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Abstract: We consider the problem of learning a Bayesian network structure given n

examples and the prior probability based on maximizing the posterior probability. We
propose an algorithm that runs in O(n log n) time and that addresses continuous variables
and discrete variables without assuming any class of distribution. We prove that the decision
is strongly consistent, i.e., correct with probability one as n → ∞. To date, consistency
has only been obtained for discrete variables for this class of problem, and many authors
have attempted to prove consistency when continuous variables are present. Furthermore,
we prove that the “log n” term that appears in the penalty term of the description length can
be replaced by 2(1+ε) log log n to obtain strong consistency, where ε > 0 is arbitrary, which
implies that the Hannan–Quinn proposition holds.

Keywords: posterior probability; consistency; minimum description length; universality;
discrete and continuous variables; Bayesian network

1. Introduction

In this paper, we address the problem of learning a Bayesian network structure from examples.
For sets A,B,C of random variables, we say that A and B are conditionally independent given C

if the conditional probability of A and B given C is the product of the conditional probabilities of A
given C and B given C. A Bayesian network (BN) is a graphical model that expresses conditional
independence (CI) relations among the prepared variables using a directed acyclic graph (DAG). We
define a BN by the DAG with vertexes V = {1, · · · , N} and directed edgesE = {(j, i)|i ∈ V, j ∈ π(i)},
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where edge (j, k) ∈ V 2 directs from j to k, via minimal parent sets π(i) ⊆ V , i ∈ V , such that the
distribution is factorized by:

P (X(1), · · · , X(N)) =
N∏
i=1

P (X(i)|{X(j)}j∈π(i)) .

First, suppose that we wish to know whether two random binary variables X and Y are independent
(hereafter, we write X ⊥⊥ Y ). If we have n pairs of actually emitted examples (X = x1,

Y = y1), · · · , (X = xn, Y = yn) and know the prior probability p of X ⊥⊥ Y , then it would
be reasonable to maximize the posterior probability of X ⊥⊥ Y given xn = (x1, · · · , xn) and
yn = (y1, · · · , yn). If we assume that the probabilities P (X = x), P (Y = y) and P (X = x, Y = y) are
parameterized by p(x|θX), p(y|θY ), and p(x, y|θXY ) and that the prior probabilities WX ,WY , and WXY

over the probabilities θX , θY , and θXY of X ∈ {0, 1}, Y ∈ {0, 1} and (X, Y ) ∈ {0, 1}2 are available,
respectively, then we can construct the quantities:

Qn
X(xn) :=

∫ n∏
i=1

p(xi|θX)WX(dθX) ,

Qn
Y (yn) :=

∫ n∏
i=1

p(yi|θY )WY (dθY ) ,

Qn
XY (xn, yn) :=

∫ n∏
i=1

p(xi, yi|θXY )WXY (dθXY ) .

In this setting, maximizing the posterior probability of X ⊥⊥ Y given examples xn, yn w.r.t. the prior
probability p is equivalent to deciding X ⊥⊥ Y if and only if:

pQn
X(xn)Qn

Y (yn) ≥ (1− p)Qn
XY (xn, yn) . (1)

The decision based on (1) is strongly consistent, i.e., it is correct with probability one as n → ∞ [1]
(see Section 3.1 for the proof). We say that a model selection procedure satisfies weak consistency if the
probability of choosing the correct model goes to unity as n grows (probability convergence) and that
it satisfies strong consistency if the probability one is assigned to the set of infinite example sequences
that choose the correct model, except for at most finite times (almost sure convergence). In general,
strong consistency implies weak consistency, but the converse is not true [2]. In any model selection, in
particular for large n, the correct answer is required. If continuous variables are present, the BN structure
learning is not easy, and strong consistency is hard to obtain.

The same scenario is applied to the case in which X and Y take values from finite sets A and B rather
than {0, 1}.

