown that the kappa index is simply 

related to the kinetic and potential degrees of freedom. In addition, it is shown that various 

problems of non-extensive statistical mechanics, such as (i) the correlation dependence on 

the total number of particles; and (ii) the normalization divergence for finite kappa indices, 

are resolved considering the kappa index dependence on the degrees of freedom. 
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1. Introduction 

Thermal equilibrium is a special stationary state. It is the state where any flow of heat (e.g., thermal 

conduction, thermal radiation) is in balance. Systems at thermal equilibrium have one very special 

statistical feature: not only are their particle velocities described by stationary distribution functions, but 

also, any of these functions is some Maxwellian distribution. 

Numerous independent developments in space plasma physics have revealed the peculiar statistical 

behavior of this category of systems: particle populations in space plasmas reside in stationary states out 

of thermal equilibrium. The classical Maxwell distributions are extremely rare in space plasmas. On the 

contrary, the vast majority of space plasmas reside out of thermal equilibrium, and are described by the 

kappa distributions (e.g., see [1–4] and references therein). 

The kappa distributions were empirical statistical models of the velocities of particle populations in 

space plasmas. A breakthrough in the field of space physics came with the connection of the observed 

kappa distributions with the solid theoretical framework of “Non-Extensive Statistical Mechanics” [1], 

in contrast to the Maxwell distributions, which are connected with the classical Boltzmann-Gibbs 

Statistical Mechanics. Since then, the kappa distributions have become increasingly widespread across 

space physics with the number of relevant publications following, remarkably, an exponential growth 

rate (Figure 1). 

 

Figure 1. Number of papers catalogued by Google Scholar in the period 1970–2010 and 

related to kappa distributions/non-extensive statistical mechanics. The fit curve shows their 

exponential growth. 

Space plasmas are essentially collisionless particle systems out of thermal equilibrium, which are 

typically described by kappa distributions (single types or combinations thereof). Single types of these 

distributions are usually sufficient to model the space plasma populations (e.g., see [5–10]); however, 

more complicated models of kappa distribution superpositions have been employed to describe rare 

features (e.g., anisotropy) [11,12]. A kappa distribution is primarily formulated to describe a 

Hamiltonian [13], i.e., the sum of the particle’s kinetic and potential energies. However, the potential 

energy of a particle is small compared to its kinetic energy and can often be ignored; then, the system’s 

statistical description is reduced to the kappa distribution of the particle velocities. 

 



Entropy 2015, 17 2064 

 

 

Numerous analyses have established the theory of kappa distributions and provided a plethora of 

different applications in space plasmas. In particular, kappa distributions described numerous space 

plasma populations in: (i) the inner heliosphere, including, solar wind (e.g., [2,11,14–21]), solar corona 

(e.g., [22–25]), solar energetic particles (e.g., [26,27]), corotating interaction regions (e.g., [28]), solar 

flares (e.g., [6,15]); (ii) the planetary magnetospheres, including, the general magnetosphere (e.g., [29]), 

magnetosheath (e.g., [30–32]), magnetotail (e.g., [33]), ring current (e.g., [34]), plasma sheet (e.g., [35–37]), 

magnetospheric substorms (e.g., [38]), Jovian/Saturnian/Uranian/Neptunian magnetospheres [39–41]), 

magnetospheres of planetary moons (e.g., Io, Enceladus) (e.g., [42,43]); (iii) the outer heliosphere and 

inner heliosheath (e.g., [3–10,44–50]); (iv) beyond the heliosphere, including HII regions (e.g., [51]), 

planetary nebula (e.g., [51,52]), supernova magnetospheres (e.g., [53]); and other general plasma related 

fields, such as linear and nonlinear plasma waves (e.g., [21,54]), solitary waves (e.g., [55]), and dusty 

plasmas (e.g., [56]). (See also [1–4] and references therein.) 

The purpose of this paper is to show and study the dependence on the degrees of freedom, of the  

non-equilibrium measure that governs kappa distributions, the kappa index, which is also related to the 

entropic q-index of non-extensive statistical mechanics. Section 2 briefly presents the connection of 

kappa distributions with non-extensive statistical mechanics. Section 3 focuses on the dependence of the 

standard kappa index on the degrees of freedom. A new kappa index is developed that is invariant under 

variation of the degrees of freedom. This is shown using the N-particle kappa distribution of velocities, 

without a potential energy. Section 4 shows the formulations of kappa distributions with or without 

potential energy using the developed invariant kappa index. Section 5 shows the invariant kappa index 

is developed in the general case, using the N-particle kappa distribution of positions and velocities, in 

the presence of potential energy. In Section 6, we discuss the inconsistencies caused by the dependence 

of the kappa index on the degrees of freedom, and how these are resolved by the invariant kappa index. 

Finally, Section 7 summarizes the conclusions. 

2. Connection of Kappa Distributions with Non-Extensive Statistical Mechanics 

The Maxwell distribution is the canonical distribution in the classical framework of Boltzmann-Gibbs 

(BG) statistical mechanics that applies only at thermal equilibrium. Maximizing the BG entropy under 

the constraints of the canonical ensemble, the Boltzmann’s exponential distribution of energy is derived. 

This exponential distribution of energy gives the Maxwellian distribution of velocities in the absence of 

any potential energy, where the total energy is reduced to the kinetic energy. 

