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Abstract: Joining independent quantum searches provides novel collective modes of

quantum search (merging) by utilizing the algorithm’s underlying algebraic structure. If

n quantum searches, each targeting a single item, join the domains of their classical

oracle functions and sum their Hilbert spaces (merging), instead of acting independently

(concatenation), then they achieve a reduction of the search complexity by factor O(√n).
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1. Introduction

The quantum search algorithm, from its initial conception [1–3], to the subsequent manifold of

ongoing developments, see e.g., the various open research projects addressing the association of quantum

search with e.g., quantum entanglement [4], quantum programming [5], error faultiness [6], fixed-point

quantum search [7], and quantum walks [8], constitutes one of the pillars of the research area of quantum

computing. Despite its simplicity and the manifested versatility in applications the algorithm remains a

challenge to meet, especially when it is considered as a computational primitive that could be synthesized

in non trivial ways with itself.

This point of view is put forward in this work, where utilizing the underlying algebraic structure of the

search algorithm and its matrix representation theory [9], the algorithm is treated as a computational unit
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composed in two different ways, to be called merging and concatenation. Merging of two algorithms

creates a computational advantage that reduces search complexity in contradistinction to non joint

searches of simple concatenation. More accurately, it is shown that the merging of n single searches

with database dimensions Nk = 2k, k = 1, ..., n, causes a complexity reduction proportional of square

root of n. This main result of collective search is scrutinized in all intermediated joining schemes,

where among n searches k are merged and the rest are left concatenated, via partitioning databases

into distinct groups of merged algorithms and then concatenating the resulting groups. The logistics of

joining schemes is carried out via Young diagrams and tableaux of partitions, as well as majorization

theory [10]. (Proofs and examples are placed in the second part of the paper).

1.1. Single Quantum Search

Find 1 ≤ k < N marked elements from the set ∆ = {1, 2, ...N}, by improving the classical

complexityO(N) of the search.

The ν binary strings (a1, a2, ..., aν) form the elements of classical database with size N = 2ν , which

are assigned via (a1, a2, ..., aν) → |a1, a2, ..., aν〉 ≡ |i〉 , i = 1, ..., N , to N basis vectors of Hilbert

space H = (span{|0〉 , |1〉})⊗ν . Via the assignment |i〉 → |i〉 〈i| , this leads to the database Π =

{|i〉 〈i|}Ni=1= {ρi}
N
i=1 ≈ l2(∆)/U (1) consisting of a collection of N pure density matrices. Let the

oracle function f, introduced as the characteristic function of subset I ⊂ ∆ of marked items, namely

f(i) = 1 for i ∈ I and f(i) = 0 for i /∈ I. The density matrices ρx, ρs, for the marked and initial

vectors are expressed in terms of vectors |x〉 ,
∣∣x⊥〉 , and |s〉 = 1√

N

∑N
i=1 |i〉, where |x〉 and |s〉, are

the the solution state and the equiprobable superposition of all database states, respectively. Define the

reflection operators Jx = 1− 2 |x〉 〈x| , Js = 1− 2 |s〉 〈s| , and the unitary search operator UG = −JsJx,

that implements a search via the action ρ → UGρU
†
G. Next, introduce the Σ0,Σ1,Σ2 and Σ3 as the

Hermitian generators of oracle algebra Af [9],

Σ1 = |x〉
〈
x⊥∣∣+

∣∣x⊥〉 〈x| , Σ2= −i |x〉
〈
x⊥∣∣+i

∣∣x⊥〉 〈x| ,
Σ3 = |x〉 〈x| −

∣∣x⊥〉 〈x⊥∣∣ , Σ0= |x〉 〈x|+
∣∣x⊥〉 〈x⊥∣∣ ,

with commutation relations [Σα,Σb] = 2iΣc (cyclically), a, b, c ∈ {0, 1, 2, 3}, and Σ0 central, i.e.,

Af ≈ u(2) (see Appendix for the representation theory).

In terms of oracle algebra generators the search operator reads UG = exp(iθΣ2), with θ =

arcsin(−2
√

k(N − k)/N). It holds that Um
G = exp (imθΣ2), m ∈ N, and then ρ(m) := Um

G ρsU
m†
G ,

and pm=Tr(ρ(m) |x〉 〈x| ) = cos2 (mθ − α), and pm = 1 iff cos2(mθ−α) = 1, for N ≫ 1, k < N, i.e.,

the complexity of the algorithm is O(
√

N/k).

2. Collective Quantum Search: Merging and Concatenation

Considering joining of two searches in Hilbert spaces Hr = span{|i〉}Nr

i=1, r = 1, 2, with dimensions

N1, N2 in the form of concatenation, we first need to embed their database vectors into a larger space

H1 ⊕ H2 of dimension N1 + N2, by padding in zeros into their components, on their top or on their

tail, until their number becomes N1 + N2. By convention, concatenating searches of dim N1 with one

of dim N2, would mean to form new basis vectors {|∅〉N1 ⊕ |i〉N2; i = 1, ..., N2}, and {|i〉N1 ⊕ |∅〉N2,
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i = 1, ..., N1}, where we denote by |∅〉N1, |∅〉N2, the respective null vector with all their components

being zero. These two new sets of basis vectors constitute the database of the jointed algorithms of dim

N1 +N2. The marked vector to be called |xconc〉 will read

|xconc〉 = |x1〉N1 ⊕ |∅〉N2 + |∅〉N1 ⊕ |x2〉N2 =

(
|x1〉
|x2〉

)
.

Definition 1. l-merging and l-concatenation. Let l quantum search algorithms [1] Ur(fr) : Hr → Hr,

r = 1, 2, ..., l with Hr = span{|i〉}Nr

i=1 their database Hilbert spaces, Ur(fr) = −JsrJxr
, where the

reflection operators Jsr = 1− 2 |sr〉 〈sr| , and Jxr
= 1− 2 |xr〉 〈xr| , are defined wrt some vectors |xr〉

and |sr〉 , with |sr〉 = 1√
Nr

∑Nr

i=1 |i〉 , and |xr〉 =
∑Nr

i=1 fr(i) |i〉 ∈ Hr the target vectors; here fr : ZNr
→

Z2 their respective oracle functions. We further denote the merged space by Hmerg = ⊕l
r=1Hr with

Nmerg = N1+N2+ · · ·+Nl, let also a quantum search algorithm Umerg(fmerg) : Hmerg → Hmerg, with

Hmerg = span{|i〉}Nmerg

i=1 its space, Umerg(fmerg) = −J|smerg〉J|xmerg〉, its search unitary, and fmerg :

ZNmerg
→ Z2 its l-target oracle function, and also denoted by |xmerg〉 =

∑Nmerg

i=1 fmerg(i) |i〉 , the

l-target vector.

Lemma 1. Let a 2-concatenation with search operator Uconc = −J|sconc〉J|xconc〉. Then the following

decomposition is valid Uconc = U1 ⊕ U2, where U1, U2 are the search operators in Hilbert spaces with

dimensions N1, N2, respectively.