Next, suppose that we wish to know the factorization of three random binary variables X, Y, Z:

P (X)P (Y )P (Z), P (X)P (Y, Z), P (Y )P (Z,X), P (Z)P (X, Y ),
P (X, Y )P (X,Z)

P (X)
,
P (X, Y )P (Y, Z)

P (Y )
,

P (X,Z)P (Y, Z)

P (Z)
,

P (Y )P (Z)P (X, Y, Z)

P (Y, Z)
,

P (Z)P (X)P (X, Y, Z)

P (Z,X)
,

P (X)P (Y )P (X, Y, Z)

P (X, Y )
and

P (X, Y, Z). If we have n triples of actually emitted examples (X = x1, Y = y1, Z = z1), · · · ,
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(X = xn, Y = yn, Z = zn) and know the prior probabilities p1, · · · , p11 over the eleven factorizations,
then it would be reasonable to choose the one that maximizes:

p1Q
n
X(xn)Qn

Y (yn)QZ(zn), p2Q
n
X(xn)Qn

Y Z(yn, zn), p3Q
n
Y (yn)Qn

XZ(xn, zn),

p4Q
n
Z(zn)Qn

XY (xn, yn), p5
Qn

XY (xn,yn)Qn
XZ(xn,zn)

Qn
X(xn)

, p6
Qn

XY (xn,yn)Qn
Y Z(yn,zn)

Qn
Y (yn)

,

p7
Qn

XZ(xn,zn)Qn
Y Z(yn,zn)

Qn
Z(zn)

, p8
Qn

Y (yn)Qn
Z(zn)Qn

XY Z(xn,yn,zn)

Qn
Y Z(yn,zn)

, p9
Qn

Z(zn)Qn
X(xn)Qn

XY Z(xn,yn,zn)

Qn
XZ(xn,zn)

,

p10
Qn

X(xn)Qn
Y (yn)Qn

XY Z(xn,yn,zn)

Qn
XY (xn,yn)

, p11Q
n
XY Z(xn, yn, zn) ,

to maximize the posterior probability of the factorization given xn = (x1, · · · , xn), yn = (y1, · · · , yn)

and zn = (z1, · · · , zn). For example, between the last two distributions, we choose the last if and only if:

p10Q
n
X(xn)Qn

Y (yn) ≤ p11Q
n
XY (xn, yn) .

In fact, for example, we can check that the factorizations:

P (Y )P (X|Y )P (Z|X) , P (X)P (Y |X)P (Z|X) , P (Z)P (X|Z)P (Y |Z)

in Figure 1a–c share the same form
P (XY )P (XZ)

P (X)
, and we say that they share the same

Markov-equivalent class. On the other hand, the factorization

P (Y )P (Z)P (X|Y Z) =
P (XY Z)P (Y )P (Z)

P (Y Z)

in Figure 1d has nothing to share with the same Markov equivalent class, except itself. In the case of
three variables, there are 25 DAGs, but they reduce to the eleven Markov equivalent classes.

j
j

j(a) Y

X

Z
@@R ���

j
j

j(b) Y

X

Z

@@I ���

j
j

j(c) Y

X

Z

@@I
��	

j
j

j(d) Y

X

Z
@@R ��	

Figure 1. Markov-equivalent classes (a–d).

The method that maximizes the posterior probability is strongly consistent [1] (see Section 3.1 for the
proof), and a scenario with two and three variables as above can be extended to cases with N variables
in a straightforward manner, if the variables are discrete.

In this paper, we consider the case when continuous variables are present. The idea is to construct
measures gnX(xn), gnY (yn) and gnXY (xn, yn) over X n, Yn and X n×Yn for continuous ranges X and Y to
make the decision whether X ⊥⊥ Y based on:

pgnX(xn)gnY (yn) ≥ (1− p)gnXY (xn, yn) . (2)

The main problem is whether the decision is strongly consistent. Many authors have attempted to address
continuous variables. For example, Nir Friedman [3] experimentally demonstrated the construction of a
genetic network based on expression data using the E-Malgorithm. However, the variables were assumed
to be linearly related and included Gaussian noise, and the dataset was not sufficiently fit to the model.
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Imoto et al. [4] improved the model such that the relation is expressed by B-spline curves rather than
lines. However, all of the authors, including Friedman and Imoto, failed to maximize the posterior
probability, and thus, the decision is not consistent. This paper proves that the decision based on (2) and
its extension for general N ≥ 2 is strongly consistent.

In any Bayesian approach of BN structure learning, whether continuous variables are present or not,
the procedure consists of two stages:

(1) Compute the local scores for the nonempty subsets of {X(1), · · · , X(N)}; for example, if N = 3,
the seven quantities Qn

X(xn), · · · , Qn
XY Z(xn, yn, zn) are obtained; and

(2) Find a BN structure that maximizes the global scores among the M(N)(≤ 3N) candidate BN
structures; there are at most 3N DAGs in the case of N variables; for example, if N = 3, the
eleven quantities are computed and a structure with the largest is chosen.

