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Abstract:

 A directed acyclic graph (DAG) partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents a given set of conditional independence relations. We are interested in properties of this class that can be derived from observations of a subsystem only. To this end, we prove an information-theoretic inequality that allows for the inference of common ancestors of observed parts in any DAG representing some unknown larger system. More explicitly, we show that a large amount of dependence in terms of mutual information among the observations implies the existence of a common ancestor that distributes this information. Within the causal interpretation of DAGs, our result can be seen as a quantitative extension of Reichenbach’s principle of common cause to more than two variables. Our conclusions are valid also for non-probabilistic observations, such as binary strings, since we state the proof for an axiomatized notion of “mutual information” that includes the stochastic as well as the algorithmic version.
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1. Introduction

Causal relations among components X1,…, Xn of a system are commonly modeled in terms of a directed acyclic graph (DAG) in which there is an edge Xi → Xj whenever Xi is a direct cause of Xj. Further, it is usually assumed that information about the causal structure can be obtained through interventions in the system. However, there are situations in which interventions are not feasible (too expensive, unethical or physically impossible) and one faces the problem of inferring causal relations from observational data only. To this end, postulates linking observations to the underlying causal structure have been employed, one of the most fundamental being the causal Markov condition [1,2]. It connects the underlying causal structure to conditional independencies among the observations. Explicitly, it states that every observation is independent of its non-effects given its direct causes. It formalizes the intuition that the only relevant components of a system for a given observation are its direct causes.

In terms of DAGs, the causal Markov condition states that a DAG can only be a valid causal model of a system if every node is independent of its non-descendants given its parents. The graph is then said to fulfill the local Markov condition [3]. Consider for example the causal hypothesis X → Y←Z on three observations X, Y and Z. Assuming the causal Markov condition, the hypothesis implies that X and Z are independent. The violation of this independence then allows one to exclude this causal hypothesis. However, note that in general, there are many DAGs that fulfill the local Markov condition with respect to a given set of conditional independence relations. For example, all three DAGs X → Y → Z, X←Y → Z and X←Y←Z encode that X is independent of Z given Y, and this cannot be decided from information on conditional independences alone, which is the true causal model. Nevertheless, properties that are shared by all valid DAGs (e.g., an edge between X and Y in the example) provide information about the underlying causal structure.

The causal Markov condition is only expected to hold for a given set of observations if all relevant components of a system have been observed, that is if there are no confounders (causes of at least two observations that have not been measured). It can then be proven by assuming a functional model of causality [1,4,5]. As an example, consider the observations X1,…, Xn to be jointly distributed random variables. In this case, the causal Markov condition can be derived for a given DAG on X1,…, Xn from two assumptions: (1) every variable Xi is a deterministic function of its parents and an independent (possibly unobserved) noise variable Ni, and (2) the noise variables Ni are jointly independent. However, in this paper, we assume that our observations provide only partial knowledge about a system and ask for structural properties common to all DAGs that represent the independencies of some larger set of elements.

To motivate our result, assume first that our observation consists of only two jointly-distributed random variables X1 and X2, which are stochastically dependent. Reichenbach [6] postulated already in 1956 that the dependence of X1 and X2 needs to be explained by (at least) one of the following cases: X1 is a cause of X2, or X2 is a cause of X1, or there exists a common cause of X1 and X2. This link between dependence and the underlying causal structure is known as Reichenbach’s principle of common cause. It is easily seen that by assuming X1 and X2 to be part of some unknown larger system whose causal structure is described by a DAG G, then the causal Markov condition for G implies the principle of common cause. Moreover, we can subsume all three cases of the principle if we formally allow a node to be an ancestor of itself and arrive at:

The common cause principle: If two observations X1 and X2 are dependent, then they must have a common ancestor in any DAG modeling some possibly larger system.

Our main result is an information-theoretic inequality that enables us to generalize this principle to more than two variables. It leads to the:

Extended common cause principle (informal version): Consider n observations X1,…, Xn, and a number c, 1≤c≤n. If the dependence of the observations exceeds a bound that depends on c, then in any DAG modeling some possibly larger system, there exist c nodes out of X1,…, Xn that have a common ancestor.

Thus, structural information can be obtained by exploiting the degree of dependence on the subsystem, and we would like to emphasize that, in contrast to the original common cause principle, the above criterion provides a means to distinguish among cases with the same independence structure of the observed variables. This is illustrated in Figure 1.

Figure 1. Two causal hypothesis for which the causal Markov condition does not imply conditional independencies among the observations X1, X2 and X3. Thus, they cannot be distinguished using qualitative criteria, like the common cause principle (unobserved variables are indicated as dots). However, the model on the right can be excluded if the dependence among the Xi exceeds a certain bound.
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Above, the extended common cause principle is stated without making explicit the kind of observations we consider and how dependence is quantified. In the main case we have in mind, the observations are jointly-distributed random variables, and dependence is quantified by the mutual information [7] function. Then the extended common cause principle (Theorem 2) relates stochastic dependence to a property of all Bayesian networks that include the observations.

However, the result holds for more general observations (such as binary strings) and for more general notions of mutual information (such as algorithmic mutual information [8]). Therefore, we introduce an “axiomatized” version of mutual information in the following section and describe how it can be connected to a DAG. Then, in Section 3, we prove a theorem on the decomposition of information about subsets of a DAG out of which the extended common cause principle then follows as a corollary. Apart from a larger area of applicability, we think that an abstract proof based on an axiomatized notion of information better illustrates that the result is independent of the notion of “probability”. It only relies on the basic properties of (stochastic) mutual information (see Definition 1). Finally, in Section 4, we describe the result in more detail within different contexts and relate it to the notion of redundancy and synergy that was introduced in the area of neural information processing.



