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Abstract: We develop ideas proposed by Van der Straeten to extend maximum entropy
principles to Markov chains. We focus in particular on the convergence of such estimates in
order to explain how our approach makes possible the estimation of transition probabilities
when only short samples are available, which opens the way to applications to non-stationary
processes. The current work complements an earlier communication by providing numerical
details, as well as a full derivation of the multi-constraint two-state and three-state maximum
entropy transition matrices.
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1. Introduction

Probabilities play a major role in many scientific fields, from physics to social sciences. Nonetheless,
assigning numerical values to the probability of some event to occur is often a difficult task, and
many methods have been devised to estimate such probabilities from empirical data in an efficient way.
In some cases, however, the probability space is so large, that it is not even thinkable to estimate these
probabilities directly, and in such circumstances one has to resort to more or less educated guesses. The
best-grounded of these assumptions relies on the maximum entropy principle [1,2], which states that,
among all probability distributions satisfying some given observational constraints (for instance, given
mean, correlation, marginals, etc.), the most reasonable guess is the one that has the largest Shannon
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entropy since entropy quantifies the amount of uncertainty in a distribution. In other words, given a
constraint or a set of constraints C(p) = const, one has to maximize:

−
∑

x

p(x) ln p(x) + λC(p(x)) (1)

in order to produce a p(x) as unbiased as possible.
While originally devised in the context of statistical mechanics, the principle of maximum entropy

(MaxEnt) found its way in many different research areas, from biology to linguistics, where it is now
successfully employed [3–7]. More recently, several attempts to generalize this principle to dynamical
situations have been proposed in different fields [8–12]. For instance, [11] studied the dynamical
properties of starling flocks, while [12] tried the maximum entropy approach on financial time series, and
[8] tackled the problem from the viewpoint of hidden Markov models (for completeness of the historical
background, one should mention here the many pending controversies raised when extending the results
of thermodynamics to non-equilibrium situations, but this topic is too far from our present concern). In
all such attempts, nonetheless, one has to keep in mind that the relevance of maximum entropy methods
depends tightly on the existence of sensible constraints that can be implemented easily.

In this paper, we focus on an approach presented in [13], which naturally encompasses the temporal
aspect, and attempt putting appropriate emphasis on the choice of constraints. The purpose of this method
is no longer to estimate a probability distribution, but to reconstruct the transition probabilities of a
Markov dynamics, based on the criterion that the entropy rate of the process should be maximized.
Though quite similar in spirit to the usual MaxEnt method, maximizing the entropy rate raises some
extra technicalities that we discuss in the following. In a recent letter, we have shown [14] that this
approach has some properties that make it suitable to inference on high-frequency datasets, in the sense
that for short historical samples, the MaxEnt approach could be more efficient than usual sampling. The
current paper therefore aims at recapitulating basic results derived in [13] and presents additional details,
as well as new material regarding part of the work originally presented in [14].

2. Theory

Let us define a stochastic process on a discrete state space Γ by specifying its initial probability p(x)

to be in state x, as well as the elements W (x, y) of its transition matrix W. This denotes the probability
of switching from state x to state y in one time step.

If such a process is stationary, its entropy rate, or entropy-per-symbol, is given by [15]:

h = −
∑

u,v

p(u)W (u, v) lnW (u, v). (2)

The stationarity of the process implies that pt(y) = pt+1(y) =
∑

x pt(x)W (x, y), or in matrix notation
p = pW. W and p are therefore not independent parameters of the process, since the latter has to be the
eigenvector of the unitary eigenvalue of the former. Following [13], we will actually impose a detailed
balance in order to guarantee the stationarity, that is we impose p(x)W (x, y) = p(y)W (y, x).

The detailed balance also allows us to derive a straightforward expression for the stationary
probability. Indeed, using the probabilistic normalization and the detailed balance, we get:
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p(x) = 1−
∑

y 6=x

p(y) = 1−
∑

y 6=x

p(x)W (x, y)

W (y, x)
= 1− p(x)

∑

y 6=x

W (x, y)

W (y, x)
(3)

or:

p(x) =

(
1 +

∑

y 6=x

W (x, y)

W (y, x)

)−1

. (4)

It should be emphasized that the detailed balance assumption is not innocuous, but its impact depends
tightly on the way processes obeying detailed balance are distributed among all Markov processes. In the
case of the two-state processes considered below, it can be shown easily that any such process satisfies
detailed balance, so that our procedure is perfectly valid. For larger state spaces, this property no longer
holds, and it has to be checked whether or not an arbitrary process is always close to a detail-balanced
one, so that the error committed by restricting to balanced processes stays small. This point should be
kept in mind later on when discussing the performance of the MaxEnt approach for state spaces of
higher dimensionality.