2.1. Collective Quantum Search: Joining Schemes and Young Diagrams

By convention we take the horizontal direction in a Young diagram (for notation c.f. [11]) to denote

merging (the number of row boxes equals the number of merged searches), and in the vertical direction

the number of rows denotes concatenated sets, i.e.,

final column:

concatenation of l(λ) merged rows

one merging

per row
l(λ)





︷ ︸︸ ︷
...

...
...

Recall the partial order of majorization between partitions [10]. Let partitions π = (π1, ..., πs) and

ρ = (ρ1, ..., ρt); if s ≥ t then π weakly majorizes ρ, written as πw≻ρ, if the following inequalities

are satisfied,
k∑

i=1

πi ≥
k∑

i=1

ρi, 1 ≤ k ≤ t,
s∑

i=1

πi ≥
t∑

i=1

ρi.

If the last relation above is only an equality, then π majorizes ρ , written as π ≻ ρ. Associating partitions

to Young diagrams, i.e., π → Y (π), an equivalent definition of majorization of partitions is induced via

Lemma 2. (Muirhead’s Lemma) If π, ρ ⊢ m, then π ≻ ρ iff Y (π) can be obtained from Y (ρ) by moving

boxes up to lower numbered rows.
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In this way all, Young diagrams of given m are partially ordered in the poset {π ⊢ m,≻}, via their

associated Young diagrams as shown schematically below,

Y (π)
move boxes up

←− Y (ρ)

↓ ↑
π ≻ ρ

In the context of collective search, we say equivalently that if diagram Y (π) of a partition π describing

a joining scheme for a set of searches, has been obtained from some other Y (ρ) by merging some

searches among them, i.e.,

Y (π)
move boxes up, merging a search

←− Y (ρ),

then π ≻ ρ.

2.2. Collective Quantum Search: Complexity

For the corresponding search complexities Tπ, Tρ we have the following lemma.

Lemma 3. The search complexity function Tπ(N1, ..., Nn), for a given joining scheme of n searches with

dimensions N1, ..., Nn, described by partition π, is a Schur concave function, for which it is valid that

for any two weakly majorized partitions πw≻ρ of n, the corresponding complexities are anti-isotonic,

i.e., Tπ ≤ Tρ.

For simplicity’s sake, hereafter and unless otherwise stated we consider that a single search algorithm

has only one marked element, i.e., k = 1. Symbolism: 〈Nk;Nl〉 ≡ Nk+···+Nl

l−k+1
. We state the

following lemma.

Lemma 4. Let l searches with database Hilbert space dimensions {N1, ..., Nl} , arranged in a Young

tableau either as an l -box row, in case of merging, or as an l-box column, in case of concatenation.

Denoting the corresponding complexities as T
(N1,...,Nl)
merg =

⌊
π
4

√
〈N1;Nl〉

⌋
and T

(N1,...,Nl)
conc =

⌊
π
4

√
N1

⌋
+

· · ·+
⌊
π
4

√
Nl

⌋
respectively, it is valid that T

(N1,...,Nl)
merg ≤ T

(N1,...,Nl)
conc .

Having introduced the main concepts and mathematical tools of collective quantum search we proceed

to state and show the main result.

Consider the ratio of the extreme values of complexities Tconc/Tmerg, i.e., “all concatenated” over “all

merged”. The sequence {Ni}ni=1 of dimensions, can be of two distinct kinds : (i) {Ni}ni=1 an unbounded

sequence, e.g., Ni’s are consecutive terms of sequence 2i (a natural choice for database sizes), in this

case we show that Tconc/Tmerg = O(
√
n); (ii) if the sequence {Ni}ni=1 is bounded (e.g., Ni = 2bi ,where

{bi}ni=1 is bounded), then the ratio Tconc

Tmerg
∈ Θ(n), i.e., it is asymptotically linear in n, the number of

databases (for “Big Theta” notation c.f. [12]). Next lemma and proposition provides an estimation for

the search complexity for arbitrary database dimensions.
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Lemma 5. If T
(c)
conc =

∑n

i=1
π
4

√
Ni and T

(c)
merg = π

4

√
1
n

∑n

i=1Ni, are the continuous analogues

(continuous functions) for complexities Tconc, Tmerg, then, i) Tmerg =
⌊
T

(c)
merg

⌋
ii) T

(c)
conc

T
(c)
merg

− n

T
(c)
merg

<

Tconc

Tmerg
< T

(c)
conc

T
(c)
merg−1

.

Proposition 1. For arbitrary positive integers (database sizes) Ni, i = 1, 2, ..., n it holds that

√
nT (c)

merg < T (c)
conc ≤ nT (c)

merg

Moreover, if Ni are:

(a) consecutive terms of the unbounded sequence {Ni}ni=1 with Ni = 2i, then Tconc = O(
√
n)Tmerg.

(b) terms of a bounded sequence of positive integers with p = sup{Ni}ni=1, q = inf{Ni}ni=1, then :
Tconc

Tmerg
∈ Θ(n), i.e., nλ−1Tmerg ≤ Tconc ≤ nλTmerg, with λ =

⌊
π
4

√
p
⌋ ⌊

π
4

√
q
⌋−1

.

Remark 1. (i) If Ni = 2bi , for all i = 1, ..., n, and {bi}ni=1 is an increasing and bounded above

sequence of positive integers, the statement of lemma remains valid.

(ii) Since limn→∞Nn = 26, database sizes Nn are asymptotically equal to a constant number, and this

is true since (R, |·|) is a complete metric space. Observe that the curve in Figure 1 is close to line

y = x (i.e., the ratio Tconc/Tmerg is close to n). In the special case of constant sequence {Nj}, for

the continuous versions T
(c)
conc, T

(c)
merg of the complexities, we have that T

(c)
conc/T

(c)
merg = n, for all n.

(iii) Since every sequence in R has a monotone subsequence, it follows that, given a bounded above

sequence {Nj}, we can always extract a monotone subsequence {Ncj} necessarily bounded, and

therefore convergent. (c.f. Bolzano-Weirstrass theorem, stating that each bounded sequence in Rm

has a convergent subsequence). Hence, even if {Nj} is bounded above but not convergent, if using

only {Ncj} as database sizes, the ratio Tconc/Tmerg will be close to database number.

(iv) A geometric interpretation of inequalities of the proposition, providing bounds for the complexity,

is that asymptotically, the ratio Tconc

Tmerg
lies in the interior of an angle δ = arctan(λ)−arctan(λ−1)

with vertex at point (0, 0) and sides along directions nλ−1 and nλ, symmetric wrt bisector y = x;

it lies on the bisector if Ni = N, i.e., all distances are equal, (in this case the search operator is

UG;conc(nN) = ⊕n
i=1UG(N) = 1n ⊗ UG(N)).

A special case of minimum complexity is stated in the following lemma.
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Tconc �Tmerg
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Figure 1. Plots for Tconc/Tmerg , for non decreasing and bounded above sequence of database

sizes (blue curve), and an unbounded one (black curve). Here the bounded sequence Nj =

2bj , bj =
⌊
6j2+j−1
j2+4

⌋
, N1 = 2, λ =

⌊π4√p⌋
⌊π4√q⌋ , p = 26, q = N1 = 2, and the unbounded one

Nj = 2j , N1 = 2 are used. Dashed line: y = x .