Similarly, the kappa distribution is the canonical distribution in the generalized framework of  

non-extensive statistical mechanics that applies both in and out of thermal equilibrium. Maximizing  

the Tsallis entropy, under the constraints of the canonical ensemble (that includes the mean kinetic energy 

using the “escort” probability distribution), a q-deformed exponential distribution of energy is derived. 

This becomes the q-Maxwellian distribution of velocities after the substitution of the kinetic energy, and 

as it has been shown, it is equivalent to the kappa distribution, under the transformation between the 

entropic index q (used in non-extensive statistical mechanics) and the kappa index κ (used in space and 

plasma physics): 

1/ ( 1)qκ = −  ⇔  1 1/q = + κ  (1)
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The connection with non-extensive statistical mechanics is based on three fundamental physical 

notions and formulations: (i) Tsallis entropy [57–59]; (ii) escort probability distribution [58–60];  

and (iii) physical temperature [1–5,59,61–63]. 
The entropy is a functional of ( )p u


, which is the “ordinary” probability distribution in the velocity space: 

1
[ ( )] 1 ( )

1

q
f

uS p u p u d
q

+∞

−∞

  = ⋅ − ⋅σ Ω  −  
 

 (2)

where σu is the smallest speed-scale parameter characteristic of the system, so that the number of 
microstates in the f-dimensional phase space is 1 2

f
u fd du du du−Ω ≡ σ   [3,6]. 

The entropy is maximized under the constraint of normalization: 

1 ( ) f
up u d

+∞

−∞
 = ⋅σ Ω 


 (3)

and the constraint of the mean kinetic energy < ε > : 

0 ( ) [ ( ) ]
q

f
up u u d

+∞

−∞
 = ⋅σ ⋅ ε − < ε > Ω 

 
 (4)

The derived ordinary probability distribution of energy (for a given q-index) is: 
1

1( )
( ) ~ 1 ( 1)

q

B

u
p q

k T

− ε − ε 
ε + − ⋅ 

 


 (5)

The corresponding “escort” distribution that constitutes the canonical distribution (in terms of energy) 
is ( ) ~ ( )qP pε ε , i.e.: 

1( )
( ) ~ 1 ( 1)

q

q

B

u
P q

k T

− ε − ε 
ε + − ⋅ 

 


 (6)

where 2( ) (1/ 2) ( )u m u uε = − < >  
 is the particle kinetic energy, and the mean kinetic energy defines the 

temperature [1–5,59,61–63] according to: 

2
B

1
( )

2 2

d
m u u k Tε = ⋅ − < > = 

 or 2 2( )
2

d
u u− < > = ⋅θ 

 (7)

The average particle velocity represents the bulk speed of the flow of particles, bu u≡< > 
.  

The quantity B2 /k T mθ ≡  is the thermal speed of particle of mass m, that is, the particle temperature 

T expressed in speed units; both the particle u


 and bulk bu


 velocities are in an inertial reference frame. 

Furthermore, using the notion of kappa index, 1/ ( 1)qκ = −  [1], the q-Maxwell distribution is 

transformed to its equivalent, the so-called kappa distribution: 

1 1

2

1 1
( ) ~ 1 ~ 1

f
B B

P
k T k T

−κ− −κ−
 ε − ε   εε + ⋅ + ⋅   κ κ −  

 (8)

In terms of the velocity, the escort distribution ( )P u


 generalizes the classical Maxwell distribution, 

and is called q-Maxwellian distribution: 
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12 21

2 2
2 2

( ) ( )1 1
( ) ~ 1 ~ 1

1 ( 1)

q

q
b b

f f

u u u uq
P u

q

−κ−
−   − −−+ ⋅ + ⋅   − − θ κ − θ   

   
 (9)

Note that the physical temperature, T or B2 /k T mθ ≡ , represents the actual temperature of the 

system. Its thermodynamic definition is given by 1 1( / ) [1 / ]T S U S k−
Βκ≡ ∂ ∂ ⋅ − ⋅  (U is the internal  

energy–that equals to the kinetic energy in the absence of a potential energy) [61] showed that only this 

type of relation is consistent with the Zero-th law of Thermodynamics. Livadiotis and McComas [1,20] 

showed the equality between the kinetic and thermodynamic temperature definitions, and thus produced a 

well-defined temperature for systems out of thermal equilibrium that are describable by kappa distributions. 

3. The Invariant Kappa Index 

3.1. The N-particle Kappa Distributions 

The N-particle phase-space kappa distribution is given by: 

1

1 2 1 2
1 2 1 2

( , , , ; , , , )1
( , , , ; , , , ) ~ 1 N N

N N
B

H r r r u u u H
P r r r u u u

k T

−κ−
 − 

+ ⋅ κ 

              (10)

where 1 2 1 2( , , , ; , , , )N NH r r r u u u
        is the N-particle Hamiltonian, and H  is the ensemble average of 

the Hamiltonian over the phase space. If there is no potential energy, the Hamiltonian is formed only by 

the kinetic energy: 

1

1 2
1 2

( , , , )1
( , , , ) ~ 1 N

N
B

H u u u H
P u u u

k T

−κ−
 − 

+ ⋅ κ 

      (11)

where 2 1
b 2

1

( )
N

i
i

H u u d N
=

= − =  
, namely: 

1

2 1
1 2 b 22

1

1 1
( , , , ) ~ 1 ( )

