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Abstract:

 The minimum error entropy (MEE) criterion is an important learning criterion in information theoretical learning (ITL). However, the MEE solution cannot be obtained in closed form even for a simple linear regression problem, and one has to search it, usually, in an iterative manner. The fixed-point iteration is an efficient way to solve the MEE solution. In this work, we study a fixed-point MEE algorithm for linear regression, and our focus is mainly on the convergence issue. We provide a sufficient condition (although a little loose) that guarantees the convergence of the fixed-point MEE algorithm. An illustrative example is also presented.
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1. Introduction

In recent years, information theoretic measures, such as entropy and mutual information, have been widely applied in domains of machine learning (so called information theoretic learning (ITL) [1]) and signal processing [1,2]. A possible main reason for the success of ITL is that information theoretic quantities can capture higher-order statistics of the data and offer potentially significant performance improvement in machine learning applications [1]. Based on the Parzen window method [3], the smooth and nonparametric information theoretic estimators can be applied directly to the data without imposing any a priori assumptions (say the Gaussian assumption) about the underlying probability density functions (PDFs). In particular, Renyi’s quadratic entropy estimator can be easily calculated by a double sum over samples [4,5,6,7]. The entropy in supervised learning serves as a measure of similarity and follows a similar framework of the well-known mean square error (MSE) [1,2]. An adaptive system can be trained by minimizing the entropy of the error over the training dataset [4]. This learning criterion is called the minimum error entropy (MEE) criterion [1,2,8,9,10]. MEE may achieve much better performance than MSE especially when data are heavy-tailed or multimodal non-Gaussian [1,2,10].

However, the MEE solution cannot be obtained in closed form even when the system is a simple linear model such as a finite impulse response (FIR) filter. A practical approach is to search the solution over performance surface by an iterative algorithm. Usually, a simple gradient based search algorithm is adopted. With a gradient based learning algorithm, however, one has to select a proper learning rate (or step-size) to ensure the stability and achieve a better tradeoff between misadjustment and convergence speed [4,5,6,7]. Another more promising search algorithm is the fixed-point iterative algorithm, which is step-size free and is often much faster than gradient based methods [11]. The fixed-point algorithms have received considerable attention in machine learning and signal processing due to their desirable properties of low computational requirement and fast convergence speed [12,13,14,15,16,17].

The convergence is a key issue for an iterative learning algorithm. For the gradient based MEE algorithms, the convergence problem has already been studied and some theoretical results have been obtained [6,7]. For the fixed-point MEE algorithms, up to now there is still no study concerning the convergence. The goal of this paper is to study the convergence of a fixed-point MEE algorithm and provide a sufficient condition that ensures the convergence to a unique solution (the fixed point). It is worth noting that the convergence of a fixed-point maximum correntropy criterion (MCC) algorithm has been studied in [18]. The remainder of the paper is organized as follows. In Section 2, we derive a fixed-point MEE algorithm. In Section 3, we prove a sufficient condition to guarantee the convergence. In Section 4, we present an illustrative example. Finally in Section 5, we give the conclusion.