Lemma 6. The complexity of an l merging is minimum and independent of l if and only if all involved

database dimensions are equal.

2.3. Collective Quantum Search: Threshold Cases

Summarizing the study so far by referring to sequences (1n) ≺ π2 ≺ ... ≺ πk−1 ≺ (n) and T(1n) ≥
Tπ2 ≥ · · · ≥ Tπk−1

≥ T(n), we note that: the first sequence concerns the weak ordering of partitions

ranging from total concatenation to total merging of n searches. The second one concerns the associated

numerical ordering of these schemes via comparison between their corresponding complexities. We seek

to clarify which are the generic threshold cases in the sequences according to some criteria, i.e., the cases

in which merging gives no computational advantage in search, due to some circumstantial reasons to be

determined. Two such criteria are, the conjugate partition criterion (CPC), and the threshold partition

criterion (TPC). In case of CPC the ∗ conjugation for partitions is used to single out as threshold cases the

self-conjugate partitions π = π∗ for which Tπ = Tπ∗ , [13], under some specified database dimensions.

In case of TPC the threshold cases are the so called threshold partition π, which hold a balanced number

of boxes (searches) in the upper and lower parts of its Young diagram.

2.3.1. Conjugate Partition Criterion

The complexity of any joining scheme is determined both by the partition shaping its Young diagram

and by filling of partition’s boxes by the respective Hilbert space dimensionsNi of quantum databases. A

simplification is the standard tableau and particularly the physically motivated choice Ni = 2i. Consider

n jointed searches interpolating between full concatenation with partition (1n) and full merging with

partition (n) . Consider the conjugation of partition π → π∗, which produces partition π∗ by turning

rows into column and vice versa and then assign dimensions Nij to each box (search), i.e., (πi, j)→ Nij ,

and seeks values for Nij , so that the ensuing complexities are equal, i.e., Tπ = Tπ∗ . This equality is
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achieved by any intermediate joining scheme (1n) ≺ π ≺ (n) , which is self conjugate, i.e., π = π∗.

E.g. in π ⊢ 6, partition π = (3, 2, 1) is self-conjugate and the next choice of dimensions gives equal

complexity

2p 2q 2r

2q 2s

2r

The indicated filling with dimensions p, q, r, s fulfils condition, i.e., T(3,2,1) = T(3,2,1)∗ .

2.3.2. Threshold Partition Criterion

Proceeding from full concatenation to full merging of n searches by moving up one box at a time

(merging one more search), creates diagrams that majorize all preceding ones, as explained. Explicitly,

let of division of a Y (π) into two disjoint pieces, Yu(π) with boxes lying on and to the right of the

diagonal, and Yd(π) be the rest piece, i.e., Y (π) = Yu(π)∪Yd(π). E.g. for partition π = (6, 5, 3, 3, 2, 2, 1)

the diagrams Y (π), Yu(π) and Yd(π) are

= ⊕

Let next yu(π) be a partition whose parts are the lengths of the rows of the shifted shape Yu(π), and

yd(π) be the partition whose parts are the lengths of the columns of Yd(π). If n is even and π ⊢ n,

then partition π is called graphic partition iff yu(π)
w≺yd(π) and it is called threshold partition πth iff

yu(πth) = yd(πth) [13]. In the case of threshold partition it follows that Tyu(π) = Tyd(π) and that half of

the number of merging responsible for crossing the diagonal have already happened (i.e., |yu| = |yd| =
N
2

). This threshold relation landmarks the midway situation before the onset of total merging. For the

example above the pairs yu(π) = (6, 4, 1), yd(π) = (6, 4, 1), and yu(π) = (7, 3, 1), yd(π) = (6, 3, 2)

satisfy the TPC.

2.4. Oracle Algebra for Collective Quantum Search

Let database Hilbert spaces HN1 , HN2, HN3, where HNi
= l2 (∆Ni

) with N1 = N2 = N3 = 4, and

let the marked items be the first, the third, and the second elements in HN1, HN2 , HN3, respectively. To

the partitions (111), (21), (3), of 3, correspond the joining (i) a 3−merging in database HN1+N2+N3 =

⊕3
i=1HNi

, (ii) a 2-merging in HN1+N2 = ⊕2
i=1HNi

, a single in HN3 , and concatenation between them, and

finally (iii) concatenation of searches in HN1, HN2 , HN3. Using notation |xπ
N 〉 and πN(Σ

π
a), a = 1, 2, 3, 0

we have:
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(i) 3-merging in HN1+N2+N3;

The marked items are |1〉 , |7〉 , |10〉 , so

∣∣∣x(3)
12

〉
= 1√

3
(|1〉 + |7〉 + |10〉),

∣∣∣x(3)⊥
12

〉
= 1√

9
(|2〉 + |3〉+

|4〉+ |5〉+ |6〉+ |8〉+ |9〉+ |11〉+ |12〉), and the 12-dim representation of oracle algebra generators

are

π12(Σ
(3)
1 ) = π12

(∣∣∣x(3)
12

〉〈
x
(3)⊥
12

∣∣∣
)
+H.c., π12(Σ

(3)
2 ) = π12

(
−i
∣∣∣x(3)

12

〉〈
x
(3)⊥
12

∣∣∣
)
+H.c.,

π12(Σ
(3)
3 ) = π12

(∣∣∣x(3)
12

〉〈
x
(3)
12

∣∣∣
)
−H.c., π12(Σ

(3)
0 ) = π12

(∣∣∣x(3)
12

〉〈
x
(3)
12

∣∣∣
)
+H.c.

(ii) 2-merging in HN1+N2 , single search in HN3 , and concatenation between them;

The marked items are |1〉 , |7〉 in HN1+N2 , and |2〉 in HN3 , so

∣∣∣x(2,1)
8

〉
= 1√

2
(|1〉+ |7〉),

∣∣∣x(2,1)⊥
8

〉
=

1√
6
(|2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |8〉),

∣∣∣x(2,1)
4

〉
= |2〉 ,

∣∣∣x(2,1)⊥
4

〉
= 1√

3
(|1〉+ |3〉+ |4〉). Since e.g.,∣∣∣x(2,1)

12

〉
=
∣∣∣x(2,1)

8

〉
⊕
∣∣∣x(2,1)

4

〉
, the generators decompose

π12(Σ
(2,1)
a ) = π8(Σ

(2,1)
a )⊕ π4(Σ

(2,1)
a ).

(iii) Single searches in HN1 , HN2 and HN3 and concatenation between them;

The marked items are |1〉 ∈ HN1, |3〉 ∈ HN2, and |2〉 ∈ HN3. E.g. for HN1 ,
∣∣∣x(1,1,1)

4

〉
=

|1〉 ,
∣∣∣x(1,1,1)⊥

4

〉
= 1√

3
(|2〉 + |3〉 + |4〉), etc, so for a = 1, 2, 3, 0, the following decomposition

is obtained,

π12(Σ
(1,1,1)
a ) =

⊕

H1,2,3

π4(Σ
(1,1,1)
a ).