Note that the second stage does not care about whether each variable is continuous or not. In this
paper, we mainly discuss about the performance of the first stage. The number of local scores to
be computed can be saved, although it is generally exponential with N . We consider the problem in
Section 3.3.

On the other hand, Zhang, Peters, Janzing and Scholkopf [5] proposed a BN structure learning method
using conditional independence (CI) tests based on kernel statistics. However, for the CI test that is close
to the Hilbert–Schmidt information criterion (HSIC), it is very hard to simulate the null distribution.
They only proposed to approximate it by a Gamma distribution, but no consistency, is obtained because
the threshold of the statistical test is not correct in practice. Furthermore, for the independence test
approach, it often results in conflicting assertions of independence for finite samples. In particular,
for small samples, the obtained DAG sometimes contain a directed loop. The Bayesian approach we
consider in this paper does not suffer from the inconvenience, because we seek a structure that maximizes
the global score [6].

Another contribution of this paper is identifying the border between consistency and non-consistency
in learning Bayesian networks. For discrete X , maximizing Qn

X(xn) is equivalent to minimizing the
description length [1]:

− logQn
X(xn) ≈ Hn(xn) +

α− 1

2
log n , (3)

where Hn(xn) is the empirical entropy of xn ∈ X n (we write A ≈ B when |A − B| is bounded by
a constant) and α is the cardinality of set X . The problem at hand is whether the log n term is the
minimum function of n for ensuring strong consistency. If log n is replaced by two (AIC), we cannot
obtain consistency. We prove that 2(1 + ε) log log n with ε > 0 is the minimum for strong consistency
based on the law of iterated logarithms. The same property is known as the Hannan–Quinn principle
[7], and similar results have been obtained for autoregression, linear regression [8] and classification [9],
among others. The derivation in this paper does not depend on these previous results. The Hannan–Quinn
principle will also be applied to continuous variables.

This paper is organized as follows. Section 2.1 introduces the general concept of learning Bayesian
network structures based on maximizing the posterior probability, and Section 2.2 discusses the concept
of density functions developed by Boris Ryabko [10] and extended by Suzuki [11]. Section 3
presents our contributions: Section 3.1 proves the Hannan–Quinn property in the current problem, and
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Section 3.2 proves consistency when continuous variables are present. Section 4 concludes the paper by
summarizing the results and states the paper’s significance in the field of model selection.

2. Preliminaries

2.1. Learning the Bayesian Structure for Discrete Variables and Its Consistency

We choose wX , such that
∫
wX(θ)dθ = 1 and 0 ≤ θ(x) ≤ 1 by wX(θ) ∝

∏
x∈X θ(x)−1/2, where

X is the set from which X takes its values. Let α = |X |, and let ci(x) be the frequency of x ∈ X in
xi = (x1, · · · , xi) ∈ X i, i = 1, · · · , n. It is known that the following quantities satisfies (3) [12]:

Qn
X(xn) :=

n∏
i=1

ci−1(xi) + 1/2

i− 1 + |X |/2
=

Γ(α/2)
∏

x∈X Γ(cn(x) + 1/2)

Γ(1/2)αΓ(n+ α/2)
,

where Γ is the Gamma function, and Stirling’s formula Γ(z) =
√

2πz(
z

e
)z{1 + O(z−1/3)} has been

applied. Thus, for x ∈ X , from the law of large numbers, cn(x)/n converges to P (X = x) with
probability one as n→∞, such that:

− 1

n
logQn(xn)→ H(X) :=

∑
x∈X

−P (X = x) logP (X = x)

with probability one as n→∞.
Moreover, from the law of large numbers, with probability one as n→∞,

− 1

n
logP (Xn = xn) =

1

n

n∑
i=1

{− logP (X = xi)} → E[− logP (X)] = H(X)

(Shannon–McMillan–Breiman [13]). This proves that there exists a Qn
X (universal measure), such that

for any probability P over the finite set X ,

1

n
log

P n(xn)

Qn(xn)
→ 0 (4)

with probability one as n→∞, where we write P n(xn) := P (Xn = xn). The same property holds for:

