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Abstract: In this paper, the problem of robust control of nonlinear fractional-order systems

in the presence of uncertainties and external disturbance is investigated. Fuzzy logic systems

are used for estimating the unknown nonlinear functions. Based on the fractional Lyapunov

direct method and some proposed Lemmas, an adaptive fuzzy controller is designed. The

proposed method can guarantee all the signals in the closed-loop systems remain bounded

and the tracking errors converge to an arbitrary small region of the origin. Lastly, an

illustrative example is given to demonstrate the effectiveness of the proposed results.
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1. Introduction

During the past two decades, fractional-order dynamic systems have received lots of attention due

to their broad range of application in dielectric polarization, viscoelastic systems, electromagnetic

waves, chaotic systems and so on [1]. A distinguished feature of fractional-order systems is their

memory effects, which can be utilized to characterize some physical phenomena or complex systems
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more precisely. Furthermore, fractional order controllers have so far been implemented to enhance the

robustness and the performance of the closed loop control systems.

It is well known that stability analysis is one of the most important problems in control system

including fractional-order systems. There have been many stability results for fractional-order systems.

For Caputo fractional derivative-based linear system, the stability results are formulated with fractional

commensurate order of 0 < α < 1 and 1 < α < 2 in [2] and [3] respectively. In [4,5], the

stability of fractional-order linear systems with Riemann-Liouville derivative is discussed with fractional

commensurate order of 0 < α < 1 and 1 < α < 2. However, the results on the stability of

fractional-order nonlinear systems are relatively few. In [6], the definition of Mittag-Leffler stability of

nonlinear fractional-order dynamic systems is proposed. In [7], the stability of nonlinear fractional-order

dynamical systems with fractional-order 0 < α < 1 is considered. In [8], sufficient conditions for

the locally asymptotical stability of nonlinear fractional-order dynamical systems with fractional-order

0 < α < 1 are derived. However, the obtained results only ensure that fractional-order nonlinear

dynamical systems are stable. In [9], the sufficient conditions of the stability and stabilization for a class

of fractional-order nonlinear systems with fractional-order 0 < α < 1 and 1 < α < 2 respectively

are derived. Based on the sliding mode control technique, a robust control scheme is designed for a

class of fractional-order economical system with uncertainties and external disturbance in [10]. In [11],

a finite-time control method is introduced for control of a class of non-autonomous fractional-order

nonlinear systems in the presence of uncertainties and external noises. However, the uncertainties and

external noises are assumed to be bounded in [10,11]. In addition, as discussed in [12], the finite-time

synchronization is not possible.

On the other hand, as a fundamental tool to analyze the stability of nonlinear systems, the Lyapunov

method has been introduced in [13]. However, how to construct a simple direct Lyapunov function

remains an open problem [12]. The stability of fractional-order nonlinear systems by using the Lyapunov

direct method is firstly investigated in [14]. Some authors have proposed Lyapunov functions to prove

the stability of fractional-order nonlinear systems, for example, a new property for Caputo fractional

derivative which allows to find a simple Lyapunov candidate function for many fractional-order systems

is presented in [15]. However, either they have neglected the consideration of the effects of both system

uncertainties and external noises, or they have not applied the fractional Lyapunov stability theory to

guarantee the stability of the overall system. To date and to the best of our knowledge, the problem

of robust control of nonlinear fractional-order systems whose model uncertainty and external noises

are unknown has not been fully investigated and still remain challenging, which motivates the study of

this paper.

In this paper, an adaptive fuzzy control method for fractional-order nonlinear systems in the presence

of model uncertainty and external noises is proposed. Fuzzy logic systems are used for estimating

the unknown nonlinear functions. Based on the fractional Lyapunov direct method, an adaptive fuzzy

controller is designed. Fractional adaptation laws are proposed to update the parameters of the fuzzy

systems. The proposed method can guarantee all the signals in the closed-loop systems remain bounded

and the tracking errors converge to an arbitrary small region of the origin. The main contributions are

given as follows: (1) The adaptive fuzzy control approach is used to control nonlinear fractional-order

systems in the presence of uncertainties and external noises. (2) A fractional adaptation law is proposed
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to update the fuzzy parameter. (3) A direct Lyapunov function method is proposed to analyze the stability

of the fractional-order systems.