Having the oracle algebra matrix generators we compute the unitary search operators for the three

corresponding partitions,

U
(3)
G = exp

(
iθ12π12(Σ

(3)
2 )
)
,

U
(2,1)
G = exp

(
iθ8π8(Σ

(2,1)
2 )

)
⊕ exp

(
iθ4π4(Σ

(2,1)
2 )

)
,

U
(1,1,1)
G =

⊕

H1,2,3

exp
(
iθ4π4(Σ

(1,1,1)
2 )

)
,

where θN = arcsin(−2
√

k(N − k)/N) with k = 1. By means of a similar search unitary, the

collective quantum search complexity measures can be computed.

2.4.1. Generalized Azimuthal Symmetry

Let the partition τ = (N1, N2, · · · , Nl) of N of length l = l(τ), and let the one parameter subgroup

Ua(1) = eiφaπa(Σ3), generated by πa(Σ3) ∈ End(Ha). Let the group G = U(N) and the subgroup

K =
⊕Nl

a=N1
Ua(1). Consider a concatenation of l searches for a given partition τ ⊢ N, with search

operator U
(τ)
G :=

⊕Nl

a=N1
U

(a)
G and search step implemented by the transformation ρ → U

(τ)
G ρU

(τ)†
G .

Let further the unitary operator V3(φ) =
⊕Nl

a=N1
eiφaπa(Σ3) ∈ K, φ = (φa)

Nl

a=N1
∈ [0, 2π)l, then the

transformation

ρ→ ρ′ = V3(φ)U
(τ)
G ρU

(τ)†
G V3(φ)

†,
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preserves the projection of density matrix ρ along the collective marked vector |x〉 〈x| :=⊕Nl

a=N1
|xa〉 〈xa| , or equivalently preserves the

⊕Nl

a=N1
πa(Σ3) component of the collective density

matrix [9]. This implies the search complexity remains invariant under the action of V3.

This equality of complexities is expressed in terms of the minimization of the projection of

time-evolved collective density matrix on the collective marked item, i.e.,

1 = min
α
〈x|U (τ)α

G ρssU
(τ)†α
G |x〉

= min
α
〈x|
(
U

(τ)α1

G V3(φ)U
(τ)α2

G ...V3(φ)U
(τ)αr

G

)
ρss

×
(
U

(τ)α1

G V3(φ)U
(τ)α2

G ...V3(φ)U
(τ)αr

G

)†
|x〉 ,

where α = α1 + · · · + αr, which is a generalization of an analogues formula for l = 1, describing

the azimuthal symmetry of single search algorithm [9]. To any partition τ ⊢ N there corresponds a

symmetry group Mτ = G/K for the collective quantum search.

3. Proofs, Examples, and Discussion

In this second part of the paper we have put together a number of items :

1. “Collective quantum search: Merging and Concatenation”, with proofs of lemmas and numerical

examples; in the following section.

2. “Collective quantum search: Joining Schemes and Young diagrams” we have placed the proof

of the main proposition and of the auxiliary lemmas, together with numerical examples that

demonstrate the workings of collective quantum search; in the final section.

3. “Oracle algebra and representations” we introduce the mathematical details of the oracle algebra

and some examples from its matrix representations.

3.1. Collective Quantum Search

3.1.1. Merging and Concatenation

Proof. (Lemma 1) The target vector decomposes in |xconc〉 = |x1〉 ⊕ |∅〉N2 + |∅〉N1 ⊕ |x2〉 ∈
H1 ⊕ H2. Let the initial vectors |xconc〉 , |sconc〉 and the corresponding projection operators

|xconc〉 〈xconc| , |sconc〉 〈sconc|. Then

|sconc〉 = |s1〉 ⊕ |∅〉N2 + |∅〉N1 ⊕ |s2〉 =
(
|s1〉
|s2〉

)

|sconc〉 〈sconc| =

(
|s1〉 〈s1|

|s2〉 〈s2|

)
= |s1〉 〈s1| ⊕ |s2〉 〈s2|

Jsconc
= 1N1+N2 − 2 |sconc〉 〈sconc| =

(
Js1

Js2

)
= Js1 ⊕ Js2.
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Similarly

|xconc〉 〈xconc| = |x1〉 〈x1| ⊕ |x2〉 〈x2|

and

Jxconc
= 1N1+N2 − 2 |xconc〉 〈xconc| =

(
Jx1

Jx2

)
= Jx1 ⊕ Jx2 .

So the search operator by means of the previous decomposition splits into a direct sum, i.e.

Uconc(fconc) = − (Js1 ⊕ Js2) (Jx1 ⊕ Jx2) = U1 ⊕ U2.

Similarly, for an l-concatenation it is valid that Uconc =
⊕l

j=1 Uj .

Symmetries of Uconc and Umerg. For concatenation, the search operator is determined up to a V1 ⊕ V2

unitary, i.e.

Uconc = −(V (N1)⊕ V (N2))(Js1 ⊕ Js2)(V (N1)⊕ V (N2))
†(Jx1 ⊕ Jx2).

Note that V (N1) ⊕ V (N2) is the diagonal subgroup of group V (N1 + N2). By induction on l, a

l-concatenation algorithm, has
⊕l

i=1 V (Nl)-symmetry, which is the diagonal subgroup of U(Nmerg).

Grover [2] showed that for a single search algorithm with one target vector, the unitary search operator

UG = −JsJx can be replaced by a more general operator which is also unitary and it can be in one of

the two following equivalent forms

UG = −JsV
†JxV

UG = −V †JsV Jx,

with V ∈ U(N). These symmetries survive in the case of joined searches as follows. For merged

algorithms the unitary symmetry is U(Nmerg), i.e.,

Umerg = −Jsmerg
V (Nmerg)

†Jxmerg
V (Nmerg).

3.1.2. Joining Schemes and Young diagrams

Partitions are specified by lower case Greek letters. If λ is a partition of a non negative integer k, we

write λ ⊢ k and call k the weight of the partition, and λ = (λ1, ..., λk) is a sequence of non negative

integers λi for i = 1, 2, ..., k, such that λ1 ≥ λ2 ≥ ... ≥ λk ≥ 0 with
∑k

i=1 λi = k. The non zero λi are

called the parts of λ and their number l(λ) is the length of λ. In specifying λ, the trailing zeros, that is

those λi = 0, are often omitted. By way of illustration, if k = 10 , we regard (4, 2, 2, 1, 1, 0, 0, 0, 0, 0)

and (4, 2, 2, 1, 1) as the same partition λ, for which it holds that |λ| = 10 and l(λ) = 5. Each partition

λ of weight |λ| = k, and length l(λ) defines a (Ferrers) Young diagram Y (λ) consisting of |λ| boxes

arranged in l(λ) left-adjusted rows of lengths from top to bottom λ1, ..., λl(λ), while zeros in λ do not

appear in Y (λ) (in the English convention). The notation follows in large part that of [11].