− logQn
Y (yn) ≈ Hn(yn) +

β − 1

2
log n , (5)

and:
− logQn

XY (xn, yn) ≈ Hn(xn, yn) +
αβ − 1

2
log n , (6)

where β = |Y|, Hn(yn) =
∑
y∈Y

−cn(y) log
cn(y)

n
and Hn(xn, yn) =

∑
x∈X

∑
y∈Y

−cn(x, y) log
cn(x, y)

n
are

the empirical entropies of yn ∈ Yn and (xn, yn) ∈ X n × Yn, and cn(y) and cn(x, y) are the numbers
of occurrences of y ∈ Y and (x, y) ∈ X × Y in yn = (y1, · · · , yn) ∈ Yn and (xn, yn) ∈ X n × Yn,
respectively.

Thus, we have:

Jn(xn, yn) :=
1

n
log

QXY (xn, yx)

QX(xn)QY (yn)
→ I(X, Y ) := E{ P (X, Y )

P (X)P (Y )
} .
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with probability one as n → ∞. However, X ⊥⊥ Y if and only if I(X, Y ) = 0. Hence, if X 6⊥⊥ Y , the
value of Jn(xn, yn) is positive with probability one as n → ∞. However, how can we detect X ⊥⊥ Y

when X ⊥⊥ Y ? Jn(xn, yn) cannot be exactly zero with probability one as n→∞.
However, whenX and Y are discrete, the estimation based on Jn(xn, yn) is consistent: ifX ⊥⊥ Y , the

value of Jn(xn, yn) is not greater than zero with probability one as n → ∞. For example, the decision
based on (1) is strongly consistent because the values of 1

n
log p and 1

n
log(1− p) are negligible for large

n, and asymptotically, (1) is equivalent to Jn(xn, yn, zn) ≤ 0.
In Section 3.1, we provide a stronger result of consistency and a more intuitive and elegant proof.
In general, if N variables exist (N ≥ 2), we must consider two cases: D(P ∗||P ) > 0 and

D(P ∗||P ) = 0, where P ∗ and P are the probabilities based on the correct and estimated factorizations
and D(P ∗||P ) denotes the Kullback–Leibler divergence between P ∗ and P . If N = 2, then:

D(P ∗||P ) :=
∑
x

∑
y

P ∗(x, y) log
P ∗(x, y)

P (x, y)
> 0

if and only if X 6⊥⊥ Y in P ∗ and X ⊥⊥ Y in P .
The same property holds for three variables X, Y, Z (N = 3):

Jn(xn, yn, zn) :=
1

n
log

QXY Z(xn, yn, zn)Qn
Z(zn)

Qn
XZ(xn, yn)Qn

Y Z(yn, zn)
→ I(X, Y, Z) := E{P (XY Z)P (Z)

P (XZ)P (Y Z)
}

with probability one as n → ∞, and X ⊥⊥ Y |Z if and only if I(X, Y, Z) = 0. Then, we can show
Jn(xn, yn, zn) ≤ 0 if and only if I(X, Y, Z) = 0, with probability one as n→∞ (see Section 3.1). For
example, between the seventh and eleventh factorizations, if Jn(xn, yn, zn) ≤ 0 and Jn(xn, yn, zn) > 0,
then we choose the seventh and eleventh, respectively. In fact,

p7
Qn
XZ(xn, zn)Qn

Y Z(yn, zn)

Qn
Z(zn)

≥ p11Q
n
XY Z(xn, yn, zn)⇐⇒ Jn(xn, yn, zn) ≤ 0

for large n, because 1
n

log p7
p11

diminishes.
Then, the decision is correct with probability one as n→∞. Similarly, we calculate:

− logQZ(zn) ≈ Hn(zn) +
γ − 1

2
log n ,

− logQY Z(yn, zn) ≈ Hn(yn, zn) +
βγ − 1

2
log n ,

− logQZX(zn, xn) ≈ Hn(zn, xn) +
γα− 1

2
log n ,

and:
− logQXY Z(xn, yn, zn) ≈ Hn(xn, yn, zn) +

αβγ − 1

2
log n ,

where γ = |Z|. In general, for N variables, given P and P ∗, we have all of the CI statements for each
of them, and D(P ∗||P ) = 0 if and only if the CI statements in P imply those in P ∗; in other words, P
induces an I-map, which is not necessarily minimal.