2. Problem formulation and preliminaries

Several definitions exist regarding the fractional derivative of order a > 0, but the Caputo definition is

used in most of the engineering applications, since this definition incorporates initial conditions for f(t)

and its integer order derivatives, i.e., initial conditions that are physically appealing in the traditional way.

Definition 1 (Caputo Fractional Derivative). The Caputo fractional derivative of order α ∈ R+ on the

half axis R+ is defined as follows

Dαf(t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, t > 0, (1)

where n− 1 ≤ α < n, and Γ(·) denotes the Gamma function.

Definition 2 (Mittag–Leffler Function). The Mittag-Leffler function with two parameters is defined as

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
(2)

where α, β are positive complex numbers and z is a complex number.

In the paper, we consider the following n-dimensional fractional-order system with model

uncertainties external disturbances and control inputs

Dαx1 = f1(x) + ∆f1(x) +

n
∑

j=1

g1juj(t) + d1(t)

Dαx2 = f2(x) + ∆f2(x) +

n
∑

j=1

g2juj(t) + d2(t)

· · · · · ·

Dαxn = fn(x) + ∆fn(x) +
n

∑

j=1

gnjuj(t) + dn(t)

(3)

where x = [x1, x2, · · · , xn]
T ∈ Rn is the system state vector which is assumed to be available for

measurement. fi(x), i = 1, · · · , n are unknown nonlinear functions and ∆fi(x), i = 1, · · · , n represent

unknown model uncertainty. u(t) = [u1(t), · · · , un(t)]
T ∈ Rn is the control input and di(t), i = 1, · · · , n

are external perturbations. gij, i, j = 1, · · · , n are known constant control gains.

Denote

f(x) = [f1(x), · · · , fn(x)]
T

d(x) = [d1(t), · · · , dn(t)]
T

G =







g11 · · · g1n
...

. . .
...

gn1 · · · gnn
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∆f(x) = [∆f1(x), · · · ,∆fn(x)]
T

Then, the system (3) can be rewritten as

Dαx = f(x) + ∆f(x) +Gu+ d(t). (4)

The main objective is to construct an adaptive fuzzy controller u(t) such that the state vector x(t) tracks

the following referenced signal with all involved signals keeping bounded in the closed-loop system.

xd(t) = [xd1(t), xd2(t), · · · , xdn(t)] (5)

The tracking error vector is defined as

e(t) = xd(t)− x(t) (6)

Thus the dynamic of the tracking error can be written as

Dαe(t) = Dαxd(t)− f(x)−∆f(x)− d(t)−Gu(t) (7)

Lemma 1 (see [16]). If x(t) is continuous and derivable, then

1

2
DαxT (t)Px(t) ≤ xT (t)PDαx(t) (8)

where P is an n× n positive definite constant matrix.

Lemma 2. Consider the following fractional-order system

Dαy(t) ≤ −ay(t) + b (9)

then there exists a constant t0 > 0 such that for all t ∈ (t0,∞)

‖ y(t) ‖≤
2b

a
(10)

where y(t) is the state variable, and a, b are two positive constants.