The notion of number partition is associated to the joining of quantum searches as follows: given a

number of search algorithms m with database dimensions N1, N2, ..., Nm, we can join them either by
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merging or by concatenating in various ways therefore number m is partitioned as λ ⊢ m, where every

part λi of λ denotes the number of algorithms joined in a similar way, i.e., either by merging or by

concatenation. Thus every possible joining scheme corresponds to a Ferrers diagram and vice versa, i.e.,

π → Tπ, ρ→ Tρ, we find by way of example that Tπ ≤ Tρ.

The latter implies that the sequence of majorized partitions is mapped to the multi-set of complexities,

i.e., the example of partitions of 6 worked out below yields

π ⊢ 6 : 6 ≻ 51 ≻ 42 ≻ 32

412
≻ 321 ≻ 23

313
≻ 2212 ≻ 214 ≻ 16

Tπ : 3 < 4 < 6 ≤ 6
7
< 9 ≤ 9

10
< 12 < 14 < 17

The multi-set of complexities {3, 4, 6, 6, 7, 9, 9, 10, 12, 14, 17} form a piecewise ordered set where

the numerical ordering is anti-isotonic wrt the majorization order i.e., in general π ≻ ρ corresponds

to Tπ ≤ Tρ. See Figure 2 below.

Figure 2. Young tableaux for m = 6 and the corresponding complexities TG .
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3.1.3. Complexity

Proof. (Lemma 3) Let an integer partition π = (π1, ..., πj , ..., πl(π)) ⊢ n, and the multi-variable functions

φµ(x) : Rn
+ → R, µ = 1, 2, ..., l(π), where

φµ(x) =

π
4

1
√
πµ

√√√√
πµ∑

j=1

xj

 ,

with x = (x1, ..., xn), and πi the part i of partition π, which enumerates the number of databases

involved in a merging scheme. Each of these functions φµ is a multi-variable Schur-concave function:

indeed since (x, y) → √x+ y is Schur-concave function and also x → ⌊φ(x)⌋ is a Schur-concave

function if φ(x) is one (Chapter 3 in [10] ), we conclude that φµ as well as their linear combination is a

Schur-concave function.

The linear combination of φµ’s functions is also a Schur-concave function, and this in particular is

valid for the search complexity Tπ associated with a partition π, i.e., π → Tπ, or explicitly

Tπ(x) =

l(π)∑

µ=1

φµ(x).

is Schur-concave.

So, if π, ρ ⊢ t s.t. π ≻ ρ, then Tπ(N) ≤ Tρ(N) , where N = (N1, ..., Nt)

Diagrammatically

π ≻ ρ

↓ ↓
Tπ ≤ Tρ

Example 1. For n = 16 and the partition π = (6, 4, 4, 2), there are four functions of variables x =

(x1, ..., x16),

φ1(x1, ..., x16) =

⌊
π

4
√
6

√
x1 + x2 + x3 + x4 + x5 + x6

⌋
,

φ2(x1, ..., x16) =

⌊
π

4
√
4

√
x7 + x8 + x9 + x10

⌋
,

φ3(x1, ..., x16) =

⌊
π

4
√
4

√
x11 + x12 + x13 + x14

⌋
,

φ4(x1, ..., x16) =

⌊
π

4
√
2

√
x15 + x16

⌋
.

each one of them and their linear combination is a Schur-concave function.

Proof. (Lemma 4) Applying Jensen inequality [14] for the convex function x→√x yields

π

4

√
N1 + · · ·+Nl

l
≤ 1

l

(π
4

√
N1 + · · ·+

π

4

√
Nl

)
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which implies

⌊
π

4

√
N1 + · · ·+Nl

l

⌋
≤
⌊π
4

√
N1

⌋
+ · · ·+

⌊π
4

√
Nl

⌋
.

In the relation above the equality is reached iff 0 ≤
l∑

i=1

{
π
4

√
Ni

}
< 1

2
, where {x} denotes the fractional

part of the real number x. Notice that the special case where all the numbers appearing in the integral

part are all integers, never occurs due to the involvement of π .

Proof. (Lemma 6) Let N1, ..., Nl be the sizes of databases, then the complexity equals

T (N1,...,Nl)
merg =

⌊
π

4

√
N1 + · · ·+Nl

l

⌋
.

Due to AM-GM inequality, we take that

T (N1,...,Nl)
merg ≥

⌊
π

4

√
l
√

N1...Nl

⌋
=
⌊π
4

2l
√

N1...Nl

⌋

The equality holds iff N1 = ... = Nl ≡ N, and therefore the minimum is

T
(N,...,N)
merg,min =

⌊π
4

√
N
⌋
.

Remark 2.

(i) For comparison reasons we find that the complexity of l-concatenation algorithm is

T (N1,...,Nl)
conc =

l∑

j=1

⌊π
4

√
Nj

⌋

since Uconc =
⊕l

j=1 Uj(fj). Moreover, if N1 = ... = Nl ≡ N, then

T (N,...,N)
conc = l

⌊π
4

√
N
⌋
= lT

(N,...,N)
merg,min,

(ii) The total tableau complexity for a joining scheme described by its corresponding Young diagram

λ is computed as follows: let a Young diagram λ = (i1, i2, ..., ir) then the total search algorithm

consists of r groups of concatenated sub-algorithms where each group contains i1, i2, ..., ir

merged algorithms. Via previous lemma and remark, the tableau complexity equalsT
(N1,...,Nk)
λ =⌊

π
4

√
N1+···+Ni1

i1

⌋
+

⌊
π
4

√
Ni1+1+···+Ni1+i2

i2

⌋
+ · · ·

+

⌊
π
4

√
Ni1+...+ir−1+1+···+Nk

ir

⌋
, where i0 = 0 and i1+ · · ·+ ir = k. If all databases are of equal size

N, then for any diagram λ the tableau complexity equals T
(N,...,N)
λ = r

⌊
π
4

√
N
⌋

.
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3.1.4. Main Proposition

Next, we consider the ratio of the extreme values of complexities Tconc/Tmerg (“all concatenated”

over “all merged”), and regarding the sequence of the dimensions {Ni}ni=1, two cases are arising for its

asymptotic behaviour. Moreover, for arbitrary positive integers (database sizes) Ni, i = 1, 2, ..., n we

prove that for the continuous analogues (continuous functions) for the complexities Tconc, Tmerg, it holds

that
√
n < T

(c)
conc

T
(c)
merg

≤ n.

In more details, if {Ni}ni=1 is an unbounded sequence, specifically Ni’s are consecutive terms of

the geometric sequence 2i (which is the most natural and reasonable choice for database sizes), we

conclude that Tconc/Tmerg = O(
√
n). Otherwise, namely if the sequence {Ni}ni=1 is bounded (e.g., Ni =

2bi ,where {bi}ni=1 is bounded), it results that the ratio Tconc/Tmerg is asymptotically linear with respect

to the number n of the databases. This fact leads to an interesting observation: although the qualitative

difference between a bounded and an unbounded sequence of database sizes is essential (notice that Ni =

2i increases exponentially fast), however, the quantitative change that entails to the ratio of complexities,

is only quadratic (quadratic reduction) with respect to the database population.