N

N i
i

P u u u u u d N
−κ−

=

  + ⋅ − −  κ θ   
      (12)

Therefore, the N-particle kappa distribution of velocities is written as [49]: 
1

2
1 2 b21

12

1 1
( , , , ) ~ 1 ( )

N

N i
i

P u u u u u
d N

−κ−

=

 
+ ⋅ − κ − θ 

      (13)

3.2. The Paradox of the 1-Particle Kappa Distribution 

Let us consider the N-particle kappa distribution of velocities. If this is integrated over the  

d-dimensional velocity space of the Nth particle, the result is the (N − 1)-particle kappa distribution of 

velocities. If this is then integrated over the (N − 1)th particle velocity, the (N − 2)-particle kappa 

distribution will be derived, and by continuing the integration over all (N − 1) particle velocities, we end 

up to the 1-particle distribution. Namely: 
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2

1

2
1 2 2 1 b21

12

1
1

2
1 2 2 1 b21

12

1

1 2 2

1 1
( , , , , , ) ~ 1 ( )

 integration over  

1 1
( , , , , ) ~ 1 ( )

 integration over  

( , , , )

N

N N N i
i

N

d
N

N N i
i

N

N

P u u u u u u u
d N

u

P u u u u u u
d N

u

P u u u

−κ−

− −
=

−κ− +−

− −
=

−

−

 
+ ⋅ − κ − θ 



 
+ ⋅ − κ − θ 







      



     



  
1
2

1
2

1 2
2

2
b21

12

2

2

1 ( 1)2
1 b

1 21
2

1 1
~ 1 ( )

 integration over  

 integration over  

( )1
( ) ~ 1

d
N

i
i

N

d N

u u
d N

u

u

u u
P u

d N

−κ− +−

=

−

−κ− + −

 
+ ⋅ − κ − θ 





 −+ ⋅ κ − θ 

  






 

 

Nevertheless, the 1-particle kappa distribution has a different formulation, that is: 
1

2
1 1 b21

2

1 1
( ) ~ 1 ( )P u u u

d

−κ−
 

+ ⋅ − κ − θ 

  
 (14)

and thus, we wonder how these two different formulations can become one: 

1
21 ( 1)

2
1 1 b21

2

1 1
( ) ~ 1 ( )

d N

P u u u
d N

−κ− + −
 

+ ⋅ − κ − θ 

  
   ⇔

?

 

1

2
1 1 b21

2

1 1
( ) ~ 1 ( )P u u u

d

−κ−
 

+ ⋅ − κ − θ 

  
 

The problem is solved if we realize that the kappa index is not an invariant quantity, but instead,  
it depends on the degrees of freedom, ( )fκ = κ , so that: 

1 1
2 2[ ( ) ] 1

2
1 1 b21

2

1 1
( ) ~ 1 ( )

( )

d N d N d

P u u u
d N d N

− κ − − −
 

+ ⋅ − κ − θ 

  
   ⇔

?

 

1 1
2 2[ ( ) ] 1

2
1 1 b21

2

1 1
( ) ~ 1 ( )

( )

d d d

P u u u
d d

− κ − − −
 

+ ⋅ − κ − θ 

  
 

Hence, it is clear then that there is the following dependence of the kappa index: 

1 1 1
02 2 2( ) ( ) ( )f f d N d N d dκ − = κ − = κ − ≡ κ  (15)

The kinetic degrees of freedom for the one-particle’s phase space are given by B2 /( )d k TΚ≡ < ε > , 

where Κε  is the particle kinetic energy. As mentioned, 0κ  indicates the kappa index that is invariant of 

the kinetic degrees of freedom of the system [49]. In contrast to 0κ , the well-known kappa index κ  
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depends on the particle kinetic degrees of freedom d  and the number of correlated particles N. 
Therefore, the quantity 0κ  is a modified kappa index that is not dependent on the dimensionality.  

Its range of values is (0,∞), with 0κ → ∞  corresponding to thermal equilibrium and 0κ → ∞  to the 

furthest state from thermal equilibrium, also called anti-equilibrium. 

Using this invariant kappa index, the 1-particle distribution is written with a unified way: 
1

0 21

2
1 1 b2

0

1 1
( ) ~ 1 ( )

d

P u u u
−κ − −

 
+ ⋅ − κ θ 

  
 (16)

while the N-particle distribution becomes: 
1

0 21

2
1 2 b2

10

1 1
( , , , ) ~ 1 ( )

d N
N

N i
i

P u u u u u
−κ − −

=

 
+ ⋅ − κ θ 

      (17)

Finally, Figure 2 summarizes the described paradox and its solution: 

 

Figure 2. The dependence of the kappa index on the degrees of freedom f. 

4. Formulation of the Kappa Distributions 

4.1. Absence of Potential Energy 

In the absence of a potential energy, the particle energy is given simply by their kinetic energy.  