2. General Mutual Information and DAGs

Before introducing a general notion of mutual information, let us describe how it is connected to a DAG in the stochastic setting. Assume we are given an observation of n discrete random variables X1,…, Xn in terms of their joint probability distribution p(X1,…, Xn). Write [n] = f1,…, ng, and for a subset S⊆ [n], let XS be the random variable associated with the tuple (Xi)i2S. Assume further that a directed acyclic graph (DAG) G is associated with the nodes X1,…, Xn that fulfill the local Markov condition [3]: for all i, (1 ≤ i ≤ n):



[image: there is no content]



(1)




where ndi and pai denote the subset of indices corresponding to the non-descendants and to the parents of Xi in G. The tuple (G, p(X[n])) is called a Bayesian net [9] and the conditional independence relations imply the factorization of the joint probability distribution
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where small letters xi stand for values of the random variables Xi. From this factorization, it follows that the joint information measured in terms of Shannon entropy [7] decomposes into a sum of individual conditional entropies:


[image: there is no content]



(2)




Shannon entropy can be considered as the absolute measure of information. However, in many cases, only a notion of information relative to another observation may be available. For example, in the case of continuous random variables, Shannon entropy can be negative, and hence, may not be a good measure of the information. Therefore, we would like formulate our results based on a relative measure, such as mutual information, which, moreover, induces a notion of independence in a natural way. This can be achieved by introducing a specially-designated variable Y relative to which information will be quantified. The variable Y can, for example, be thought of as providing a noisy measurement of the X[n] (Figure 2a). Then, with respect to a joint probability distribution p(Y, X[n]), we can transform the decomposition of entropies into a decomposition of mutual information [7]:

Figure 2. The graph in (a) shows a directed acyclic graph (DAG) on nodes X1,…, X5 whose observation is modeled by a leaf node Y (e.g., a noisy measurement). (b) A DAG model of observed elements O1 = {X1} and O2 = {X4, X5}.
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(3)




For a proof and a condition for equality, see Lemma 2 below. In the case of discrete variables, Shannon entropy H(Xi) can be seen as mutual information of Xi and a copy of itself: H(Xi) = I(Xi : Xi). Therefore, we can always choose p(Y|X[n]), such that Y = X[n] and the decomposition of entropies in (2) is recovered. We are interested in decompositions as in (2) and (3), since their violation allows us to exclude possible DAG structures.

However, note that the above relations are not yet very useful, since they require, through the assumption of the local Markov condition, that we have observed all relevant variables of a system. Before we relax this assumption in the next section, we introduce mutual information measures on general observations.

Definition 1 (Measure of mutual information). Given a finite set of elements[image: there is no content], a measure of mutual information on[image: there is no content]is a three-argument function on the power set:



I:2[image: there is no content]×2[image: there is no content]×2[image: there is no content]→ℝ,(A,B,C)→I(A:B|C)








such that, for disjoint sets A, B, C, D ⊆ [image: there is no content], it holds:


I(A:∅)=0(normalization)I(A:B|C)≥0(non−negativity)I(A:B|C)=I(B:A|C)(symmetry)I(A:(B∪C)|D)=I(A:B|C∪D)+I(A:C|D)(chainrule).








We say A is independent of B given C and write (A ╨ B |C) iff I(A : B |C) = 0. Further, we will generally omit the empty set as a third argument and substitute the union by a comma, hence, we write I(A : B) instead of I(A : B |∅) and I(A : B, C) instead of I(A : B ∪ C).

Of course, mutual information of discrete, as well as of continuous random variables is included in the above definition. Further, in Section 4.2, we will discuss a recently-developed theory of causal inference [4] based on the algorithmic mutual information of binary strings [10]. We now state two properties of mutual information that we need later on.

Lemma 1 (Properties of mutual information). Let I be a measure of mutual information on a set of elements[image: there is no content]. Then:


	(Data processing inequality) For three disjoint sets A, B, C ⊆ [image: there is no content]:
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	(Increase through conditioning on independent sets) For three disjoint sets A, B, C ⊆ [image: there is no content]:
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(4)




where Y is an arbitrary set Y ⊆ [image: there is no content]disjoint from the rest. Further, the difference is given by I(A : C |B, Y).




Proof. (i) Using the chain rule two times:



[image: there is no content]








where the last inequality follows from the non-negativity of I. To prove (ii), we again use the chain rule:


[image: there is no content]








As in the stochastic setting, we can connect a DAG to the conditional independence relation that is induced by mutual information: we say that a DAG on a given set of observations fulfills the local Markov condition if every node is independent of its non-descendants given its parents. Furthermore, we show in Appendix A that the induced independence relations are sufficiently nice, in the sense that they satisfy the semi-graphoid axioms [11]. This is useful because it implies that a DAG that fulfills the local Markov condition is an efficient partial representation of the conditional independence structure. Namely, conditional independence relations can be read off the graph with the help of a criterion called d-separation [1] (see Appendix A for details).

We conclude with a general formulation of the decomposition of mutual information that we already described in the probabilistic case.