Proof. (Lemma 5) Straightforward calculations.

Proposition 2. For arbitrary positive integers (database sizes) Ni, i = 1, 2, ..., n it holds that

√
nT (c)

merg < T (c)
conc ≤ nT (c)

merg

Moreover, if Ni are:

(a) consecutive terms of the unbounded sequence {Ni}ni=1 with Ni = 2i, then Tconc = O(
√
n)Tmerg

(b) terms of a bounded sequence of positive integers with p = sup{Ni}ni=1, q = inf{Ni}ni=1, then :
Tconc

Tmerg
∈ Θ(n), i.e., nλ−1Tmerg ≤ Tconc ≤ nλTmerg, with λ =

⌊
π
4

√
p
⌋ ⌊

π
4

√
q
⌋−1

.

Proof. Applying the Cauchy-Schwarz inequality we obtain that: T
(c)2
conc ≤ n2T

(c)2
merg. Moreover T

(c)
conc =∑n

i=1
π
4

√
Ni >

π
4

√∑n

i=1Ni = T
(c)
merg

√
n, so

√
n < T

(c)
conc

T
(c)
merg

.

(a) Carrying out trivial calculations, we take :

1

n

(
T

(c)
conc

T
(c)
merg

)2

= 1 +
2
∑

i 6=j

√
NiNj

T
(c)2
merg

π2

16n
.

In this first case, we have that Ni = 2i, so

2
∑

i 6=j

√
NiNj = 2(

√
2n − 1)2(

√
2 + 1)2 − 2(2n − 1)

and T
(c)2
merg =

π2

16n
2(2n − 1). Therefore:

1

n

(
T

(c)
conc

T
(c)
merg

)2

=
(1− 1√

2n
)2(
√
2 + 1)2

1− 1
2n

.
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The RHS of the above asymptotically equals to (
√
2 + 1)2, so T

(c)
conc

T
(c)
merg

≈ (
√
2 + 1)

√
n, i.e. T

(c)
conc

T
(c)
merg

=

O(√n) and Tconc

Tmerg
= O(√n) because due to previous Lemma and

lim
n→∞

n

T
(c)
merg

= 0, T (c)
merg ≫ 1

asymptotically, it holds that

Tconc

Tmerg

≈ T
(c)
conc

T
(c)
merg

.

(b) Since p = sup{Ni}ni=1, q = inf{Ni}ni=1, then for all i = 1, 2, ..., n, is valid that 2 ≤ q ≤ Ni ≤ p, so

n
⌊π
4

√
q
⌋
≤ Tconc =

n∑

i=1

⌊π
4

√
Ni

⌋
≤ n

⌊π
4

√
p
⌋
.

Moreover
⌊
π
4

√
q
⌋
≤ Tmerg ≤

⌊
π
4

√
p
⌋
. Therefore nλ−1 ≤ Tconc

Tmerg
≤ nλ and Tconc

Tmerg
∈ Θ(n).

3.1.5. Geometry of Complexity Reduction

All concave functions fulfil a very intuitive geometric condition with their graph, namely that the

center of mass of a set of points lying on the graph is lying not above the graph itself. Quantifying

this geometric property leads to the Jensen inequality [14], which in fact is the reason for achieving

complexity reduction in various forms of joining schemes. This is demonstrated below by means of a

numerical example.

Example 2. Numerical example (see Figure 3). Let the Young diagram of shape (5, 4, 1) and let the

following Young tableau (strictly increasing row and column-wise, no repetitions)

1 2 4 7 8

3 5 6 9

10

where Ni’s are database sizes : N1 = 23, N2 = 24, N3 = 25, N4 = 26, N5 = 27,

N6 = 28, N7 = 29, N8 = 210, N9 = 211, N10 = 212



Entropy 2015, 17 4853

Figure 3. Jensen’s inequality for the numerical example. Round dots represent points lying

on the graph, and square dots represent center of mass points.

Row 1

Referring to the graph of the complexity function y = f(x) =
√
x we mark the 5 points v1 ={(

23,
√
23
)
,
(
24,
√
24
)
,
(
26,
√
26
)
,
(
29,
√
29
)
,
(
210,
√
210
)}

and the center of mass vector c1, with

coordinates
(

23+24+26+29+210

5
,
√
23+

√
24+

√
26+

√
29+

√
210

5

)
= (324.8, 13.891), and its crossing point with

the graph of f : q1 = (324.8,
√
324.8) = (324.8, 18.0222)

Row 2

In the graph of complexity function f(x) =
√
x mark the 4 points v2 ={(

25,
√
25
)
,
(
27,
√
27
)
,
(
28,
√
28
)
,
(
211,
√
211
)}

the center of mass vector c2 = (616.0, 19.556) and

its crossing point with the graph q2 = (616.0,
√
616.0) = (616.0, 24.8193)

Row 3

In the graph of complexity function f(x) =
√
x mark the 1 point v3 = c3 = q3 = (212, 26).

Equal Complexity Tableaux and Shapes. Motivated by the geometric explanation of the complexity

measure for various schemes of joining quantum search algorithms as has been studied in previous

section, we proceed to address the problem of determining shapes and tableaux describing ways of

joining searches. We study joining of database spaces of equal dimension N. The complexity is

differentiated from one scheme to the other due to the difference of the associated Young diagram shapes,

so we call it shape complexity.
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2

11

3

21

111

4

31

22

211

1111

5

41

32

311

221

2111

11111

6

51

42

411

33

321

3111

222

2211

21111

111111

7

61

52

43

511

421

331

4111

322

3211

2221

31111

22111

211111

1111111

Joined quantum searches, all of which have equal Hilbert space dimension N and share the same

shape complexity, are displayed as a pattern of bold typed integer partitions from 3 to 7 within the

Young lattice. The pattern of equal complexities is independent from N.

c1y + c2y + c3y ≤ q1y + q2y + q3y

Figure 4 displays the contour of equal complexity families of joined quantum algorithms having

unequal database sizes. A constant complexity difference (vertical segments) is chosen between tableau

complexity (lower broken line) describing concatenation of groups of merged quantum searches and its

upper bound (upper full line) describing the same group jointed by concatenation only.

dimensions

co
m
p
le
x
it
y

Figure 4. Display of the contour of equal complexity families of joined quantum algorithms.
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4. Oracle Algebra and Representations

Definition 2. Let the set ∆ = {1, 2, ...N}, a subset I ⊂ ∆, and the oracle function f, be the

characteristic function of I with k elements, defined as f(i) = 1,for i ∈ I, and f(i) = 0,for i /∈ I.

We define as the matrix oracle algebra Af with respect to the characteristic function f of I ⊂ ∆,

the set Af = {A : A = αΣ0(f) + βΣ1(f) + γΣ2(f) + δΣ3(f)} where α, β, γ, δ ∈ R are arbitrary

real [9,15].

Let also (a) the Hilbert space l2(D), the vector

|x〉 = 1√
k

N∑

i=1

f(i) |i〉 ,

and its orthogonal vector

∣∣x⊥〉 =
1√

N − k

N∑

i=1

(1− f(i)) |i〉 ,

with k =
∑N

i=1 f(i).