This is the most frequent case in space plasmas analyses. The kappa distribution of velocities is: 
1

0 2
1
2

121
2 0 2

0 0 2
0 0

( 1 ) ( )1
( ; ; , ) ( ) 1

( 1)

d

d b
b

d u u
P u u T

−κ − −
−  Γ κ + + −κ = π κ θ ⋅ ⋅ + ⋅ Γ κ + κ θ 

  
 (18)

The kappa distribution of the kinetic energy, 21
K 2 ( )bm u uε = − 

, is given by: 

11 0 22 1
2

1

10 B K
K 0 K K K1

0 0 B2

( ) 1
( ; , ) 1

B( , 1)

dd
dk T

P T d d
d k T

−κ − −−
− κ εε κ ε = ⋅ + ⋅ ε ε κ + κ 

 (19)

where ( , ) ( ) ( ) / ( )x y x y x yΒ ≡ Γ Γ Γ +  is the Beta function. The kinetic energy is expressed in the  

co-moving system of the flow with bulk velocity bu


. 
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4.2. Presence of a Potential Energy 

After the connection of empirical kappa distributions with the solid background of non-extensive 

statistical mechanics [1], it is straightforward now to generalize the distribution from the description of 

velocities to the description of the Hamiltonian [13]. More specifically, we are able to handle the 

existence of a non-negligible potential energy using the mathematical formulations and the physical 

theory of kappa distributions: 

1
( , )1

( , ; , ) ~ 1
B

H r u H
P r u T

k T

−κ−
 − 

κ + ⋅ κ 

 
 

 (20)

where H< >  is the ensemble phase-space average of the Hamiltonian function ( , )H r u
 

. 

The Hamiltonian function is given by K( , ) ( ) ( )H r u u m r= ε + Φ   
, where 21

K 2( ) ( )bu m u uε = −  
 is the 

(velocity dependent) kinetic energy and ( )m rΦ 
 is the (position-dependent) potential energy. Thus, 

Equation (3) gives: 
1

K K

B

1

1

K K

1
K B B2

( ) ( ) [ ( ) ]1
( , ) ~ 1

( ) [ ( ) ] ( ) [ ( ) ]1 1
~ 1 1 .

( )

B

u u m r
P r u

k T

u m r u m r

u k T d k T

k T

−κ−

−κ−

−κ−

 ε − ε + Φ − Φ 
+ ⋅ κ 

 
 ε + Φ − Φ  ε + Φ − Φ  + ⋅ = + ⋅   ε κ −  κ −
  

  
 

   


 

Finally, in terms of the invariant kappa index κ0, the phase-space distribution becomes: 
1

0 2121
2

0
0

( ) [ ( ) ]1
( , ; ; , ) ~ 1

d

b
b

B

m u u m r
P r u u T

k T

−κ − −
 − + Φ − Φ κ + ⋅ κ  

  
  

 (21)

What is really important is to derive the marginal probability distributions, which are given by: 

(i) ( ) ( , )P r P r u du
∞

−∞
= 

   
 , (ii) ( ) ( , )P u P r u dr

∞

−∞
= 

   
 or K K( ) ( , )P P r dr

∞

−∞
ε = ε

 
 (22)

( du


  symbolizes the infinitensimal volume in velocity space). The above derived in (22) are the  

(i) (marginal) positional kappa distribution, and the (ii) (marginal) kappa distribution of velocity or 

kinetic energy, respectively. 

4.3. Example of Kappa Distributions with Nonzero Potential Energy 

As an example of a potential energy, we examine the 1-dimensional linear gravitational potential, 

( )m z mg zΦ = , which is dependent on the altitude z. As it was shown in [13], the complete phase-space 

kappa distribution is given by: 
1

0 2
1 1
2 2

1
2

1
1

110 2
K 0 0 K 0 K K1 1

0 B 00 02

( 1 ) 1
( , ; , , ) ( ) 1 ,

1( 1) ( ) ( )

d

d d
Bd

d z
P z T z d dz k T z d dz

k T zd

−κ − −
− −− Κ

+

  Γ κ + + εε κ ε = ⋅ ⋅ + ⋅ + ε ε  κ −κ − Γ Γ κ   
 (23)

while the positional kappa distribution leads to a generalization of the:  
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0 1

10
0 0 0

0 0 0

1
( ; , ) 1

1 1

z
P z z dz z dz

z

−κ −
−  κκ = ⋅ ⋅ + ⋅ κ − κ − 

 , where B
0

k T
z

mg
=  (24)

The marginal kappa distribution of velocities (kinetic energy) is derived from the integration of 

Equation (14) over positions: 

1
0 2

1 1
2 2

1
2

K 0 K 0 00

1
1

110 2
0 K1 01

0 B 00 02

( ; , ) ( , ; , , )

( 1 ) 1
( ) 1

1( 1) ( ) ( )

d

d d
Bd

P T P z T z dz

d z
k T z dz

k T zd

∞

−κ − −
∞− −− Κ

+

ε κ = ε κ =

  Γ κ + + ε⋅ ⋅ε ⋅ + ⋅ +  κ −κ − Γ Γ κ   




 (25)

or: 
11 0 22 1

2

( 1) 1

10
K 0 K1

0 0 B2

[( 1) ] 1
( ; , ) 1

[ , ( 1) 1] 1

dd
dBk T

P T
d k T

− κ − − −−
−Κ κ − εε κ = ⋅ + ⋅ ε Β κ − + κ − 

 (26)

We notice that by applying the transformation 0 01κ − → κ : 

11 0 22 1
2

1

10
K 0 K1

0 0 B2

( ) 1
( ; , ) 1

( , 1)

dd
dBk T

P T
d k T

−κ − −−
−Κ κ εε κ = ⋅ + ⋅ ε Β κ + κ 




 
 (27)

which coincides exactly with Equation (10) (more examples on non-zero potential energies can be found 

in [13]; also, see [63]). 