Lemma 2 (Decomposition of mutual information). Let I be a measure of mutual information on elements O[n] = {O1,…, On} and Y. Further, let G be a DAG with node set O[n]that fulfills the local Markov condition. Then:



[image: there is no content]



(5)




with equality if conditioning on Y does preserve the independences of the local Markov condition: that is, for all i:
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(6)




Proof. Assume the Oi are ordered topologically with respect to G. The proof is by induction on n. The lemma is trivially true if n = 1 with equality. Assume that it holds for k−1 < n. It is easy to see that the graph Gk with nodes O[k] that is obtained from G by deleting all but the first k nodes fulfills the local Markov condition with respect to O[k]. By the chain rule,



[image: there is no content]








and we are left to show that I(Y : Ok |O[k−1]) ≥I(Y : Ok |Opak). Since the local Markov condition holds, we have [image: there is no content], and the inequality follows by applying (4). Further, by Property (ii) of the previous lemma, equality holds if for every [image: there is no content], which is implied by (6).
In the next section, we derive a similar inequality in the case in which only the mutual information of Y with a subset of the nodes O[n] is known.



3. Partial Information about a System

We have shown that the information about elements of a system described by a DAG decomposes if the graph fulfills the local Markov condition. In this section, we derive a similar decomposition in cases where not all elements of a system have been observed. This decomposition will of course depend on specific properties of G and, in turn, enable us to exclude certain DAGs as models of the total system whenever we observe a violation of such a decomposition.

More precisely, we are interested in properties of the class of DAG models of a set of observations that we define as follows (see Figure 2b).

Definition 2 (DAG model of observations). An observation of elements O[n] = {O1,…, On} with respect to a reference object Y and mutual information measure I is given by the values of I(Y : OS) for every subset S⊆ [n].

A DAG G with nodes X together with a measure of mutual information IG on[image: there is no content]is a DAG model of an observation, if the following holds:


	each observation Oi is a subset of the nodes of G.


	G fulfills the local Markov condition with respect[image: there is no content]to IG.


	IG is an extension of I, that is IG(Y : OS) = I(Y : OS) for all S⊆ [n].


	Y is a leaf node (no descendants) of G.




The first three conditions state that, given the causal Markov condition, G is a valid hypothesis on the causal relations among components of some larger system, including the O[n], that is consistent with the observed mutual information values. Condition (iv) is merely a technical condition, due to the special role of Y as an observation of the O[n] external to the system.

As an example, if the Oi and Y are random variables with joint distribution p(O[n]; Y), a DAG model G with nodes [image: there is no content] is given by the graph structure of a Bayesian net with joint distribution p([image: there is no content]), such that the marginal on O[n] and Y equals p(O[n]; Y). Moreover, if Y is a copy of O[n], then an observation in our sense is given by the values of the Shannon entropy H(OS) for every subset S⊆ [n].

The general question posed in this paper can then be formulated as follows: What can be learned from an observation given by the values I(Y : OS) about the class of DAG models?

As a first step, we present a property of mutual information about independent elements.

Lemma 3 (Submodularity of I). If the Oi are mutually independent, that is I(Oi : O[n]ni) = 0 for all i, then the function [n] ⊇S → −I(Y : OS) is submodular, that is, for two sets S, T⊆ [n]:



[image: there is no content]








Proof. For two subsets S, T⊆ [n], write S′ = Sn(S ∩ T) and T′ = T\(S ∩ T). Using the chain rule we, have:



I(Y:OS∪T)+I(Y:OS∩T)=I(Y:OS)+I(Y:OT′|OS)+I(Y:OS∩T)≥I(Y:OS)+I(Y:OT′|OS∩T)+I(Y:OS∩T)=I(Y:OS)+I(Y:OT),








where the inequality follows from Property (4) of mutual information. □
Hence, a violation of submodularity allows one to reject mutual independence among the Oi and therefore to exclude the DAG that does not have any edges from the class of possible DAG models (the local Markov condition would imply mutual independence).

We now broaden the applicability of the above Lemma based on a result for submodular functions from [12]: We assume that there are unknown objects [image: there is no content]={X1,…,Xr} that are mutually independent and that the observed elements Oi⊆[image: there is no content] will be subsets of them (see Figure 3a).

Figure 3. (a) Four subsets O1,…, O4 of independent elements X1,…, X8 “observed by” Y. Note that the intersection of three sets Oi is empty; hence, di ≤ 2 for all i = 1,…, 4 in Proposition 1 and, therefore, [image: there is no content]. (b) A DAG model in gray. The observed elements O1,…, O4 are subsets of its nodes. One can check that the DAG does not imply any conditional independencies among the Oi (e.g., with the help of the d-separation criterion; see Appendix A). Nevertheless, there is no common ancestor of all four observations [image: there is no content]. Since Y only depends on the Oi, the inequality (10) of Theorem 1 implies [image: there is no content].
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In contrast to the previous lemma, it is not required anymore that the Oi are mutually independent themselves. It turns out that the way the information about the Oi decomposes allows for the inference of intersections among the sets Oi, namely:

Proposition 1 (Decomposition of information about sets of independent elements). Let[image: there is no content]={X1,…,Xr}be mutually independent objects, that is I(Xj : X[r]nj) = 0 for all j. Let O[n] = {O1,…, On}, where eachOi⊆[image: there is no content]is a non-empty subset of[image: there is no content]. For every i ∈ [n], let di be maximal, such that Oi has non-empty intersection with di −1 sets out of O[n]distinct from Oi. Then, the information about the O[n]can be bounded from below by:



[image: there is no content]



(7)




For an illustration, see Figure 3a. Even though the proposition is actually a corollary of the following theorem, its proof is given in Appendix B, since it is, unlike the theorem, independent of graph-theoretic notions.