2. Fixed-Point MEE Algorithm

Consider a simple linear regression (filtering) case where the error signal is
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with [image: there is no content] being a desired value at time [image: there is no content], [image: there is no content] the output of the linear model, [image: there is no content] the weight vector, and [image: there is no content] the input vector (i.e., the regressor). The goal is to find a weight vector such that the error signal is as small as possible. Under the MEE criterion, the optimal weight vector is obtained by minimizing the error entropy [1,2]. With Renyi’s quadratic entropy, the MEE solution can be expressed as
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where [image: there is no content] denotes the PDF of the error signal. In ITL the quantity [image: there is no content] is also called the quadratic information potential (QIP) [1]. In a practical situation, however, the error distribution is usually unknown, and one has to estimate it from the error samples [image: there is no content], where [image: there is no content] denotes the sample number. Based on the Parzen window approach [3], the estimated PDF takes the form
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where [image: there is no content] stands for a kernel function (not necessarily a Mercer kernel), satisfying [image: there is no content] and [image: there is no content]. Without mentioned otherwise, the kernel function is selected as a Gaussian kernel, given by
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where [image: there is no content] denotes the kernel bandwidth. With Gaussian kernel, the QIP can be simply estimated as [1]
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Therefore, in practical situations, the MEE solution of (2) becomes
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Unfortunately, there is no closed form solution of (6). One can apply a gradient based iterative algorithm to search the solution, starting from an initial point. Below we derive a fixed-point iterative algorithm, which is, in general, much faster than a gradient based method (although a gradient method can be viewed as a special case of the fixed-point methods, it involves a step-size parameter). Let’s take the following first order derivative:
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where
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Let [image: there is no content], and assume that the matrix [image: there is no content] is invertible. Then, we obtain the following solution [15]:
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The above solution is, in form, very similar to the well-known Wiener solution [19]. However, it is not a closed form solution, since both matrix [image: there is no content] and vector [image: there is no content] depend on the weight vector [image: there is no content] (note that [image: there is no content] depends on [image: there is no content]). Therefore, the solution of (9) is actually a fixed-point equation, which can also be expressed as [image: there is no content], where
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The solution (fixed-point) of the equation [image: there is no content] can be found by the following iterative fixed-point algorithm:
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where [image: there is no content] denotes the estimated weight vector at iteration [image: there is no content]. This algorithm is called the fixed-point MEE algorithm [15]. An online fixed-point MEE algorithm was also derived in [15]. In the next section, we will prove a sufficient condition under which the algorithm (11) surely converges to a unique fixed-point.


3. Convergence of the Fixed-Point MEE

The convergence of a fixed-point algorithm can be proved by the well-known contraction mapping theorem (also known as the Banach fixed-point theorem) [11]. According to the contraction mapping theorem, the convergence of the fixed-point MEE algorithm (11) is guaranteed if [image: there is no content] and [image: there is no content] such that the initial weight vector [image: there is no content], and [image: there is no content], it holds that
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where [image: there is no content] denotes an lp-norm of a vector or an induced norm of a matrix, defined by [image: there is no content], with [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] denotes the [image: there is no content] Jacobian matrix of [image: there is no content] with respect to [image: there is no content], given by
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where
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To obtain a sufficient condition to guarantee the convergence of the fixed-point MEE algorithm (11), we prove two theorems below.

Theorem 1. If
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and [image: there is no content], where [image: there is no content]is the solution of equation [image: there is no content], where
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Then [image: there is no content]for all [image: there is no content].
Proof. The induced matrix norm is compatible with the corresponding vector lp-norm, hence
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where [image: there is no content] is the 1-norm (also referred to as the column-sum norm) of the inverse matrix [image: there is no content], which is simply the maximum absolute column sum of the matrix. According to the matrix theory, the following inequality holds:


[image: there is no content]



(17)




where [image: there is no content] is the 2-norm (also referred to as the spectral norm) of [image: there is no content], which equals the maximum eigenvalue of the matrix. Further, we have
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where (a) comes from
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In addition, it holds that
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where (b) follows from the convexity of the vector l1-norm, and (c) is because [image: there is no content] for any [image: there is no content]. Combining (16)–(18) and (20), we derive
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Clearly, the function [image: there is no content] is a continuous and monotonically decreasing function of [image: there is no content] over [image: there is no content], satisfying [image: there is no content], and [image: there is no content]. Therefore, if [image: there is no content], the equation [image: there is no content] will have a unique solution [image: there is no content] over [image: there is no content], and if [image: there is no content], we have [image: there is no content], which completes the proof. □
Theorem 2. If
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and [image: there is no content], where [image: there is no content]is the solution of the equation [image: there is no content], and [image: there is no content]is the solution of equation [image: there is no content]( [image: there is no content]), where
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in which
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then it holds that [image: there is no content], and [image: there is no content]for all [image: there is no content].
Proof. By Theorem 1, we have [image: there is no content]. To prove [image: there is no content], it suffices to prove [image: there is no content]. By (14), we have
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It is easy to derive
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where (d) follows from the convexity of the vector l1-norm and [image: there is no content], and (e) is due to the fact that [image: there is no content] and [image: there is no content] for any [image: there is no content]. In a similar way, one can derive
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Then, combining (24)–(26), (17) and (18), we have
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Obviously, [image: there is no content] is also a continuous and monotonically decreasing function of [image: there is no content] over [image: there is no content], and satisfies [image: there is no content], [image: there is no content]. Therefore, given [image: there is no content], the equation [image: there is no content] has a unique solution [image: there is no content] over [image: there is no content], and if [image: there is no content], we have [image: there is no content]. This completes the proof. □
According to Theorem 2 and Banach Fixed-Point Theorem [11], given an initial weight vector satisfying [image: there is no content], the fixed-point MEE algorithm (11) will surely converge to a unique fixed point in the range [image: there is no content] provided that the kernel bandwidth [image: there is no content] is larger than a certain value. Moreover, the value of [image: there is no content] ([image: there is no content]) guarantees the convergence speed. It is worth noting that the derived sufficient condition will be, certainly, a little loose, due to the zooming out in the proof process.