5. The Effect of the Potential Energy on the Kappa and q Indices 

We have already seen that the presence of the 1-dimensional linear gravitational potential, 
( )m z mg zΦ = , led to the marginal kappa distribution of kinetic energy (26): 

11 0 22 1
2

( 1) 1

10
K 0 K1

0 0 B2

[( 1) ] 1
( ; , ) 1

[ , ( 1) 1] 1

dd
dBk T

P T
d k T

− κ − − −−
−Κ κ − εε κ = ⋅ + ⋅ ε Β κ − + κ − 

 (28)

which is identical to the standard kappa distribution with kappa index 0 01κ − → κ : 

1
0 2

1 1 1
2 2 2

1
1

1 110 2
K 0 0 0 K1

0 0 B2

( 1 ) 1
( ; , ) ( ) 1

( ) ( 1)

d

d d d
B

d
P T k T z

d k T

−κ − −
− − − −− Κ Γ κ + + εε κ = κ ⋅ ⋅ + ⋅ ε Γ Γ κ + κ 


 

 
 (29)

It appears that the presence of this potential energy leads to an additional number of effective degrees 

of freedom, so that: 

1
0 2 1dκ = κ + +  (30)

Therefore, the phase-space kappa distribution (23) is written as: 
1

0 2
1 1
2 2

1
2

2
1

110 2
K 0 0 K 0 K K1 1

0 B 00 02

( 2 ) 1
( , ; , , ) ( ) 1 ,

( ) ( 1)

d

d d
Bd

d z
P z T z d dz k T z d dz

k T zd

−κ − −
− −− Κ

+

  Γ κ + + εε κ ε = ⋅ ⋅ + ⋅ + ε ε  κκ Γ Γ κ +   
 (31)

while the positional (24) and velocity (kinetic energy) (26) kappa distributions, are written as: 
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0 2

10
0 0 0

0 0 0

1 1
( ; , ) 1

z
P z z dz z dz

z

−κ −
−  κ +κ = ⋅ ⋅ + ⋅ κ κ 

, where B
0

k T
z

mg
=  (32)

1
0 2

1 1 1
2 2 2

1
1

1 110 2
K 0 0 0 K1

0 0 B2

( 1 ) 1
( ; , ) ( ) 1

( ) ( 1)

d

d d d
B

d
P T k T z

d k T

−κ − −
− − − −− Κ Γ κ + + εε κ = κ ⋅ ⋅ + ⋅ ε Γ Γ κ + κ 

 (33)

Let us now generalize this result. Instead of the 1-dimensional case of z ( ( ) ~m z zΦ ), we assume a 

potential that depends on r, that is embedded in a dr-dimensional positional space. Therefore, we examine 
the potential ( ) bm r c rΦ = ⋅ , rdr ∈ℜ . In order to avoid any confusion, we symbolize the dimensionality 

of the velocity vector with du, i.e., udu u≡ ∈ℜ
. Then, the phase-space kappa distribution is given by: 

11 1 0 u2u r2
1 1 1 1

u r r u2 2 r

K 0 K

1( )1 1
( ) 1 10 r 0 u2

K K1 1 1 1
r u 0 r 0 r B2

( , ; , )

( ) ( 1 ) 1
( ) 1

( ) ( ) ( 1)

b

b b

dd d b
d d d d db

B
b b b

P r T d dr

b d d c r
k T c r d dr

d d d d k T

−κ − −− +
− + − −Κ

ε κ ε =

 ⋅ κ − Γ κ + + ε +⋅ ⋅ + ⋅ ε ε Γ Γ Γ κ − + κ − 

 
(34)

The marginal kappa distributions of positions (radius) and velocities (kinetic energy) are respectively 

given by: 
1 0r

1
r r

1
1

10 r
0 1 1 1

r 0 r 0 r B

( ) 1
( ; , ) ( / ) 1

( , 1)

b

b

d b
d db

B
b b b

b d c r
P r T dr k T c r dr

d d d k T

−κ −−
− − ⋅ κ −κ = ⋅ ⋅ + ⋅ Β κ − + κ − 

 (35)

and: 
1 11 0 r u2u2

1 1
u u2 2

( ) 1
1

10 r
K 0 K K K1 1 1

u 0 r 0 r B2

( ) 1
( ; , ) ( ) 1

( , 1)

b d dd
d db

B
b b

d
P T d k T d

d d d k T

− κ − − −−
− −Κ κ − εε κ ε = ⋅ ⋅ + ⋅ ε ε Β κ − + κ − 

, 

1
0 rb dκ >  

(36)

The distribution of velocities (36) converges for 0 0κ > , while the distribution of positions (35) 

converges for 1
0 rb dκ > . Substituting 1

0 r 0b dκ − → κ , we have: 

11 0 u2u2 1 1
u u2 2

1

10
K 0 K K K1

u 0 0 B2

1
( ; , ) ( ) 1

( , 1)

dd
d d

BP T d k T d
d k T

−κ − −−
− −Κ κ εε κ ε = ⋅ ⋅ + ⋅ ε ε Β κ + κ 

, 0 0κ >  (37)

that is identical to the standard kappa distribution of kinetic energy (19). The positional distribution is: 
11 0 rr

1
r r

1

10
0 1

r 0 0 B

1
( ; , ) ( / ) 1

( , 1)

bb

b

dd b
d d

B
b

b c r
P r T dr k T c r dr

d k T

−κ − −−
− − ⋅ κκ = ⋅ ⋅ + ⋅ Β κ + κ 

 (38)

In Figure 3 we plot the function: 
11 0 rr

r

1

/ 10
0 1

r 0 0

1
( ; ) 1 ( ) ( )

( , 1)

bb
dd

d bb b b b

b

P r dr r r d r
d

−κ − −−
− κκ = ⋅ + ⋅ Β κ + κ 

 (39)

where the radial distance is in units of 1/( / ) b
Bk T c . 
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Figure 3. Positional distribution for various values of the kappa index 0κ  and dimensionality r /d b . 