As a trivial example, consider the case where O1=O2=O⊆[image: there is no content] are identical subsets. Then, d1 = d2 = 2 and:



[image: there is no content]








hence equality holds in (7). In general, if there is an element in Oi that is also in k −1 different sets Oj, then di ≥k, and we account for this redundancy in dividing the single information I(Y : Oi) by at least k.
Independent elements can always be modeled as root nodes of a DAG. The following theorem, which is our main result, generalizes the proposition by connecting the information about observations Oi to the intersection structure of associated ancestral sets. For a given DAG G, a set of nodes A is called ancestral, if for every edge v → w in G, such that w is in A, also v is in A. Further, for a subset of nodes S, we denote by an(S) the smallest ancestral set that contains S. Elements of an(S) will be called ancestors of S.

Theorem 1 (Decomposition of ancestral information). Let G be a DAG model of an observation of elements O[n] = {O1,…, On}. For every i, let di be the maximal number, such that the intersection of an(Oi) with di −1 distinct sets an(Oi1),…,an(Oid−1)is non-empty. Then, the information about all ancestors of O[n]can be bounded from below by:



[image: there is no content]



(8)




Furthermore, if Y only depends on whole system[image: there is no content]through the O[n], that is:



Y╨[image: there is no content]\(O[n]∪{Y})|O[n]



(9)




we obtain an inequality containing only known values of mutual information:


[image: there is no content]



(10)




The proof is given in Appendix C, and an example is illustrated in Figure 3b. If all quantities except the structural parameters di are known, the inequality (10) can be used to obtain information about the intersection structure among the Oi that is encoded in the di, provided that the independence assumption (9) holds. Even if (9) does not hold, but information on an upper bound of I(Y : an(O[n])) is available (e.g., in terms of the entropy of Y), information about the intersection structure may be obtained from (8). The following corollary additionally provides a bound on the minimum information about ancestral sets.

Corollary 1 (Inference of common ancestors, local version). Given an observation of elements O[n] ={O1,…, On}, assume that for natural numbers c = (c1,…, cn) with (1 ≤ ci ≤n −1), we observe:



[image: there is no content]



(11)




Let G be an arbitrary DAG model of the observation. For every Oi, letAci+1be the set of common ancestors in G of Oi and at least ci elements of O[n]different from Oi. Then, the joint information about all common ancestors can be bounded from below by:



[image: there is no content]








In particular, {or at least one index i ∊ [n], we must haveAci+1≠∅; hence, there exists a common ancestor of Oi and at least ci elements of O[n]different from Oi.

The proof is given in Appendix D. Theorem 1 and its corollary are our most general results, but due to the ease of interpretation, we illustrate them in the next section only in the special case in which all ci are equal (Corollary 2) to obtain a lower bound on the information about all common ancestors of at least c + 1 elements Oi.

To conclude this section, we ask what is the maximum amount of information that one can expect to obtain about the intersection structure of ancestral sets of a DAG model of observations. The main requirement for a DAG model G is that it fulfills the local Markov condition with respect to some larger set X of elements. This will remain true if we add nodes and arbitrary edges in a way that G remains acyclic. Therefore, if G contains a common ancestor of c elements, we can always construct a DAG model G′ that contains a common ancestor of more than c elements (e.g., the DAG model on the right-hand side of Figure 1 can be transformed into the one on the left-hand side). We conclude that without adding minimality requirements for the DAG models (such as the causal faithfulness assumption [2]), only assertions on ancestors of a minimal number of nodes can be made.



4. Structural Implications of Redundancy and Synergy

The results of the last section can be related to the notions of redundancy and synergy. In the context of neuronal information processing, it has been proposed to capture the redundancy and synergy of elements O[n] = {O1,…, On} with respect to another element Y using the function:



[image: there is no content]



(12)




where I is a measure of mutual information [13–15]. Thus, r relates information that Y has about the single elements to information about the whole set.
If the sum of information about the single Oi is larger than the information about whole set (r(Y) > 0), the O[n] are said to be redundant with respect to Y. This may be the case if Y “contains” information that is shared by multiple Oi. In general, if the Oi do not share any information, that is if they are mutually independent, then they can not be redundant with respect to any Y (this follows from Lemma 3).

On the other hand, if the information of Y about the whole set of elements is larger than that about its single elements (r(Y) < 0), the O[n] are called synergistic with respect to Y. This may, for example, be the case if Y is generated through a function Y = f(O1,…, On) and the function value contains little information about each argument (as is the case for the parity function; see below). If, instead, Y is a copy of the O[n], then r(Y) ≥ 0, and thus, the O[n] are not synergistic with respect to Y. To connect our results to the introduced notion of redundancy and synergy, we introduce the following version of r parametrized by a parameter c ∈ {1,…, n}:



[image: there is no content]



(13)




Intuitively, if rc(Y) > 0 for large c, then the Oi are highly redundant with respect to Y. Corollary 1 of the last section implies that high redundancy implies common ancestors of many Oi.

Corollary 2 (Redundancy explained structurally). Let an observation of elements O[n] = {O1,…, On} be given by the values of I(Y : OS) for any subset S ⊆ [n]. If rc(Y) > 0, then in any DAG model of the observation in which Y only depends on[image: there is no content]through O[n][16], there exists a common ancestor of at least c + 1 elements of O[n].

In the following two subsections, we discuss this result in more detail for the cases in which the observed elements are discrete random variables and binary strings.