2.1. Unconstrained Case

The process has therefore three structural constraints brought in by the normalization of the stationary
probability vector, the row-normalization of W and the detailed balance condition, namely:

∑

x

p(x) = 1 (5)

∑

y

W (x, y) = 1 ∀x (6)

p(x)W (x, y) = p(y)W (y, x) ∀x, y < x. (7)

In the absence of additional constraints, maximizing h amounts to maximizing the function:

L0 := −
∑

u,v

p(u)W (u, v) lnW (u, v) +
∑

u

λ(u)

(∑

v

W (u, v)− 1

)

+ Λ

(∑

u

p(u)− 1

)
+
∑

u,v<u

θ(u, v) (p(u)W (u, v)− p(v)W (v, u)) (8)

where Λ, λ and θ are the Lagrange multipliers associated with the constraints. After straightforward
calculations, we obtain the system:

0 =
∂L0

∂W (x, x)
= −p(x) lnW (x, x)− p(x) + λ(x) (9)

0 =
∂L0

∂W (x, y < x)
= −p(x) lnW (x, y)− p(x) + λ(x) + θ(x, y)p(x) (10)

0 =
∂L0

∂W (x, y > x)
= −p(x) lnW (x, y)− p(x) + λ(x)− θ(y, x)p(x) (11)

0 =
∂L0

∂p(x)
= −

∑

v

W (x, v) lnW (x, v) + Λ +
∑

v<x

θ(x, v)W (x, v)−
∑

u>x

θ(u, x)W (x, u) (12)
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We use the expression for λ(x) provided by Equation (9) in Equations (10) and (11); so doing, we get:

ln
W (x, x)

W (x, y)
+ θ(x, y) = 0 (13)

ln
W (x, x)

W (x, y)
− θ(y, x) = 0 (14)

Swapping arguments in the last of these two equations and adding both, we get:

ln
W (x, x)

W (x, y)
+ ln

W (y, y)

W (y, x)
= 0 ↔ W (x, x)W (y, y)

W (x, y)W (y, x)
= 1 (15)

In order to deal with Equation (12), we split it in terms of diagonal, upper and lower triangular
elements as:

0 = −W (x, x) lnW (x, x) + Λ

−
∑

v<x

(lnW (x, v)− θ(x, v))W (x, v)

−
∑

v>x

(lnW (x, v) + θ(v, x))W (x, v). (16)

The θ multipliers can be removed from this expression by using Equations (13) and (14), and we
eventually get:

0 = Λ− lnW (x, x), (17)

so that every diagonal element of the transition matrix takes the same value. With Equation (15), it
results that:

W (x, y)W (y, x) = e2Λ ∀x, y. (18)

If we assume W (x, y) = 1/N ∀x, y, then N = e−Λ, and the normalization constraint∑
yW (x, y) = 1 is satisfied. Moreover, the eigenvector of W with the unitary eigenvalue is the vector

with all elements equal to 1/N , so that the detailed balance is enforced. The unconstrained maximum
entropy rate process is therefore given by W, such that W (x, y) = 1/N for all x, y, as expected.

2.2. Constraints

The purpose of the maximum entropy method is to rely on observables to make a least biased guess
on the probability distribution, or here the transition matrix, characterizing the system. Among the
many possible observable quantities, it is crucial that the ones retained are (1) easy to measure and
(2) straightforward to implement as constraints. In this paper, we shall deal explicitly with constraints
on the variance and the one-step autocorrelation of the process. Besides the properties above, these
constraints also have the advantage that they give insights into the strengths and limitations of the
method. Nevertheless, we admit that this choice is not unique.