(b) the Hilbert space HN = span{|i〉}Ni=1 , the matrix (1̂st)ij = 1, 1 ≤ i ≤ s, 1 ≤ j ≤ t, and the N

dimensional matrix representation πN : Af → Lin(HN ).

Next, we introduce the following Σ0,Σ1,Σ2,Σ3, as the generators of Af :

Σ1 = |x〉
〈
x⊥∣∣+

∣∣x⊥〉 〈x| ,
Σ2 = −i |x〉

〈
x⊥∣∣+i

∣∣x⊥〉 〈x| ,
Σ3 = |x〉 〈x| −

∣∣x⊥〉 〈x⊥∣∣ ,
Σ0 = |x〉 〈x|+

∣∣x⊥〉 〈x⊥∣∣ .

For the oracle function f(i) = 1, 1 ≤ i ≤ k < N, and zero otherwise, the representation above reads

π
N
(Σ0) =

(
1
k
1̂k×k Ok×(N−k)

O(N−k)×k
1

N−k
1̂(N−k)×(N−k)

)
,

π
N
(Σ1) =




Ok×k
1√

k(N−k)
1̂k×(N−k)

1√
k(N−k)

1̂(N−k)×k O(N−k)×(N−k)


 ,

π
N
(Σ3) =

(
1
k
1̂k×k Ok×(N−k)

O(N−k)×k − 1
N−k

1̂(N−k)×(N−k)

)
,

and therefore, for an arbitrary element A ∈ Af , it holds that

π
N
(Σ2) =




Ok×k −i 1√
k(N−k)

1̂k×(N−k)

i 1√
k(N−k)

1̂(N−k)×k O(N−k)×(N−k)


 ,

π
N
(αΣ0+βΣ1+γΣ2+δΣ3) =




α+δ
k
1̂k×k

β−iγ√
k(N−k)

1̂k×(N−k)

β+iγ√
k(N−k)

1̂(N−k)×k
α−δ
N−k

1̂(N−k)×(N−k)


 .
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4.1. Examples

Show cases: Here we show explicitly the vectors and matrices involved in the possible scenarios

of joining via merging and/or concatenation for the specific example of three 4-dimensional quantum

searches. Let databases ∆N1 ,∆N2,∆N3 ,with N1 = N2 = N3 = 4, and let the market items be the first,

the third, and the second elements in ∆N1 ,∆N2 ,∆N3 respectively, i.e., |1〉 , |7〉 , |10〉 in ∆N1+N2+N3 . The

three partitions of 3 are 1 + 1 + 1 = 2 + 1 = 3, we have three possible joining, i.e., (i) a 3−merging in

database ∆N1+N2+N3 , (ii) a 2-merging in ∆N1+N2 , a single in ∆N3 , and a concatenation, and finally (iii)

three single searches in ∆N1 ,∆N2 ,∆N3 . We use the symbol • to denote non zero matrix elements, and ·
for zeros.

4.1.1. 3-Merging ∆N1+N2+N3

The marked items are |1〉 , |7〉 , |10〉 , so

∣∣∣x(3)
12

〉
= 1√

3
(|1〉+ |7〉+ |10〉),

∣∣∣x(3)⊥
12

〉
= 1√

9
(|2〉+ |3〉+ |4〉+

|5〉+ |6〉+ |8〉+ |9〉+ |11〉+ |12〉), and therefore,

∣∣∣x(3)
12

〉
= (

1√
3
, 0, 0, 0, 0, 0,

1√
3
, 0, 0,

1√
3
, 0, 0)T ,

∣∣∣x(3)⊥
12

〉
= (0,

1√
9
,
1√
9
,
1√
9
,
1√
9
,
1√
9
, 0,

1√
9
,
1√
9
, 0,

1√
9
,
1√
9
)T ,

π12

(∣∣∣x(3)⊥
12

〉〈
x
(3)
12

∣∣∣
)
=




. . .

• . . . . . • . . • . .

• . . . . . • . . • . .

• . . . . . • . . • . .

• . . . . . • . . • . .

• . . . . . • . . • . .

. . .

• . . . . . • . . • . .

• . . . . . • . . • . .

. . .

• . . . . . • . . • . .

• . . . . . • . . • . .




,
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π12

(∣∣∣x(3)
12

〉〈
x
(3)
12

∣∣∣
)
=




• . . . . . • . . • . .

. . .

. . .

. . .

. . .

. . .

• . . . . . • . . • . .

. . .

. . .

• . . . . . • . . • . .

. . .

. . .




,

π12

(∣∣∣x(3)⊥
12

〉〈
x
(3)⊥
12

∣∣∣
)
=




. . . . . . . . .

. • • • • • . • • . • •

. • • • • • . • • . • •

. • • • • • . • • . • •

. • • • • • . • • . • •

. • • • • • . • • . • •
. . . . . . . . .

. • • • • • . • • . • •

. • • • • • . • • . • •
. . . . . . . . .

. • • • • • . • • . • •

. • • • • • . • • . • •




Therefore, the generators of Af are:

π12

(
Σ

(3)
1

)
= π12

(∣∣∣x(3)
12

〉〈
x
(3)⊥
12

∣∣∣
)
+H.c.,

π12

(
Σ

(3)
2

)
= π12

(
−i
∣∣∣x(3)

12

〉〈
x
(3)⊥
12

∣∣∣
)
+H.c.,

π12

(
Σ

(3)
3

)
= π12

(∣∣∣x(3)
12

〉〈
x
(3)
12

∣∣∣
)
− π12

(∣∣∣x(3)⊥
12

〉〈
x
(3)⊥
12

∣∣∣
)
,

π12

(
Σ

(3)
0

)
= π12

(∣∣∣x(3)
12

〉〈
x
(3)
12

∣∣∣
)
+ π12

(∣∣∣x(3)⊥
12

〉〈
x
(3)⊥
12

∣∣∣
)
.

4.1.2. 2-Merging ∆N1+N2 , single ∆N3 , and Concatenation

The marked items are |1〉 , |7〉 in ∆N1+N2 , and |2〉 in ∆N3 , so

∣∣∣x(2,1)
8

〉
=

1√
2
(|1〉+ |7〉) = (

1√
2
, 0, 0, 0, 0, 0,

1√
2
, 0)T ,

∣∣∣x(2,1)⊥
8

〉
=

1√
6
(|2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |8〉) = (0,

1√
6
,
1√
6
,
1√
6
,
1√
6
,
1√
6
, 0,

1√
6
)T ,

∣∣∣x(2,1)
4

〉
= |2〉 = (0, 1, 0, 0)T ,

∣∣∣x(2,1)⊥
4

〉
=

1√
3
(|1〉+ |3〉+ |4〉) = (

1√
3
, 0,

1√
3
,
1√
3
)T ,
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and

∣∣∣x(2,1)
12

〉
= (

1√
2
, 0, 0, 0, 0, 0,

1√
2
, 0, 0, 1, 0, 0)T ,

∣∣∣x(2,1)⊥
12

〉
= (0,

1√
6
,
1√
6
,
1√
6
,
1√
6
,
1√
6
, 0,

1√
6
,
1√
3
, 0,

1√
3
,
1√
3
)T ,

π8

(∣∣∣x(2,1)⊥
8

〉〈
x
(2,1)
8

∣∣∣
)
=




. .