4.1. Common Ancestors of Discrete Random Variables

Let X[n] = {X1,…, Xn} and Y be discrete random variables with joint distribution p(X[n]; Y), and let I denote the usual measure of mutual information given by the Kullback–Leibler divergence of p from its factorized distribution [7]. If Y = X[n] is a copy of the X[n], then I(Y : X[n]) = H(X[n]), where H denotes the Shannon entropy. In this case, the redundancy r1(X[n]) is equal to the multi-information [17] of the X[n]. Moreover, rc gives rise to a parametrized version of multi-information:



[image: there is no content]



(14)




and from Corollary 1, we obtain
Theorem 2 (Lower bound on entropy o{ common ancestors). Let X[n]be jointly-distributed discrete random variables. If Ic(X[n]) > 0, then in any Bayesian net containing the X[n], there exists a common ancestor of strictly more than c variables out of the X[n]. Moreover, the entropy of the set Ac+1of all common ancestors of more than c variables is lower bounded by:



[image: there is no content]



(15)




We continue with a few remarks to illustrate the theorem:


	Setting c = 1, the theorem states that, up to a factor 1=(n 1), the multi-information I1 is a lower bound on the entropy of common ancestors of more than two variables. In particular, if I1(X[n]) > 0, any Bayesian net containing the X[n] must have at least an edge.


	Conversely, the entropy of common ancestors of all of the elements X1,…, Xn is lower bounded by (n −1)In−1(X[n]). This bound is not trivial whenever In−1(X[n]) > 0, which is, for example, the case if the Xi are only slightly disturbed copies of some not necessarily observed random variable (see the example below).


	We emphasize that the inferred common ancestors can be among the elements Xi themselves. Unobserved common ancestors can only be inferred by postulating assumptions on the causal influences among the Xi. If, for example, all of the Xi were measured simultaneously, a direct causal influence among the Xi can be excluded, and any dependence or redundancy has to be attributed to unobserved common ancestors.


	Finally, note that Ic > 0 is only a sufficient, but not a necessary condition for the existence of common ancestors. However, we know that the information-theoretic information provided by Ic is used in the theorem in an optimal way. By this, we mean that we can construct distributions p(X[n]), such that Ic(X[n]) = 0 for a given c, and no common ancestors of c+1 nodes have to exist.




We conclude this section with examples:

Example 1 (Three variables). Let X1; X2and X3be three binary variables. Then I2(X1; X2; X3) > 0 if and only if



[image: there is no content]








In this case, there must exist a common ancestor of all three variables in any Bayesian net that contains them. In particular, any Bayesian net corresponding to the DAG on the right-hand side of Figure 1 can be excluded as a model.

Example 2 (Synchrony and interaction among random variables). Let X1 = X2 = ⋯= Xn be identical random variables with non-vanishing entropy h. Then, in particular, In−1(X[n]) = (n−1)−1h > 0, and we can conclude that there has to exist a common ancestor of all n nodes in any Bayesian net that contains them.

Example 3 (Interaction of maximal order). In contrast to the synchronized case, let X1; X2,…, Xn be binary random variables taking values in {−1,1}, and assume that the joint distribution is of pure n-interaction [18], that is for some β ≠ 0, it has the form



[image: there is no content]








where Z is a normalization constant. It can be shown that there exists a Bayesian net including the X[n], in which common ancestors of at most two variables exist. This is illustrated in Figure 4 for three variables and in the limiting case β = ∞ in which each Xi is uniformly distributed and X1 =X2·X3. We found it somewhat surprising that, contrary to synchronization, higher order interaction among observations does not require common ancestors of many variables.


Figure 4. The figure illustrates that higher order interaction among observed random variables can be explained by a Bayesian net in which only common ancestors of two variables exist. More precisely, all random variables are assumed to be binary with values in {−1, 1}, and the unobserved common ancestors Uij are mutually independent and uniformly distributed. Further, the value of each observation Xi is obtained bythe product of the values of its two ancestors. Then, the resulting marginal distribution p(X1, X2, X3) is of higher order interaction: it is related to the parity function p(X1 = x1, X2 = x2, X3 = x3) = [image: there is no content] if x1x2x3 = 1, and zero otherwise.
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4.2. Common Ancestors in String Manipulation Processes

In some situations, it is not convenient or straightforward to summarize an observation in terms of a joint probability distribution of random variables. Consider for example cases in which the data comes from repeated observations under varying conditions (e.g., time series). A related situation is given if the number of samples is low. Janzing and Schölkopf [4] argue that causal inference in these situations still should be possible, provided that the observations are sufficiently complex. To this end, they developed a framework for causal inference from single observations that we describe now briefly. Assume we have observed two objects A and B in nature (e.g., two carpets), and we encoded these observations into binary strings a and b. If the descriptions of the observations in terms of the strings a and b are sufficiently complex and sufficiently similar (e.g., the same pattern on the carpets), one would expect an explanation of this similarity in terms of a mechanism that relates these two strings in nature (are the carpets produced by the same company?). It is necessary that the descriptions are sufficiently complex, as an example of [4] illustrates: assume the two observed strings are equal to the first hundred digits of the binary expansion of π; hence, they can be generated independently by a simple rule. If this is the case, the similarity of the two strings would not be considered as strong evidence for the existence of a causal link. To exclude such cases, the Kolmogorov complexity [19] K(s) of a string s has been used as the measure of complexity. It is defined as the length of the shortest program that prints out s on a universal (prefix-free) Turing machine. With this definition, strings that can be generated using a simple rule, such as the constant string s = 0⋯0 or the first n digits of the binary expansion of π, are considered simple, whereas it can be shown that a random string of length n is complex with high probability. Kolmogorov complexity can be transformed into a function on sets of strings by choosing a suitable concatenation function ⟨, ⟩, such that K(s1,…, sn) = K(⟨s1, ⟨s2,…, ⟨sn−1, sn⟩ …⟩).