Therefore, we constrain: ∑

x

x2p(x) = σ2 (19)
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and: ∑

x,y

xyP (x, t; y, t + 1) =
∑

x,y

xyp(x)W (x, y) = A. (20)

The target function thus becomes:

L := L0 + α

(∑

u

u2p(u)− σ2

)
+ β

(∑

u,v

uvp(u)W (u, v)− A

)
, (21)

where α and β are the Lagrange multipliers on variance and autocorrelation, respectively. The same
calculations as in the unconstrained case yield eventually:

− p(x) lnW (x, x)− p(x) + λ(x) + βx2p(x) = 0 (22)

− p(x) lnW (x, y)− p(x) + λ(x) + θ(x, y)p(x) + βxyp(x) = 0 (23)

− p(x) lnW (x, y)− p(x) + λ(x)− θ(y, x)p(x) + βxyp(x) = 0 (24)

−
∑

v

W (x, v) lnW (x, v)+Λ+
∑

v<x

θ(x, v)W (x, v)−
∑

v>x

θ(v, x)W (x, v)+αx2+βx
∑

v

vW (x, v) = 0,

(25)
and by the same sequence of arguments as previously, Equations (22)–(24) can be combined into:

ln
W (x, x)W (y, y)

W (x, y)W (y, x)
− β (x− y)2 = 0, (26)

while Equation (25) can be expressed as:

0 = − lnW (x, x) + (α + β)x2 + Λ ⇒ ln
W (x, x)

W (y, y)
= (α + β)(x2 − y2). (27)

3. Solving the Equations

3.1. Two-State Case

The system of equations formed by Equations (26) and (27) has generally to be solved numerically.
Before going into details of the three-state case, we address the case of two states encoded by x ∈
{−1,+1}, which can be carried out analytically. Equations (26) and (27) then become:

W (−,−)W (+,+)

W (−,+)W (+,−)
= e4β (28)

W (−,−) = W (+,+). (29)

Using Equation (29) and the normalization on rows, Equation (28) can be solved easily to yield:

W (−,−) =
1

1 + e−2β
. (30)

We find therefore that the process having the highest possible entropy rate, under constrained variance
and autocorrelation, is the one generated by the transition matrix:

WME =

(
1

1+e−2β
1

1+e2β

1
1+e2β

1
1+e−2β

)
. (31)
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This result can be re-expressed as a function of the observed one-step autocorrelation A. Computing
the autocorrelation A′ of the MaxEnt matrix Equation (31), equating this expression to A and inverting
yields β = 1

2
ln
(

1+A
1−A

)
. It follows that WME can be rewritten as:

WME =

(
1+A

2
1−A

2
1−A

2
1+A

2

)
. (32)

Note that constraining the variance of the process has no effect, since, for the encoding of states
chosen here, we get by necessity σ2 = 1 for any W. It is interesting to note how the consideration of one
non-trivial constraint squeezes the space on independent transition coefficients onto a one-dimensional
submanifold, while enhancing multiple (consistent) constraints would result in a MaxEnt submanifold
of larger dimensionality.

3.2. Three-State Case

For a larger state space, the last part of the procedure has to be carried out numerically. Let us tackle
the case of a three-state process, the states of which are encoded as {−1, 0,+1}. Equation (27) becomes:

W (−,−)

W (0, 0)
= eα+β (33)

W (0, 0)

W (+,+)
= e−α−β (34)

W (−,−)

W (+,+)
= 1, (35)

while Equation (26) gives:
W (−,−)W (0, 0)

W (−, 0)W (0,−)
= eβ (36)

W (−,−)W (+,+)

W (−,+)W (+,−)
= e4β (37)

W (0, 0)W (+,+)

W (0,+)W (+, 0)
= eβ. (38)

The row normalization provides three equations, as well:

W (−,−) + W (−, 0) + W (−,+) = 1 (39)

W (0,−) + W (0, 0) + W (0,+) = 1 (40)

W (+,−) + W (+, 0) + W (+,+) = 1 (41)

Putting W (−,−) = k, we can fill up the diagonal of WME ,

WME =




k ∗ ∗
∗ k

eα+β ∗
∗ ∗ k


 . (42)



Entropy 2015, 17 3744

Putting W (−, 0) = m and using the condition relating W (0,−) and W (−, 0), we have:

WME =




k m ∗
k2

eα+2βm
k

eα+β ∗
∗ ∗ k


 . (43)