Note that for any subsets a, b, c of {1, · · · , N}, we can construct the estimation Jn(xn, yn, zn), with
X = {X(i)}i∈a, Y = {Y (j)}j∈b, Z = {X(k)}k∈c, and obtain consistency, i.e., we will have the correct CI
statements, where c may be empty.
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Table 1 depicts whether D(P ∗||P ) > 0 or D(P ∗||P ) = 0 for each P ∗ and P . For example, if the
factorizations of P ∗ and P are the fourth and sixth, then D(P ∗||P ) = 0 from the table. In general,
D(P ∗||P ) = 0 if and only if P ∗ is realized using the factorization and an appropriate parameter
set for P .

Table 1. Three-variable case: D(P ∗||P ) > 0 or D(P ∗||P ) = 0: “+” and “0” denote
D(P ∗||P ) > 0 and D(P ∗||P ) = 0, respectively.

Estimated P
1 2 3 4 5 6 7 8 9 10 11

1 * 0 0 0 0 0 0 0 0 0 0
2 + * + + + 0 0 + + + 0
3 + + * + 0 + 0 + + + 0
4 + + + * 0 0 + + + + 0

True 5 + + + + * + + + + + 0
P ∗ 6 + + + + + * + + + + 0

7 + + + + + + * + + + 0
8 + + + + + + + * + + 0
9 + + + + + + + + * + 0

10 + + + + + + + + + * 0
11 + + + + + + + + + + *

2.2. Universal Measures for Continuous Variables

In this section, we primarily address continuous variables.
Let {Aj} be such that A0 = {X}, and let Aj+1 be a refinement of Aj . For example, suppose that the

random variable X takes values in X = [0, 1], and we generate a sequence as follows:

A1 = {[0, 1
2
), [1

2
, 1)}

A2 = {[0, 1
4
), [1

4
, 1
2
), [1

2
, 3
4
), [3

4
, 1)}

...
Aj = {[0, 2−(j−1)), [2−(j−1), 2 · 2−(j−1)), · · · , [(2j−1 − 1)2−(j−1), 1)} .

...

For each j, we quantize each x ∈ [0, 1] into the a ∈ Aj , such that x ∈ a. For example, for j = 2,
x = 0.4 is quantized into a = [1

4
, 1
2
) ∈ A2. Let λ be the Lebesgue measure (width of the interval). For

example, λ([1
4
, 1
2
)) = 1

4
and λ({1

2
}) = 0.

Note that each Aj is a finite set. Therefore, we can construct a universal measure Qn
j w.r.t. a finite set

Aj for each j. Given xn = (x1, · · · , xn) ∈ [0, 1]n, we obtain a quantized sequence (a
(j)
1 , · · · , a(j)n ) ∈ Anj

for each j and use it to compute the quantity:

gnj (xn) :=
Qn
j (a

(j)
1 , · · · , a(j)n )

λ(a
(j)
1 ) · · ·λ(a

(j)
n )
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for each j. If we prepare a sequence of positive reals w1, w2, · · · , such that
∑

j wj = 1 and wj > 0, we
can compute the quantity:

gnX(xn) :=
∞∑
j=1

wjg
n
j (xn) .

Moreover, let fX be the true density function and fj(x) := P (X ∈ a)/λ(a) for a ∈ Aj

and j = 1, 2, · · · if x ∈ a. We may consider fj to be an approximated density function assuming the
quantization sequence {Aj} (Figure 2). For the given xn, we define fnX(xn) = fX(x1) · · · fX(xn) and
fnj (xn) := fj(x1) · · · fj(xn).

Figure 2. Quantization at level k: xn = (x1, · · · , xn) 7→ (a
(j)
1 , · · · , a(j)n )

Thus, we have the following proposition, which is a continuous version of the universality (4) that
was proven in Section 2.1.

Proposition 1 ([10]). For any density function f , such that D(fX ||fj)→ 0 as j →∞,

1

n
log

fnX(xn)

gnX(xn)
→ 0

as n→∞ with probability one, whereD(fX ||fj) is the Kullback–Leibler divergence between fX and fj .