The algorithmic mutual information [8] of two strings a and b is then equal to the sum of the lengths of the shortest programs that generate each string separately minus the length of the shortest program that generates the strings a and b:



[image: there is no content]








where ⩲ stands for equality up to an additive constant that depends on the choice of the universal Turing machine. Analogous to Reichenbach’s principle of common cause, [4] postulates a causal relation among a and b whenever I(a : b) is large, which is the case if the complexities of the strings are large and both strings together can be generated by a much shorter program than the programs that describe them separately.
In formal analogy to the probabilistic case, algorithmic mutual information can be extended to a conditional version defined for sets of strings A, B, C ⊆ {s1,…, sn} as:



[image: there is no content]








Intuitively, I(A : B |C) is the mutual information between the strings of A and the strings of B if the shortest program that prints the strings in C has been provided as an additional input. Based on this notion of conditional mutual information, the causal Markov condition can be formulated in the algorithmic setting. It can be proven [4] to hold for a directed acyclic graph G on strings s1,…, sn if every si can be computed by a simple program on a universal Turing machine from its parents and an additional string ni, such that the ni are mutually independent. Without going into the details, we sum up by stating that DAGs on strings can be given a causal interpretation, and it is therefore interesting to infer properties of the class of possible DAGs that represent the algorithmic conditional independence relations.

In the algorithmic setting, our result can be stated as follows:

Theorem 3 (Inference of common ancestors of strings). Let O[n] = {s1,…, sn} be a set of binary strings. If for a number c, (1≤ c ≤ n −1):
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then there must exist a common ancestor of at least c+1 strings out of O[n]in any DAG model of the O[n]. (Here, [image: there is no content]means up to an additive constant dependent only on the choice of a universal Turing machine, on c and on n.)
Proof. As described, algorithmic mutual information is an information measure in our sense only up to an additive constant depending on the choice of the universal Turing machine. However, one can check that in this case, the decomposition of mutual information (Theorem 1) holds up to an additive constant that depends additionally on the number of strings n and the chosen parameter c. The result on Kolmogorov complexities follows by choosing Y = (s1,…, sn), since [image: there is no content].

Thus, highly-redundant strings require a common ancestor in any DAG model. Since the Kolmogorov complexity of a string s is uncomputable, we have argued in recent work [5] that it can be substituted by a measure of complexity in terms of the length of a compressed version of s with respect to a chosen compression scheme (instead of a universal Turing machine), and the above result should still hold approximately.



4.3. Structural Implications from Synergy?

We saw that large redundancy implies common ancestors of many elements, and we may wonder whether structural information can be obtained from synergy in a similar way. This seems not to be possible, since synergy is related to more fine-grained information (information about the mechanisms), as the following example shows: Assume the observations O[n] are mutually independent. Then, any DAG is a valid DAG model, since the local Markov condition will always be satisfied. We also now that r(Y)≤ 0, but it turns out that the amount of synergy crucially depends on the way that Y has processed the information of the O[n] (and therefore, not on a structural property among the O[n] themselves). To see this, let the observations Oi be binary random variables, which are mutual independent and distributed uniformly, such that:



p(O[n])=∏i=1np(Oi)andp(Oi=1)=p(Oi=0)=1/2.








Further, let Y = (Oi ⊕Oj)i<j be a function of the observations (addition is modulo two). Then, the O[n] are highly synergistic with respect to Y, that is r1(Y) = −(n−1) log 2. On the other hand, if Y = O1 ⊕⋯⊕On, then r1(Y) = −log 2 only.

Nevertheless, it is an easy observation that synergy with respect to Y can be related to an increase of redundancy after conditioning on Y. Since I(·|Y) is a measure of mutual information, as well, we define a conditioned version of r in a canonical way as:
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with respect to some observation Z. If I can be evaluated on non-disjoint subsets, that is if we can choose Z = O[n], we have the following:
Proposition 2 (Synergy from increased redundancy induced by conditioning). Let O[n] = {O1,…, On} and Y be arbitrary elements on which a mutual information function I is defined. Then:
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hence if conditioning on Y increases the redundancy of O[n]with respect to itself, then rc(Y) < 0 and the O[n]are synergistic with respect to Y.
Proof. Using the chain rule, we derive
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where the last equality follows because rc(Y|O[n]) = 0.
Continuing the example of binary random variables above, mutual independence of the O[n] is equivalent to r1(O[n]) = 0 and, therefore, using the proposition r1(Y) =−r1(O[n]|Y). Thus, if Y = O1⊕⋯ ⊕O[n],
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as already noted above.



5. Conclusions

Based on a generalized notion of mutual information, we proved an inequality describing the decomposition of information about a whole set into the sum of information about its parts. The decomposition depended on a structural property, namely the existence of common ancestors in a DAG. We connected the result to the notions of redundancy and synergy and concluded that large redundancy implies the existence of common ancestors in any DAG model. Specialized to the case of discrete random variables, this means that large stochastic dependence in terms of multi-information needs to be explained through a common ancestor (in a Bayesian net) acting as a broadcaster of information.

Much work has been done already that examined the restrictions that are imposed on observations by graphical models that include latent variables. Pearl [1,20] already investigated constraints imposed by the special instrumental variable model. Furthermore, Darroch et al. [21] and, recently, Sullivant et al. [22] looked at linear Gaussian graphical models and determined constraints in terms of the entries on the covariance matrix describing the data (tetrad constraints). Further, methods of algebraic statistics were applied (e.g., [23]) to derive constraints that are induced by latent variable models directly on the level of probabilities. In general, this does not seem to be an easy task due to the large number of variables involved. Information theory, on the other hand, provides efficient methods for comparatively easy derivations of “macroscopic” constraints, the main subject of the present article (see also [24]).