Then, we deal with the couple W (−,+),W (+,−), assigning W (−,+) = 1 − k − m in order to
compel the normalization condition on the first row. This yields:

WME =




k m (1− k −m)
k2

eα+2βm
k

eα+β ∗
k2

e4β(1−k−m)
∗ k


 . (44)

Carrying out the same procedure for the couple W (0,+),W (+, 0) and using the normalization
condition on the second line gives:

WME =




k m (1− k −m)
k2

eα+2βm
k

eα+β

(
1− k2

eα+2βm
− k

eα+β

)

k2

e4β(1−k−m)
k2m

eα+2βm−k2−eβkm k


 . (45)

Enforcing the normalization condition on the third line eventually gives that:

m =
−b±

√
b2 − 4ac

2a
(46)

with:
a := (e5β − e4β)k2 − (e6β+α + e5β)k + e6β+α (47)

b := (e5β − eβ)k3 − (e6β+α + 2e5β − e2β+α)k2 + (2e6β+α + e5β)k − e6β+α (48)

c := (e4β − 1)k4 − 2e4βk3 + e4βk2. (49)

3.3. Algorithm

The transition matrix WME (45) needs to be numerically estimated. To this end, we implemented a
version of the well-known and widely used generalized iterative scaling (GIS). Specifically, the algorithm
starts from an initial solution that is iteratively adjusted to fit the constraints. Setting an initial value for
α = 1.0 and β = 1.0, we iterate over k to satisfy the constraint on the normalization of p. Once a
solution for k is reached for a given couple (α, β), these are updated as indicated in the pseudo-code
below, and the process is iterated until α and β have converged towards values satisfying the constraints
on σ2 and A given by Equations (19) and (20), respectively. The procedure is summarized in Algorithm 1
below. We refer to [16] for a discussion of the convergence of the GIS and an overview of other related
algorithms.
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Algorithm 1 Estimation of the transition matrix WME in the three-state case.
α = 1, β = 1, εα = 1, εβ = 1, n = 0

while εα > 10−5 AND εβ > 10−5 AND n < 1000 do
// Given α and β, find k that maximizes

∑
p

k0 = 0, dk = 0.1, smax = 0

while dk > 10−5 do
for k = max(k0 − 10dk, 0) ; k < k0 + 10dk ; k+ = dk do

compute a from Equation (47), b from Equation (48), c from Equation (49)
compute m from Equation (46) // ± to select 0 ≤ m ≤ 1

compute WME from Equation (45)
compute p from Equation (4), s =

∑
p

if s > smax AND 0 ≤ elements of(WME) ≤ 1 AND s is a number then
// s not a number if division by zero when computing p

smax = s, k1 = k

end if
end for
k0 = k1, dk = dk/10

end while
// Update α and β

k = k0

compute a,b,c ; m ; WME

compute the variance σ̂2 from WME with Equation (19)
α1 = α + σ2 − σ̂2

εα = |α− α1|
α = α1

compute the autocorrelation Â from WME with Equation (20)
β1 = β + A− Â

εβ = |β− β1|
β = β1

n = n + 1

end while

4. MaxEnt Estimations for Time Series

Following [14], we now investigate the accuracy and limitations of the procedure we sketched in the
above sections. Again, the two-state case is special, since it can receive an analytical treatment.
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4.1. Stationary Processes

Letting A denote the autocorrelation of the process, it was shown above that in the case of a
two-state process with states encoded as ±1, Equations (9) and (10) could be solved to give the MaxEnt
transition matrix:

WME =

(
1+A

2
1−A

2
1−A

2
1+A

2

)
. (50)

We now prove that there exists a subset of the space of 2 × 2 stochastic matrices for which the
MaxEnt method is more efficient than sampling in estimating W when we only have short samples at
our disposal. We detail the calculations for the coefficient W (−,−), the other three being similar.