• . . . . . • .

• . . . . . • .

• . . . . . • .

• . . . . . • .

• . . . . . • .

. .

• . . . . . • .




,

π8

(∣∣∣x(2,1)
8

〉〈
x
(2,1)
8

∣∣∣
)
=




• . . . . . • .

. .

. .

. .

. .

. .

• . . . . . • .

. .




π8

(∣∣∣x(2,1)⊥
8

〉〈
x
(2,1)⊥
8

∣∣∣
)
=




. . . . . .

. • • • • • . •

. • • • • • . •

. • • • • • . •

. • • • • • . •

. • • • • • . •
. . . . . .

. • • • • • . •




Single ∆N3
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π4

(∣∣∣x(2,1)⊥
4

〉〈
x
(2,1)
4

∣∣∣
)

=




. • . .

.

. • . .

. • . .


 ,

π4

(∣∣∣x(2,1)
4

〉〈
x
(2,1)
4

∣∣∣
)

=




.

. • . .

.

.




π4

(∣∣∣x(2,1)⊥
4

〉〈
x
(2,1)⊥
4

∣∣∣
)

=




• • •
. . .

• • •
• • •




In this case, we can compute the generators of Af , e.g., π12

(
Σ

(2,1)
1

)
as follows.

Since

∣∣∣x(2,1)
12

〉
=
∣∣∣x(2,1)

8

〉
⊕
∣∣∣x(2,1)

4

〉
and

∣∣∣x(2,1)⊥
12

〉
=
∣∣∣x(2,1)⊥

8

〉
⊕
∣∣∣x(2,1)⊥

4

〉
, we have that:

π12

(
Σ

(2,1)
1

)
= π12

(∣∣∣x(2,1)
12

〉〈
x
(2,1)⊥
12

∣∣∣
)
+H.c. = π8

(
Σ

(2,1)
1

)
⊕ π4

(
Σ

(2,1)
1

)

Similarly, π12

(
Σ

(2,1)
a

)
= π8

(
Σ

(2,1)
a

)
⊕ π4

(
Σ

(2,1)
a

)
, for all a = 0, 1, 2, 3.

4.1.3. Single ∆N1 , Single, ∆N2 , and Single ∆N3 in Concatenation

The marked items are |1〉 in ∆N1 , |3〉 in ∆N2 , and |2〉 in ∆N3 , and it holds that

∣∣∣x(1,1,1)
12

〉
= (1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0)T,

∣∣∣x(1,1,1)⊥
12

〉
= (0,

1√
3
,
1√
3
,
1√
3
,
1√
3
,
1√
3
, 0,

1√
3
,
1√
3
, 0,

1√
3
,
1√
3
)T ,

∣∣∣x(1,1,1)
4

〉
= (1, 0, 0, 0)T ∈ ∆N1 ,

∣∣∣x(1,1,1)
4

〉
= (0, 0, 1, 0)T ∈ ∆N2 ,

∣∣∣x(1,1,1)
4

〉
= (0, 1, 0, 0)T ∈ ∆N3 .

4.1.4. Single e.g., for ∆N1

The marked item is the vector |1〉 , therefore

∣∣∣x(1,1,1)
4

〉
= (1, 0, 0, 0)T ,

∣∣∣x(1,1,1)⊥
4

〉
= (0,

1√
3
,
1√
3
,
1√
3
)T ,
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and

π4

(∣∣∣x(1,1,1)
4

〉〈
x
(1,1,1)⊥
4

∣∣∣
)
=




. • • •
. . .

. . .

. . .


 ,

π4

(∣∣∣x(1,1,1)
4

〉〈
x
(1,1,1)
4

∣∣∣
)
=




• . . .

.

.

.


 ,

π4

(∣∣∣x(1,1,1)⊥
4

〉〈
x
(1,1,1)⊥
4

∣∣∣
)
=




. . .

. • • •

. • • •

. • • •


 .

In order to compute the generators π12

(
Σ

(1,1,1)
a

)
, a = 0, 1, 2, 3, we proceed in an analogous manner

to the previous case. For simplicity, we also introduce the following shorthand notation, to denote direct

sums of vectors

∣∣∣u(1,1,1)
4

〉
in databases ∆N1 ,∆N2,∆N3 respectively, as well as direct sums for other

operators and the corresponding Σ’s.

⊕

∆1,2,3

∣∣∣u(1,1,1)
4

〉
=

∣∣∣u(1,1,1)
4

〉
⊕
∣∣∣u(1,1,1)

4

〉
⊕
∣∣∣u(1,1,1)

4

〉
,

⊕

∆1,2,3

π4

(
Σ(1,1,1)

a

)
= π4

(
Σ(1,1,1)

a

)
⊕ π4

(
Σ(1,1,1)

a

)
⊕ π4

(
Σ(1,1,1)

a

)
.

Since

∣∣∣x(1,1,1)
12

〉
=
⊕

∆1,2,3

∣∣∣x(1,1,1)
4

〉
and

∣∣∣x(1,1,1)⊥
12

〉
=
⊕

∆1,2,3

∣∣∣x(1,1,1)⊥
4

〉
, for e.g., π12

(
Σ

(1,1,1)
1

)
we

obtain that:

π12

(
Σ

(1,1,1)
1

)
= π12

(∣∣∣x(1,1,1)
12

〉〈
x
(1,1,1)⊥
12

∣∣∣
)
+H.c.

=
⊕

∆1,2,3

π4

(∣∣∣x(1,1,1)
4

〉〈
x
(1,1,1)⊥
4

∣∣∣
)
+
⊕

∆1,2,3

H.c.

=
⊕

∆1,2,3

π4

(∣∣∣x(1,1,1)
4

〉〈
x
(1,1,1)⊥
4

∣∣∣+H.c.
)
=
⊕

∆1,2,3

π4

(
Σ

(1,1,1)
1

)
.

5. Discussion

An important follow up of this work concerns the fact that the collective quantum search can be cast

in the language of cooperative game theory, and so wider problems of search complexity reduction can

be addressed. In fact, cooperative game theory is an area where multi-agent entities choose to collaborate

in various schemes in order to take advantage from the collaboration in lowering some computational

load which would enable them to achieve a desirable shared objective, see e.g., [16], for a wealth of
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principles and examples. For this connection, particularly useful would be the special joining schemes

determined by the partitions π = π∗, πth and πmax, as tools for studying coalition formation of merging

teams of searches aiming to trade collectivity for less search complexity. This appears to be a favorite

context for implementing and applying the idea of merging. In particular quantum search by merging as

outlined here could also be applied in applications where quantum simulation of quantum searching is

carried out by multi-particle Hamiltonian models (see e.g., [17] and references therein). These prospects

will be taken up elsewhere.
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