The same concept is applied to the case where no density function exists [11] in the usual sense
(w.r.t. the Lebesgue measure λ). For example, suppose that we wish to estimate a distribution over
the positive integers N. Apparently, N is not a finite set and has no density function. We consider the
quantization sequence {Bk}: B0 = {N}, B1 := {{1}, {2, 3, · · · }}, B2 := {{1}, {2}, {3, 4, · · · }}, . . .,
Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · · }}, . . ..
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For each k, we quantize each y ∈ N into a b ∈ Bk, such that y ∈ b. For example, for k = 2, y = 4 is
quantized into b = {3, 4, · · · } ∈ B2. Let η be a measure, such that:

η({k}) =
1

k
− 1

k + 1
, k ∈ N .

The measure η(a) for closed interval a gives:

η(a) =
∑
k∈a

η({k}) =
∑
k∈a

(
1

k
− 1

k + 1
) =

1

kmin
− 1

kmax

if kmin and kmax are the minimum and maximum integers in a, and evaluates each bin width in a
nonstandard way. For example, η({2}) = 1

6
and η({3, 4}) = 2

15
. For multiple variables, we compute the

measure by:

η({j}, {k}) = (
1

j
− 1

j + 1
)(

1

k
− 1

k + 1
) .

Note that each Bk is a finite set, and we construct a universal measure Qn
k w.r.t. a finite set Bk for

each k. Given yn = (y1, · · · , yn) ∈ Nn, we obtain a quantized sequence (b
(k)
1 , · · · , b(k)n ) ∈ Bn

k for each
k, such that we can compute the quantity:

gnk (yn) :=
Qn
k(b

(k)
1 , · · · , b(k)n )

η(b
(k)
1 ) · · · η(b

(k)
n )

for each k. If we prepare a sequence of positive reals w1, w2, · · · , such that
∑

k wk = 1 and wk > 0, we

can compute the quantity gnY (yn) :=
∞∑
k=1

wkg
n
k (yn). In this case, fY (y) =

P (Y = y)

η({y})
for y ∈ N (f(y)

with y 6∈ N may take any arbitrary value) is considered to be a generalized density function (w.r.t. the
measure η).

In general, if η(D) = 0 implies P (Y ∈ D) = 0 for the Borel sets (the Borel sets w.r.t. R being the set
consisting of the sets generated via a countable number of union, intersection and set difference from the
closed intervals of R [2]), we state that P is absolutely continuous w.r.t. η and that there exists a density
function w.r.t. η (Radon–Nikodym [2]).

The following proposition addresses generalized densities and eliminates the condition
D(fY ||fj)→ 0 as j →∞ in Proposition 1.

Proposition 2 ([11]). For any generalized density function fY ,

1

n
log

fnY (yn)

gnY (yn)
→ 0

as n→∞ with probability one.

Proposition 1 assumes a specific quantization sequence, such as {An}. The universality holds for
the densities that satisfy D(fX ||fk) → ∞ as k → ∞ [10]. However, in the proof of Proposition 2, a
universal quantization, such that D(fX ||fk)→ 0 as k →∞ for any density fX , was constructed [11].
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3. Contributions

3.1. The Hannan and Quinn Principle

We know that Hn(xn) + Hn(yn) − Hn(xn, yn) is at most (α−1)(β−1)
2

log n with probability one as
n→∞ when X ⊥⊥ Y because the decision based on (1) is strongly consistent.

In this section, we prove a stronger result: let:

In(xn, yn, zn) := Hn(xn, zn) +Hn(yn, zn)−Hn(xn, yn, zn)−Hn(zn) .

We show that the quantity In(xn, yn, zn) is at most (α − 1)(β − 1)γ log log n rather than
1

2
(α− 1)(β − 1)γ log n, when X ⊥⊥ Y |Z:

Theorem 1. If X ⊥⊥ Y |Z:

In(xn, yn, zn) ≤ (1 + ε)(α− 1)(β − 1)γ log log n (7)

with probability one as n→∞ for any ε > 0.

In order to show the claim, we approximate In(xn, yn, zn) by
∑

z∈Z I(z) with I(z) =
1

2

α−1∑
i=1

β−1∑
j=1

r2i,j ,

where ri,j , i = 1, · · · , α − 1, j = 1, · · · , β − 1, are mutually independent random variables with mean
zero and variance σ2

i,j , such that:

α−1∑
i=1

β−1∑
j=1

σ2
i,j = (α− 1)(β − 1) .