Since the sample autocorrelation of a well-behaved process obeys a central limit theorem [17], we
make the assumption that the sample autocorrelation A(n) measured from a sample of size n is distributed
normally according to N (A, n−1). Figure 1 shows that this estimate turns out to be quite good, even
for short samples, in particular when A stays small. Here, a time series is generated from a known
transition matrix and then sampled in order to reconstruct the matrix using both the MaxEnt method and
histogram sampling.
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Figure 1. Comparison between the empirical mean and the standard deviation of data (bars) and
estimate Equations (51)–(54) derived from the central limit assumption (continuous lines: mean;
dashed lines: standard deviation), for transition matrices with autocorrelation A = −0.03 (top) and
A = 0.36 (bottom).
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According to Equation (50), it follows that the error made on the estimation of W (−,−) using the
MaxEnt method is distributed as N (1+A

2
− W (−,−), (4n)−1). The absolute value of this error thus

obeys a folded normal distribution, which has the mean and standard deviation given by (see [18]):

〈|∆MEW (−,−)|〉(n) =
e−2nµ2

−−
√

2πn
+ µ−−

(
1− 2Φ

(
−2
√
nµ−−

))
(51)

σ(n)(|∆MEW (−,−)|) =

√
µ2
−− +

1

4n
− (〈|∆MEW (−,−)|〉(n))

2
, (52)

where µ−− = 1+A
2
−W−− and Φ denotes the normal cumulative distribution.

Similarly, an estimate of the error committed when estimating W (−,−) by frequency sampling can
be provided. It can be shown [19] that the coefficient sampled from a window of size n is distributed
normally according to N (W (−,−), W (−,−)(1−W (−,−))

np−
), where p(−) denotes the stationary probability

of being in state −1, which, in the current setting, is given by p(−) = 1−W (+,+)
2−W (−,−)−W (+,+)

. Following the
same steps as previously, the sampled absolute error on W (−,−) has mean and deviation:

〈|∆SW (−,−)|〉(n) =

√
2W (−,−)(1−W (−,−))

πnp−
(53)

σ(n)(|∆SW (−,−)|) =

√(
1− 2

π

)
W (−,−)(1−W (−,−))

np(−)
. (54)

Equations (51) and (53) lead us to define an accuracy gain:

∆
(n)
−− := 〈|∆SW (−,−)|)〉(n) − 〈|∆MEW (−,−)|〉(n) (55)

which is positive when the MaxEnt method provides a better estimation of W (−,−) than frequency
sampling does for samples of size n. Though ∆

(n)
ij (i, j ∈ {±1}) depends on the coefficient, one may

wish to define a global ∆(n) for the W matrix considered. While a conservative option is to choose
the minimum over all coefficients, we shall rather tolerate a poor estimation of one of the coefficients
as long as the corresponding transitions occur scarcely and, therefore, define ∆

(n)
W as the sum of all

∆
(n)
ij ’s weighted by the stationary distribution, namely ∆

(n)
W =

∑
i p(i)∆

(n)
ij . From our experiments, the

definition of ∆
(n)
W does not alter qualitatively the forthcoming results (see Figure 2). We now let nc(W)

denote the value of n above which ∆
(n)
W becomes negative. In other words, a non-negative nc means

that for historical samples shorter than nc, the MaxEnt method gives better results when estimating the
transition matrix underlying the observed process.

The quantity nc(W) is found numerically from Equation (55) and plotted in Figure 2 over the space
of 2 × 2 stochastic matrices parametrized by (W (−,−),W (+,+)). Note that nc is large close to the
diagonal, but decays when one moves away from it, which means that a matrix that is “compatible” with
the structure Equation (50) is better estimated using MaxEnt.

Denoting M(n) the set of matrices, such that nc(W) ≥ n and µ(n), the relative size of M(n)

compared to M(0) (the space of all 2×2 stochastic matrices), then the relevance of the MaxEnt approach
for a given state space will depend critically on the function µ(n). In the two-state case, one can read
from Figure 2 that M(50) is concentrated in a neighborhood around the diagonal, so that µ(50) ≈ 0.15.
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This means that for samples of a size smaller than n = 50, the MaxEnt estimate is better than the
frequency sampling estimate for about 15% of all possible processes. One should, however, note that
processes on which one might want to apply the method are unlikely to be scattered randomly over
[0, 1]2, but will rather be processes having a large entropy, that is low predictability. This tends to focus
our interest on the central area of [0, 1]2 and increase the effective µ(n).
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Figure 2. nc(W) plotted over the space of two-state stochastic matrices parametrized by W (−,−),
W (+,+), for ∆

(n)
W chosen as (a) the weighted sum of individual coefficients and (b) the minimum

over coefficients.