Proof. In view of (9), there exists a nonnegative function m(t) such that

Dαy(t) = −ay(t) +m(t) + b (11)

Taking Laplace transform on (11) yields

Y (s) =
sα−1

sα + a
y(0) +

L(m(t) + b)

sα + a
(12)

where y(0) is initial condition. Then we have

y(t) = y(0)Eα,1(−at
α) +

∫ t

0

(t− τ)α−1Eα,α(−a(t− τ)α)(m(τ) + b)dτ (13)

which yields that

‖y(t)‖ ≤ ‖y(0)‖Eα,1(−at
α) + b

∫ t

0

(t− τ)α−1Eα,α(−a(t− τ)α)dτ (14)
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Note that
∫ t

0

τβ−1Eα,β(−aτ
α)dτ = tβEα,β+1(−aτ

α) (15)

Then we can obtain

‖y(t)‖ ≤ ‖y(0)‖Eα,1(−at
α) + btαEα,α+1(−aτ

α) (16)

Thus there exists a constant t0 > 0 such that (10) is satisfied for all t ∈ (t0,∞).

3. Description of the Fuzzy Logic System

The basic configuration of a fuzzy logic system consists of a fuzzifier, some fuzzy IF-THEN rules, a

fuzzy inference engine and a defuzzifier. The fuzzy inference engine uses the fuzzy IF-THEN rules to

perform a mapping from an input vector x = [x1, x2, · · · , xn]
T ∈ Rn to an output ζ(x) ∈ R. The ith

fuzzy rule is written as

Rule i: if x1 is F i
1 and · · · and xn is F i

n then ζ(x) is αi.

where F i
1, F

i
2, · · · and F i

n are fuzzy sets and αi is the fuzzy singleton for the output in the ith rule. By

using the singleton fuzzifier, product inference and the center of gravity defuzzification, the output of the

fuzzy system can be expressed as follows:

ζ(x) =

∑N

j=1 αj

∏n

i=1 µF
j

i
(xi)

∑N

j=1

[

∏n

i=1 µF
j

i
(xi)

] = θTψ(x), (17)

where µ
F

j

i
(xi) is the degree of membership of xi to F

j
i , N is the number of fuzzy rules, θ =

[α1, · · · , αN ]
T is the adjustable parameter vector, and ψ(x) = [p1(x), p2(x), · · · , pN(x)]

T , where

pj(x) =

∏n

i=1 µF
j

i
(xi)

∑N

j=1

[

∏n

i=1 µF
j

i
(xi)

] (18)

is the fuzzy basis function. It is assumed that fuzzy basis functions are selected so that there is always at

least one active rule.

4. Adaptive Fuzzy Controller Design

In this section, we will design an adaptive fuzzy controller, such that not only all the signals of the

closed-loop system (7) are bounded, but also the tracking error tends to the origin asymptotically. In

order to solve the problem, the following theorem will be essential. Denote P = G−1. Then (7) can be

written as

PDαe(t) = µ(x(t))− u(t) (19)

where

µ(x(t)) = P (Dαxd(t)− f(x)−∆f(x)− d(t)) (20)

Since the model uncertainty ∆f(x) and the external perturbations d(t) are unknown, which lead to the

nonlinear function µ(x(t)) is unknown. Thus we need to design an adaptive fuzzy controller, precisely,
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we will apply the fuzzy systems (17) to approximate the unknown nonlinear functions µ(x(t)) in the

following manner:

µ̂i(θi(t), x(t)) = θTi (t)ψi(x(t)), i = 1, 2, · · · , n, (21)

where µi(x(t)) is the ith element of the nonlinear function µ(x(t)). Let us define the ideal parameters of

θi as

θ∗i = argmin
θi

[sup |µi(x(t))− µ̂i(x(t))|] . (22)

Defining the parameter estimation errors and the fuzzy approximation errors as follows:

θ̃i = θi − θ∗i , (23)

εi(x) = µi(x(t))− µ̂i(θ
∗

i , x(t)), (24)

with µ̂i(θ
∗

i , x(t)) = θ∗i ψi(x(t)). We can assume that the fuzzy approximation error is bounded for all x,

i.e., |εi(x)| < ε̄i, where ε̄i is unknown constant. Let ε = [ε1(x), · · · , εn(x)]
T , ε̄ = [ε̄1, · · · , ε̄n]