Since the initial publication of this manuscript as a preprint [25], subsequent progress has been made on the problem of inferring DAG models from partial observations. In [26], the problem is treated in the wider context of inferring possible joint distributions from restrictions on marginals. There, an algorithm is presented that, even though computationally demanding, computes all Shannon-type entropic inequalities for given marginal constraints. Furthermore, it has turned out that entropic inequalities are useful in quantum physics where they restrict possible theories of data generation in more general settings than the ones using Bell inequalities (see, e.g., [27–30]). Moreover, we would like to mention that meanwhile, information measures for causal inference among strings based on compression length have been proposed [31], thus extending the possible applications of inequalities like the ones presented in this article.

Initiated by the work [32] of Williams and Beer, recent progress has been made related to the concepts of synergy and redundancy [33–35]. These works, however, do not address any causal interpretations. We think that the general methodology of connecting the redundancy and synergy of observations to properties of the class of possible DAG models will add new insights to this research direction.

Our generalized notion rc of redundancy (see (13)) has been used by Ver Steeg and Galstyan as an objective function for hierarchical representations of high-dimensional data [36,37], where the optimization is taken with respect to the variable Y.

Finally, we would like to mention the works [38] and [39] of one of us, which were based on our present article. In the article [38], our lower bound on the entropy of common ancestors, the inequality (15), is interpreted as a special linear inequality of entropic terms. The solution sets of such information inequalities are studied as the basis for casual inference. The work [39] gives a tight upper bound on our parametrized version Ic(X1,…, Xn) of multi-information (see (14)) and derives a method for discriminating between causal structures in Bayesian networks given partial observations.






Appendix


A. Semi-Graphoid Axioms and d-Separation

Consider the conditional independence relation that is induced by an information measure on a set of objects (A ╨ B|C ⟺ I(A : B|C) = 0). Then:

Lemma 4 (General independence satisfies semi-graphoid axioms). The relation of (conditional) independence induced by an independence measure I on elements O satisfies the semi-graphoid axioms: for disjoint subsets W; X; Y and Z of[image: there is no content], it holds:



(1)X╨Y|Z⇒Y╨X|Z(symmetry)(2)X╨(Y,W)|Z⇒{X╨Y|ZX╨W|Z(decomposition)(3)X╨(Y,W)|Z⇒X╨Y|(Z,W)(weakunion)(4)X╨W|(Z,Y)|X╨Y|Z}⇒X╨(W,Y)|Z(contraction)








The proof is immediate using non-negativity and the chain rule of mutual information. In the probabilistic context, the axiomatic approach to conditional independence has been presented by Dawid [11]. The above lemma is important, since it implies that a DAG that fulfills the local Markov condition with respect to a set of objects is an efficient partial [40] representation of the conditional independence structure among the observations. Namely, conditional independence relations can be read off the graph with the help of a criterion called d-separation [1]. This is the content of the following theorem, but before stating it, we recall the definition of d-separation: two sets of nodes A and B of a DAG are d-separated given a set C disjoint from A and B if every undirected path between A and B is blocked by C. A path that is described by the ordered tuple of nodes (x1; x2,…, xr) with x1 ∈ A and xr ∈ B is blocked if at least one of the following is true:


	there is an i, such that xi ∈ C and xi −1 → xi → xi+1 or xi −1 ←xi ←xi+1 or xi− 1← xi → xi+1,


	there is an i, such that xi, and its descendants are not in C and xi −1 → xi ←xi+1.




Theorem 4 (Equivalence of Markov conditions). Let I be a measure of mutual information on elements O[n] = {O1,…, On}, and let G be a DAG with node set O[n]. Then, the following two properties are equivalent:


	(Local Markov condition) Every node Oi of G is independent of its non-descendants Ond given its parents[image: there is no content],



[image: there is no content]









	(Global Markov condition) For every three disjoint sets of nodes A, B and C, such that A is d-separated from B given C in G, it holds A ╨ B|C.




Proof. (1)→(2). Since the dependence measure I satisfies the semi-graphoid axioms (Lemma 4), we can apply Theorem 2 in Verma and Pearl [41], which asserts that the DAG is an I-map, or in other words, that d-separation relations represent a subset of the (conditional) independences that hold for the given objects.

(2)→(1) holds, because the non-descendants of a node are d-separated from the node itself by the parents.



B. Proof of Proposition 1

We have shown in Lemma 3 the submodularity of I(Y :) with respect to independent sets. The rest of the proof is on the lines of the proof of Corollary I in [12]: First, by iteratively applying the chain rule for mutual information, we obtain:



[image: there is no content]



(16)




Without loss of generality, we can assume that every Xi is part of at least one set Ok for some k. Let ni be the total number of subsets Ok containing Xi. By definition of dk, for every k, it holds ni ≤ dk, and we obtain:



[image: there is no content]



(17)




Putting (16) and (17) together, we get



I(Y:O[n])=I(Y:X[r])=∑i=0r−1I(Y:Xi|X[i−1])≥∑i=1nI(Y:Xi|X[i−1])(∑Oj,(Xi∈Oj)1dj)(a)¯¯∑j=1n1dj∑Xi∈OjI(Y:Xi|X[i−1])≥(b)∑j=1n1dj∑Xi∈OjI(Y:Xi|X[i−1]∩Oj)(c)¯¯∑j=1n1djI(Y:Oj),








where (a) is obtained by exchanging summations and (b) uses the property of I that conditioning on independent objects can only increase mutual information (Inequality (4) applied to Xi ╨ (X[i −1]nOj) |Oj). This is the point at which the submodularity of I is used, since it is actually equivalent to (4), as can be seen from the proof of Lemma 3. Finally, (c) is an application of the chain rule to the elements of each Oj separately.