Though obviously µ(n) depends on the dimensionality of the state space, we were not able to
set up a general argument showing how µ(n) changes when the state space gets larger. On the one
hand, since an efficient frequency sampling in high-dimensional spaces should require very long
samples, one might intuitively expect MaxEnt to outperform sampling in high dimensions. On the other
hand, the MaxEnt procedure (in the case of one constraint put on the process) squeezes the space of
independent coefficients onto a one-dimensional submanifold. The net result of these competing effects
is therefore to penalize the MaxEnt approach for large state spaces. This can nevertheless be alleviated
by considering extra constraints (see below), since each extra constraint increases the dimensionality of
the MaxEnt submanifold.

To illustrate these points, we consider three-state processes taken randomly in regions characterized
by a given range of entropy rate h. In practice, we dissected the matrix space into five regions Ci defined
by the conditions hi < h < hmax where hmax = ln 3 and hi is specified in Figure 3; this figure shows
the effectiveness of our approach by highlighting that processes having a large entropy rate are more
suited to our approach. We display there the cases where two constraints are enforced (blue curves) and
where the constraint on the variance of the process is relaxed (red curves). We observe that, for short
samples, going from one to two constraints results in a loss of performance or at best a marginal gain,
as estimation errors of constraints tend to accumulate. However, when the sampling window is long
enough to allow for an accurate estimation of all constraints, adding constraints results in a spectacular
improvement of the MaxEnt method.
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For comparison purposes, Figure 3 also displays the success rate of the two-state processes discussed
above, illustrating that MaxEnt may perform better for low-dimensional state spaces when the same
number of constraints is considered.
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Figure 3. Success rate of three-state processes as a function of the sampling window, for two- and
three-state processes involving one or two constraints. Cumulated quintiles of the entropy rate are
displayed separately for three-state processes. One thousand processes are picked in each quintile.

4.2. Non-Stationary Processes

As long as only stationary processes are considered, the MaxEnt method is actually mainly of
academical interest since nothing precludes the use of arbitrarily long samples. Things are very different
when the dynamics itself changes over time, for then, a quick estimation of dynamical parameters
becomes necessary. The crucial point, which follows immediately from our previous results, is as
follows: if the coefficients Wij(t) evolve within M(τ), where τ is the typical time scale on which the
parameters of the dynamics change, then MaxEnt provides a quicker estimation of the instantaneous
dynamics than sampling does.

Figure 4 conveys a qualitative illustration of this approach for a two-state stochastic process that is
generated from a time-varying transition matrix:

W(t) =

(
0.6 + 0.1 sin

(
2πt
T

)
0.4− 0.1 sin

(
2πt
T

)

0.4− 0.1 sin
(

2πt
1.2T

)
0.6 + 0.1 sin

(
2πt
1.2T

)
)
, (56)

where T = 500. Due to the relatively short period of oscillation, considering samples more than a
few dozens of time units long would give meaningless over-averaged results. The figure shows that
for a sliding window of size n = 50, the MaxEnt estimate (shown in blue) provides a better match
of the coefficient W−−(t) (red). In particular, it avoids the large deviations shown by the sampling
estimate (yellow).

New problems arise, however, when one attempts to deal with multiple constraints. This topic
is discussed in further detail in [14], where an application is presented to quantify the risk of a
financial asset.
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Figure 4. A realization of the process Equation (56). The true coefficient W−−(t) (red) is compared
with its MaxEnt (blue) and sampling (yellow) estimates.

5. Conclusions

Starting from the maximum entropy rate framework, we explained how this approach could find
its utility when inferring dynamical properties of observed time series. The crucial point is that the
MaxEnt approach gives more accurate estimates of the transition parameters when short samples only
are available for inference. This is however true only when processes to estimate fit the structure imposed
by the MaxEnt procedure, but we argue that in the case considered here, where variance and one-step
autocorrelation are constrained, many processes of interest do satisfy this property. Moreover, the
efficiency of the method can be drastically improved by considering multiple constraints, even though
this involves extra computational issues and may, if carelessly done, significantly reduce the performance
of the algorithm.
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