T . Then

we can get |ε(x)| ≤ ε̄. From the above analysis, we have

µ̂(θi(t), x(t))− µ(x(t)) = µ̂(θi(t), x(t))− µ̂(θ∗, x(t)) + µ̂(θ∗, x(t))− µ(x(t))

= µ̂(θi(t), x(t))− µ̂(θ∗, x(t))− ε(x(t))

= θ̃T (t)ψ(x(t))− ε(x(t))

(25)

Then the adaptive fuzzy controller can be constructed as

u(t) = θT (t)ψ(x(t)) + ke(t) + bsign(e(t)) (26)

where k and b are free positive constants to be designed. Substituting the proposed controller (26) into

the tracking error dynamics (19) gives

PDαe(t) = µ(x(t))− θT (t)ψ(x(t))− ke(t)− bsign(e(t)) (27)

Multiplying eT (t) to both sides of (27) and applying (25) yields

eT (t)PDαe(t) = −keT (t)e(t) +
n

∑

i=1

ei(t)εi(x(t))− b

n
∑

i=1

ei(t)θ̃
T
i (t)ψi(x(t))− b

n
∑

i=1

|ei(t)| (28)

The fractional adaptation laws for updating the fuzzy parameters θi(t) are designed as the following

fractional-order differential equations

Dαθi(t) = γiei(t)ψi(x(t))− γiσiθi(t), i = 1, 2, · · · , n, (29)

where σi and γi are positive design parameters.

Theorem 1. Suppose that the controller is designed as (26) and the fractional adaptation laws are

defined as (29). Then all signals in the closed-loop system will keep bounded, and the tracking error will

eventually be arbitrary small if appropriate control parameters are chosen.
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Proof. Choose the following quadratic Lyapunov function

V (t) =
1

2
eT (t)Pe(t) +

1

2

n
∑

i=1

1

γi
θ̃Ti (t)θ̃i(t) (30)

By using Lemma 1, we can obtain

DαV (t) ≤ eT (t)PDαe(t) +
n

∑

i=1

1

γi
θ̃Ti (t)D

αθ̃i(t) (31)

Noting that the Caputo derivative of a constant function is 0, we have

Dαθ̃i(t) = Dαθi(t) (32)

Thus, we have

DαV (t) ≤ eT (t)PDαe(t) +

n
∑

i=1

1

γi
θ̃Ti (t)D

αθi(t) (33)

Substituting (28) and the fractional adaptation laws (29) into (33), we have

DαV (t) ≤ −keT (t)e(t)− (b− ε̄)
n

∑

i=1

|ei(t)| −
n

∑

i=1

σiθ̃
T
i (t)θi(t) (34)

If b is taken from (ε̄,+∞), then

DαV (t) ≤ −keT (t)e(t)−

n
∑

i=1

σiθ̃
T
i (t)θi(t) (35)

Note that

−
n

∑

i=1

σiθ̃
T
i (t)θ

∗

i ≤
1

2

n
∑

i=1

σiθ̃
T
i (t)θ̃i(t) +

1

2

n
∑

i=1

σiθ
∗T
i θ∗i (36)

Thus we have

DαV (t) ≤ −keT (t)e(t)−
n

∑

i=1

σiθ̃
T
i (t)θi(t)

= −keT (t)e(t)−

n
∑

i=1

σiθ̃
T
i (t)θ̃i(t)−

n
∑

i=1

σiθ̃
T
i (t)θ

∗

i

≤ −keT (t)e(t)−
1

2

n
∑

i=1

σiθ̃
T
i (t)θ̃i(t) +

1

2

n
∑

i=1

σiθ
∗T
i θ∗i

≤ −keT (t)e(t)−
σ

2

n
∑

i=1

θ̃Ti (t)θ̃i(t) +
1

2

n
∑

i=1

σiθ
∗T
i θ∗i

≤ −
2k

λmax(P )