4. Illustrative Example

In the following, we give an illustrative example to verify the derived sufficient condition that guarantees the convergence of the fixed-point MEE algorithm. Let us consider a simple linear model:
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where [image: there is no content] is a scalar input, and [image: there is no content] is an additive noise. Assume that [image: there is no content] is uniform distributed over [image: there is no content] and [image: there is no content] is zero-mean Gaussian with variance [image: there is no content]. There are 100 training samples [image: there is no content] generated from the system (28). Based on these data we calculate
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We choose [image: there is no content] and [image: there is no content]. Then by solving the equations [image: there is no content] and [image: there is no content], we obtain [image: there is no content] and [image: there is no content]. Therefore, by Theorem 2, if [image: there is no content] the fixed-point MEE algorithm will converge to a unique solution in the range [image: there is no content]. Figure 1, Figure 2 and Figure 3 illustrate the curves of the functions [image: there is no content], [image: there is no content], and [image: there is no content] when [image: there is no content], [image: there is no content], [image: there is no content], respectively. From the Figures we observe: (i) when [image: there is no content], we have [image: there is no content] and [image: there is no content] for [image: there is no content]; (ii) when [image: there is no content], we still have [image: there is no content] and [image: there is no content] for [image: there is no content]. In this case, the algorithm still will converge to a unique solution in the range [image: there is no content]. This result confirms the fact that the derived sufficient condition is a little loose (i.e., far from being necessary). The main reason for this is that there is a lot of zooming out in the derivation process; (iii) however, when [image: there is no content] is too small, say [image: there is no content], the condition [image: there is no content] will not hold for some [image: there is no content]. In this case, the algorithm may diverge.






Table 1 shows the numbers of iterations for convergence with different kernel bandwidths (3.0, 1.0, 0.1, 0.05). The initial weight vector is set at [image: there is no content], and the stop condition for the convergence is

Table 1. Numbers of iterations for convergence with different kernel bandwidths [image: there is no content].


	[image: there is no content]
	3.0
	1.0
	0.1
	0.05



	Iterations
	3
	4
	16
	43
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(30)




As one can see, when [image: there is no content], the fixed-point MEE algorithm will surely converge to a solution with few iterations. When [image: there is no content] becomes smaller, the algorithm may still converge, but the convergence speed will become much slower. Note that when [image: there is no content] is too small (e.g., [image: there is no content]), the algorithm will diverge (the corresponding results are not shown in Table 1).




Figure 1. Plots of the functions [image: there is no content], [image: there is no content] and [image: there is no content] when [image: there is no content].
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Figure 2. Plots of the functions [image: there is no content], [image: there is no content] and [image: there is no content] when [image: there is no content].
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Figure 3. Plots of the functions [image: there is no content], [image: there is no content] and [image: there is no content] when [image: there is no content].
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5. Conclusion

The MEE criterion has received increasing attention in signal processing and machine learning due to its desirable performance in adaptive system training especially with non-Gaussian data. Many iterative optimization methods have been developed to minimize the error entropy for practical use. But the fixed-point algorithms have been seldom studied, and in particular, too little attention has been paid to the convergence issue of the fixed-point MEE algorithms. This paper presented a theoretical study of this problem, and proved a sufficient condition to guarantee the convergence of a fixed-point MEE algorithm. The results of this study may provide a possible range for choosing a kernel bandwidth for MEE learning. However, the derived sufficient condition may give a much larger kernel bandwidth than a desired one due to the zooming out in the formula derivation process. In the future study, we will try to derive a tighter sufficient condition that ensures the convergence of thefixed-point MEE algorithm.
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