The respective phase-space distribution is: 

1 11 1 0 u r2u r2
1 1 1 1

u r r u2 2 r

K 0 K

1( ) 1 1
( ) 1 10 0 u r2

K K1 1
r u 0 0 B2

( , ; , )

( 1 ) 1
( ) 1

( ) ( ) ( 1)

bb

b b

d dd d b
d d d d db

B
b

P r T d dr

b d d c r
k T c r d dr

d d k T

−κ − − −− +
− + − −Κ

ε κ ε =

 ⋅ κ Γ κ + + + ε +⋅ ⋅ + ⋅ ε ε Γ Γ Γ κ + κ 

 (40)

Therefore, the kappa index depends not only on the dimensionality of the velocity space, but also,  

on the dimensionality of the positional space. The dependence is similar for both spaces, namely: 

1 1
u r2

B B B

constant constant constantb

m H
d d

k T k T k T
Κε Φ

κ = + + = + + = +  (41)

The constant defines the invariant kappa index, 0κ , which is independent of the positional and kinetic 

degrees of freedom, with a range of values 0 (0, )κ ∈ ∞ . This is similar to the definition of 0κ  in  

Equation (6), but now we have included also the effect of the potential energy. Hence, we have: 

1 1
0 u r2( )bd d Nκ = κ + +  (42)

6. Discussion: Problems of Non-Extensive Statistical Mechanics and their Resolution through the 

Kappa Index Dependence on the Degrees of Freedom 

6.1. Correlation: Independent of the Total Number of Particles 

The origin of the vastly different statistical behavior between classical particle systems and space 

plasmas is the manifestation of local correlations between the plasma particles. The stronger the 

correlation the furthest the plasma resides from thermal equilibrium [49]. While correlations shift 

plasmas away from thermal equilibrium, collisions destroy correlations, recovering plasmas back at 

thermal equilibrium [64]. Certainly, there may be various and different mechanisms of creating kappa 

distributions in space and other plasmas, e.g., the presence of weak turbulence [21] and pick-up ions [20,65]. 

Nevertheless, the reason why kappa distributions exist and sustain themselves in space plasmas is the 

presence of correlations in collisionless environment. The variance-covariance between the energies of 

any two particles are given by: 

( )
( ) ( )

2

22 2 4 0
( ) ( )

0 2 2

if ,

1 1 if ,

d

n m
d d

n m
u u

n m

 ≠κ ⋅ = θ ⋅ ×κ − ⋅ + =

 
 (43)
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or: 

( )
( ) ( )

2

22 0
( ) ( )

0 2 2

if ,
( )

1 1 if .

d

n m
d d

n m
k T

n m
Κ Κ Β

 ≠κ ε ⋅ε = ⋅ ×κ − ⋅ + =
 (44)

Therefore, the correlation of the energies of two particles is found [49] to be: 

1
( ) ( ) ( ) ( ) 2

0 12 22 2 0 2
( ) ( ) ( ) ( )

( ; )
n m n m

n n m m

d
d

d

ε ⋅ε − ε ⋅ ε
ρ κ = =

κ +ε − ε ⋅ ε − ε
 (45)

For particles with different degrees of freedom, the respective relations are: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 2
2 2 4 0

( ) ( )
0

2 2

if ,

1 1 if ,

n m

n n

d d

n m d d

n m
u u

n m

 ⋅ ≠κ ⋅ = θ ⋅ ×κ − ⋅ + =

 
 (46)

or in terms of energy: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 2
2 0

( ) ( )
0

2 2

if ,
( )

1 1 if .

n m

n n

d d

n m d d

n m
k T

n m
Β

 ⋅ ≠κ ε ⋅ε = ⋅ ×κ − ⋅ + =

 (47)

Then, the correlation between these different particles is given by 

1 1
( ) ( )2 2

0 ( ) ( ) 0 ( ) 0 ( )1 1
0 ( ) 0 ( )2 2

( ; , ) ( ; ) ( ; )n m
n m n m

n m

d d
d d d d

d d
ρ κ = ⋅ = ρ κ ⋅ρ κ

κ + κ +
 (48)

In terms of the variant kappa index, which depends on the degrees of freedom, 1
0 2 d Nκ = κ + ,  

the correlation is written as: 
1
2

1
2

( ; )
( 1)

d
d

d N
ρ κ =

κ − −
 (49)

or in terms of the q-index: 

( 1)
( ; )

2 (1 ) ( 1)

q d
q d

q d N

−ρ =
+ − −

 (50)

This was the result found first by [66]. One of the strange consequences of this result is that the 

correlation between two particles decreases with the number of (correlated) particles; in fact, when 

N → ∞ , the correlation vanishes, 0ρ → . But the correlation between two particles should not be 

dependent on the number of other particles. The worst paradox is that, we find again that the value of 

the kappa index must be large. Namely, for 0 ( ; ) 1d≤ ρ κ ≤  we obtain 1
2 d N ≤ κ . On the other hand,  

for 1 ( ; ) 0d− ≤ ρ κ ≤ , we have 1
2 ( 2)d Nκ ≤ − , i.e., the kappa index cannot be infinity, which is necessary 

property of non-extensive statistical mechanics to include systems that recover at equilibrium and BG 

statistical mechanics. 