1

2
eT (t)Pe(t)−

σγ

2

n
∑

i=1

1

γi
θ̃Ti (t)θ̃i(t) +

1

2

n
∑

i=1

σiθ
∗T
i θ∗i

≤ −k0V (t) +
1

2

n
∑

i=1

σiθ
∗T
i θ∗i

(37)
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where

σ = min{σ1, σ2, · · · , σn}

γ = min{γ1, γ2, · · · , γn}

k0 = min{
2k

λmax(P )
, σγ}

Applying Lemma 2, there exists a t0 > 0 such that

‖ V (t) ‖≤

∑n

i=1 σiθ
∗T
i θ∗i

k0
(38)

which yields that

‖ e(t) ‖≤

√

2
∑n

i=1 σiθ
∗T
i θ∗i

k0λmin(P )
(39)

which means ‖ e(t) ‖ can be arbitrarily small in (t0,∞) if the parameters k and γi are chosen large

enough. Besides, it can be easily seen that all the signals in the closed-loop system will remain

bounded.

5. Numerical Simulations

In this section, an illustrative example is presented to illustrate the effectiveness and applicability

of the proposed adaptive fuzzy control approach and to confirm the theoretical results. Consider

the following fractional-order rotational mechanical system with model uncertainties and external

disturbances [17].

Dαx1 =x2 +∆f1(x) + d1(t)

Dαx2 =0.25(x3 + 2.4)2 sin(x1 − 0.69) cos(x1 − 0.69)

− sin(x1 − 0.69)− 0.7x2 +∆f2(x) + d2(t)

Dαx3 =2.8 cos(x1 − 0.69)− 1.942− 0.5 sin(et) + ∆f3(x) + d3(t)

(40)

In the simulation, the uncertainty term and external noise of the system are selected as follows

∆f1(x) + d1(t) = −0.15 sin(2t)x1 + 0.15 sin(3t)

∆f2(x) + d2(t) = 0.25 cos(4t)x2 + 0.1 cos(t)

∆f3(x) + d3(t) = 0.2 sin(3t)x1 + 0.2 sin(3t)

(41)

Initial conditions of the system are selected as x1(0) = −3, x2(0) = 4, and x3(0) = −2. The

referenced signal is set to be xd(t) = [sin(t), cos(t), sin(2t)]T . Throughout the simulation, the model of

the fractional-order nonlinear system (33) is fully unknown. The proposed control methods do not need

to the knowledge of the system. The fuzzy systems have x1(t), x2(t) , and x3(t) as the inputs. For each

input, we define 11 Gaussian membership functions uniformly distributed on [−10, 10]. Thus, 121 rules

are used. The parameters of the controller are chosen as k = 1, b = 1, σ1 = σ2 = σ3 = 0.001, γ1, γ2, γ3.

The initial conditions of the fuzzy systems θ1(0), θ2(0), and θ3(0) are chosen randomly.

The simulation results are shown in Figure 1–5. Figure 1, Figure 2 and Figure 3 give the track

performance of the state variables x1(t), x2(t), and x3(t), respectively. Time responses of the tracking
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errors are shown in Figure 4. We can see the tracking errors have a fast convergence. Figure 5 displays the

trajectories of the control inputs. From the simulation results we can say that good control performance

has been achieved.
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Figure 1. Responses of the system state x1(t).
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Figure 2. Responses of the system state x2(t).
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Figure 3. Responses of the system state x3(t).
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Figure 4. Trajectories of the tracking errors.
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Figure 5. Trajectories of the control inputs.

6. Conclusions

In this paper, an adaptive fuzzy control method for fractional-order nonlinear systems in the presence

of model uncertainty and external noises is proposed. Fuzzy logic systems are used for estimating

the unknown nonlinear functions. Based on the fractional Lyapunov direct method, an adaptive fuzzy

controller is designed. The proposed method can guarantee all the signals in the closed-loop systems

remain bounded and the tracking errors converge to an arbitrary small region of the origin. Lastly, an

illustrative example is given to demonstrate the effectiveness of the proposed results.
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