C. Proof of Theorem 1

By assumption, Oi∈[image: there is no content], and the DAG G with node set [image: there is no content] fulfills the local Markov condition. For each Oi, denote by anG(Oi) the smallest ancestral set in G containing Oi.

An easy observation that we need in the proof is given by the fact that two ancestral sets A and B are independent given their intersection:



A\B╨B\A|A∩B.



(18)




This is implied by d-separation using Theorem 4.

We first prove the inequality:



[image: there is no content]



(19)




From this, the inequalities of the theorem follow directly: (8) holds since I(Y : an(Oi)) ≥I(Y : Oi) using the monotony of I (implied by the chain rule and non-negativity). Further, (10) is a direct consequence of (19) together with the independence assumption (9), since by the chain rule:



[image: there is no content]








where the last equality is a consequence of (9).
The proof of (19) is by induction on the number of elements in [image: there is no content]. If A = ∅, nothing has to be proven. Assume now that (19) holds for Õ[n] = {Õ1,…, Õn}, such that [image: there is no content] is of cardinality at most k 1. Let O[n] be a set of observations, such that A is of cardinality k. From O[n], we construct a new collection Õ[n] as follows: w.l.o.g., assume m := d1 > 0, in particular O1 is non-empty and moreover, by definition of d1, and after reordering of the Oi, we can assume that the intersection [image: there is no content] is non-empty. Note that V itself is an ancestral set. We define Õi = Oi\V for all 1 ≤ i ≤ n and denote by [image: there is no content] the modified graph that is obtained from G by removing all elements of V. Further, denote by Ĩ(A : B|C) := I(A : B|C; V) a modified measure of mutual information obtained by conditioning on V. One checks easily that the graph [image: there is no content] fulfills the local Markov condition with respect to the independence relation induced by Ĩ and is a DAG model of the elements Õ[n]. Hence, by induction assumption:



I˜(Y:an[image: there is no content](O˜[n]))≥∑i=1n1d˜I˜(Y:an[image: there is no content](O˜i)),



(20)




where [image: there is no content]w is defined similarly as di, but with respect to the elements Õi and [image: there is no content]. Further, the sum is over all non-empty Õi. By construction of Ĩ and Õ[n], the left-hand side of (20) is equal to:


I˜(Y:an[image: there is no content](O˜[n]))=I(Y:anG(O[n])\V|V)=I(Y:anG(O[n]))−I(Y:V).



(21)




The right-hand side of (20) can be rewritten to:



∑i=1n1[image: there is no content]I˜(Y:an[image: there is no content](O˜i))≥(a)∑i=1nI˜(Y:an[image: there is no content](O˜i))(b)¯¯∑i=1n1diI(Y:anG(Oi)\V|V)+∑i=m+1n1diI(Y:anG(Oi)|V)≥(c)∑i=1n1diI(Y:anG(Oi)\V|V)+∑i=m+1n1diI(Y:anG(Oi)),








where (a) follows, because [image: there is no content] by definition and (b) follows because anG(Oi) ∩ V = ∅ for i > m. Hence, by (18), V and anG(Oi) are independent; therefore, conditioning on V only increases mutual information, as proven in Lemma 1, and Inequality (c) follows. We continue by rewriting the first m summands of the right-hand side using the chain rule:


∑i=1m1diI(Y:anG(Oi\V|V))=∑i=1m1di[I(Y:anG(Oi))−I(Y:V)]≥[∑i=1m1diI(Y:anG(Oi))]−I(Y:V),








where the inequality holds because [image: there is no content], which has already been used (see (17)) in the proof of Proposition 1. Summarizing, the right-hand side of (20) can be bounded from below by


∑i=1m1[image: there is no content]I˜(Y:an[image: there is no content](O˜i))≥∑i=1m1diI(Y:anG(Oi))−I(Y:V).








Since we have shown in (20) and (21), that the left-hand side can be bounded from above by I(Y : O[n]) I(Y : V), we observe that I(Y : V) cancels and (19) is proven.



D. Proof of Corollary 1

Proof. Let G be a DAG model of the observation of O[n] = {O1,…, On}. We construct a new DAG G′, by removing the objects of [image: there is no content]. Since A is an ancestral set, G′ fulfills the local Markov condition with respect to the mutual information measure obtained by conditioning on A. We apply Theorem 1 to G′ and the observations O[′n] = {O1\A,…, On\A} to get:



[image: there is no content]



(22)




Using Assumption (11) and the chain rule for mutual information, we obtain



I(Y:A)=I(Y:anG(O[n]))−I(Y:anG(O[n])\A|A)(a)¯¯I(Y:anG(O[n]))−I(Y:anG′(O′[n])|A)≤(b)∑i=1m1ci[I(Y:Oi)−I(Y:O′i|A)]−∈c≤(c)∑i=1m1ciI(Y:A)−∈c,








where in (a), we used the definition of Oi′ and for (b) we plugged in Inequalities (11) and (22). Finally, (c) holds, because:


I(Y:Oi)−I(Y:O′i|A)=I(Y:Oi∩A|O′i)+I(Y:O′i)−I(Y:O′i|A)=I(Y:Oi∩A|O′i)+I(Y:A)−I(Y:A|O′i)≤I(Y:A),








where the chain rule has been applied multiple times. The corollary now follows by solving for I(Y : A).
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