Note that using the invariant kappa index and its interpretation as inverse to correlation, we can 

classify the types of systems in an arrangement called, the κ-spectrum (Figure 4). 
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Figure 4. The κ-spectrum of stationary states. The stationary states of systems described by 

kappa distributions can be arranged according to the value of the invariant kappa index that 

is related to the correlation. The quantity 0κ  is invariant of the degrees of freedom of the 

system. In contrast to 0κ , the standard κ  or q indices depend on the particle kinetic or 

potential degrees of freedom, according to 1
0 2 d Nκ = κ + , where 2

u rbd d d≡ + . The whole 

spectrum of stationary states is described for 0 (0, )κ ∈ ∞ , where the boundary states of 

equilibrium ( 0 0κ → ) and anti-equilibrium ( 0κ → ∞ ) correspond to distributions with 

universal behavior (e.g., the exponential distribution at equilibrium, and the power-law flux 

of exponent −1.5 at the anti-equilibrium) [20,50,67]. The invariant kappa index 0κ ,  

the correlation coefficient 1 1
02 2/ ( )d dρ = κ + , and other quantities, can be used as a measure of 

the “thermodynamic distance” of stationary states from thermal equilibrium non-equilibrium 

[68], and for the characterization of the κ-spectrum. 

6.2. The Problem of Divergence 

One of the major issues in the formalism of non-extensive statistical mechanics is the multiple 

integrations of the canonical distribution (in terms of the kinetic energy or the velocities). As was shown 
in Section 3, each of the integrations contributes to the exponent by adding 1

2 d . Hence, (N − 1) multiple 

integrations of the velocity of the (N − 1) particles, increase the exponent by 1
2 ( 1)d N⋅ − ; then, the whole 

exponent becomes 1 1
2 2( ) 1d N d− κ − ⋅ − − , and the whole 1-particle distribution is: 

1 1
2 2( ) 1

2
1 1 b21

2

1 1
( ) ~ 1 ( )

d N d

P u u u
d N

− κ− − −
 

+ ⋅ − κ − θ 

  
 (51)

The integral of the mean kinetic energy (2nd statistical moment of velocity at the co-moving frame) 

must converge (so that the temperature to be defined). For this, the asymptotic behavior at infinity of 
2 1

1 1 1( ) du P u u −
 must be falling faster than a power law of 1

1u − . We have: 

1 1
2 2

1 1
1 2 2

( ) 1

2( ) 2 2( ) 12 1 2 2 1 2 1
1 1 1 1 1 b 1 1 1 1 121

2

1 1
( ) ~ 1 ( ) ~

d N d

d N d d Nud d du P u u u u u u u u u u
d N

− κ− − −
− κ− − − − κ− −→∞− − − 

+ ⋅ − ⎯⎯⎯→ κ − θ 

    
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or 1
22( ) 1 1d N− κ − − < − , from which we obtain the range of the allowable values of the kappa or  

q- indices, that is: 

1
2 d Nκ >  or 1

21 1/ ( )q d N< +  (52)

while for indices out of this range, 1
2 d Nκ ≤  or 1

21 1/ ( )q d N≥ + , the integrals diverge and the 

distributions cannot be normalized. 
Given the large number of particles, practically N → ∞ , we obviously find that κ → ∞  or 1q → , 

which corresponds to the limit of non-extensive statistical mechanics to the classical BG statistical 

mechanics. Therefore, in contrast to our experience from space and other laboratory plasma observation, 

here we find that non-extensive statistical mechanics is not applicable (!) in the continuous phase spaces 

with Hamiltonian 21
K 2( ) ( ) ( )bH u u m u u= ε = −   

 or K( , ) ( ) ( )H r u u m r= ε + Φ   
. 

This paradox is easily resolved when we take into account the dependence of the kappa index on the 

degrees of freedom. In this case, we have 1
0 2 d Nκ = κ + , hence, the restriction (52) now becomes 0 0κ > . 

(It is interesting to note that the paradox can be resolved only if the kappa index has this specific relation 

to the degrees of freedom. Also, the number N now corresponds to the correlated number of particles 

instead of the total number of particles in the system.) 

The N-particle kappa distribution of velocities is now written as: 
1

0 2
1
2

1
1

2 20 2
1 2 0 0 b2

10 0

( 1 ) 1 1
( , , , ; ; , ) ( ) 1 ( )

( 1)

d N
N

d N
N b i

i

d N
P u u u u T u u

−κ − −
−

=

 Γ κ + +κ = π κ θ ⋅ ⋅ + ⋅ − Γ κ + κ θ 
       (53)

The N-particle kappa distribution of the kinetic energies, 21
K 2 ( )i i bm u uε = − 

, is given by: 

11 0 22 1
2

1
1

10 B 0 2
K1 K2 K 0 K K1

1 10 0 B2

( ) Γ( 1 ) 1 1
( , , , ; , ) 1

Γ( ) ( 1)

d Nd N NN
d

N i iN
i i

k T d N
P T

d k T

−κ − −−
−

= =

 κ κ + +ε ε ε κ = ⋅ + ⋅ ε ε Γ κ + κ 
 ∏  (54)

but it is more convenient to express the distribution in terms of the total energy t K1

N

ii=
ε = ε : 

11 0 22 1
2

1

10 B t
t 0 t1

0 0 B2

( ) 1
( ; , ) 1

B( , 1)

d Nd N
d Nk T

P T
d N k T

−κ − −−
− κ εε κ = ⋅ + ⋅ ε κ + κ 

 (55)

or the sampling average energy t K1
/ (1/ )

N

ii
N N

=
ε = ε = ⋅ ε : 

11 0 22 1
2

1

10 B
0 1

0 0 B2

( / ) 1
( ; , ) 1

B( , 1)

d Nd N
d Nk T N N

P T
d N k T

−κ − −−
− κ εε κ = ⋅ + ⋅ ε κ + κ 

 (56)

which at the limit of N → ∞  becomes: 

0

0

11 1
20 B 0 B2 2

0
0

( )
( ; , ) exp

( 1)

d k T d k T
P T

κ +
−κ −κ κ ε κ = ⋅ − ε Γ κ + ε 

 (57)

or: 

0

0 0

1
( 1) 1 ( 1)0

0
0

( 1)
( ; )

( 1)
P e

κ +
κ + − − κ + βκ +β κ = ⋅β ⋅

Γ κ +
, 0

0 1

εκβ ≡ ⋅
κ + ε

 (58)
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(with 1
B2 dk Tε = ). Equation (58) reads the well-known distribution of reduced chi-square  

2 2
0/red dχ = χ  for degrees of freedom d0: 

1
02 21 1

0 02 2

1
1 ( )2 2 2 202

0 1
02

( )
( ; ) ( )

( )
red

d
d d

red red red red

d
P d d e d

d
− − χχ χ = ⋅ χ ⋅ χ

Γ
 (59)

where we identify the invariant kappa index as: 

1
0 02 ( 2)dκ = −  (60)

Let’s show another example of the hypothetical divergence of non-extensive statistical mechanics, 

and how the above consideration resolves the problem [69] had studied the problem of divergence in the 

system of N linear harmonic oscillators. The potential energy of this system is expressed in squared 

terms of the position, 2m c rΦ = ⋅ , similar to the kinetic energy that is squared terms of the velocity, 
21

K 2 m uε = ⋅  (for simplicity and without any loss of the generality, we assume 0bu u≡< >= 
). Therefore, 

the total energy is 2 21
K 2U m m u c r= ε + Φ = ⋅ + ⋅ , which can be considered a single square term with 

dimensionality u rd d+ . Hence, the distribution of the total energy behaves similar to Equation (52): 

11 0 22 1
2

1

10 B
0 1

0 0 B2

( ) 1
( ; , ) 1

B( , 1)

d Nd N
d Nk T U

P U T U
d N k T

−κ − −−
− κκ = ⋅ + ⋅ κ + κ 

, with u rd d d= +  (61)

For the temperature to exist, the mean energy must converge and thus, we obtain the usual result 

0 0κ > . However, if the dependence of the kappa index on the degrees of freedom is ignored, the same 

problem of divergence occurs: 

1 1
2 2

1

1
0

0 B

1
( ; , ) ~ 1 ~d N d NU

P U T U U
k T

−κ−
−κ− 

κ + ⋅ κ 
 (62)

from where we deduce that the divergence can be avoided only if 1
2 d N < κ , i.e., if u r 3d d= = , then  

6d =  and 6N < κ , a result that cannot be used in the framework of non-extensive statistical mechanics, 

since N can be a large number of collected oscillators, and thus, the kappa index is practically infinity, 

leading to the BG statistics. The problem of divergence in the system of linear harmonic oscillators has 

been detected by [69]; here we show how it is resolved given the dependence of κ- and q- indices on the 

degrees of freedom: 

1 1
0 u r2( )bd d Nκ = κ + + , 11 1

0 u r21 [ ( ) ]bq d d N −= + κ + +  (63)

7. Conclusions 

The paper showed the dependence of the kappa index (or the entropic q-index) on the degrees of 

freedom, that is, the number of correlated particles, and the per particle kinetic/potential degrees of 

freedom. First we show this dependence in the case of particle populations described by kappa 

distributions in the absence of a potential energy. Then, the result is extended in the presence of a 

potential energy. 
It has been shown that the kappa index, κ, has a very simple relation with the degrees of freedom, that 

is, 1 1
0 u r2( )bd d Nκ = κ + + , where ud  are the kinetic and rd  the potential degrees of freedom (for a 



Entropy 2015, 17 2077 

 

 

potential with polynomial order b around its minimum). The constant 0κ  denotes the invariant kappa 

index, which is independent of the degrees of freedom. The respective dependence of the q-index is 

derived from the connection relation 1 1/q = + κ . 

It is shown that various problems of non-extensive statistical mechanics, such as (i) the correlation 

dependence on the total number of particles; and (ii) the normalization divergence for finite kappa 

indices, are resolved considering the kappa index dependence on the degrees of freedom.  
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