Then, from the law of iterated logarithms below (Lemma 1) [2], it will be proven that r2i,j is almost
surely upper-bounded by 2(1 + ε)σ2

i,j log log n for any ε > 0 and each z ∈ Z , which implies Theorem 1
because:

In(xn, yn, zn) ≈
∑
z

I(z) = γ · 1

2

∑
i

∑
j

r2i,j

≤ γ · 1

2

∑
i

∑
j

2(1 + ε)σ2
i,j log log n

= (1 + ε)(α− 1)(β − 1)γ log log n

(see the Appendix for the details of the derivation).

Lemma 1 ([2]). Let {Uk}nk=1 be random variables that obey an identical distribution with zero mean
and unit variance, and Sn :=

∑n
k=1 Uk. Then, with probability one,

lim sup
n→∞

Sn√
2n log n log n

= 1 .

Theorem 1 implies the strong consistency of the decision based on (1). However, a stronger statement
can be obtained:
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Theorem 2. We define Rn
Z(zn), Rn

XZ(xn, zn), Rn
Y Z(yn, zn) and Rn

XY Z(xn, yn, zn) by:

− logRn
Z(zn) = Hn(zn) + (1 + ε)(γ − 1) log log n ,

− logRn
XZ(xn, zn) = Hn(xn, zn) + (1 + ε)(βγ − 1) log log n ,

− logRn
Y Z(yn, zn) = Hn(yn, zn) + (1 + ε)(βγ − 1) log log n ,

and:
− logRn

XY Z(xn, yn, zn) = Hn(xn, yn, zn) + (1 + ε)(αβγ − 1) log log n .

Then, the decision based on:

Rn
XZ(xn, zn)Rn

Y Z(yn, zn) ≥ Rn
XY Z(xn, yn, zn)Rn

Z(zn)⇐⇒ X ⊥⊥ Y |Z

is strongly consistent.

Proof. We note two properties:

1. Rn
XZ(xn, zn)Rn

Y Z(yn, zn) ≥ Rn
XY Z(xn, yn, zn)Rn

Z(zn) is equivalent to (7); and

2. lim
n→∞

1

n
log

Rn
XY Z(xn, yn, zn)Rn

Z(zn)

Rn
XZ(xn, zn)Rn

Y Z(xn, zn)
= lim

n→∞

1

n
log

Qn
XY Z(xn, yn, zn)Qn

Z(zn)

Qn
XZ(xn, zn)Qn

Y Z(xn, zn)
→ I(X, Y, Z)

If X ⊥⊥ Y |Z, then from Theorem 1 and the first property, we have Rn
XZ(xn, zn)Rn

Y Z(yn, zn) ≥
Rn
XY Z(xn, yn, zn)Rn

Z(zn) almost surely. If Rn
XZ(xn, zn)Rn

Y Z(yn, zn) ≥ Rn
XY Z(xn, yn, zn)Rn

Z(zn)

almost surely holds, then the value in the second property should be no greater than zero, which means
that X ⊥⊥ Y |Z. This completes the proof.

Theorem 2 is related to the Hannan and Quinn theorem [7] for model selection. To obtain
strong consistency, they proved that log log n rather than 1

2
log n is sufficient for the penalty terms of

autoregressive model selection. Recently, several authors have proven this in other settings, such as
classification [9] and linear regression [8].

3.2. Consistency for Continuous Variables

Suppose that we wish to estimate the distribution over [0, 1]× N in Section 2.2. The set [0, 1]× N is
not a finite set and has no density function.

Because Aj ×Bk is a finite set, we can construct a universal measure Qn
j,k for Aj ×Bk:

gnjk(x
n, yn) :=

Qn
j,k(a

(j)
1 , · · · , a(j)n , b

(k)
1 , · · · , b(k)n )

λ(a
(j)
1 ) · · ·λ(a

(j)
n )η(b

(k)
1 ) · · · η(b

(k)
n )

.

If we prepare the sequence such that
∑

jk ωjk = 1, ωjk > 0, we obtain the quantity:

gnXY (xn, yn) :=
∞∑
j=1

∞∑
k=1

wj,kg
n
jk(x

n, yn) .

In this case, the (generalized) density function is obtained via:

fXY (x, y) =
FX(x|y)

dx
· P (Y = y)

η({y})
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where y ∈ N (fXY takes arbitrary values for x 6∈ [0, 1] and y 6∈ N), where FX(·|y) is the conditional
distribution function of X given Y = y.

In general, we have the following result:

Proposition 3. For any generalized density function f :

1

n
log

fnXY (xn, yn)

gnXY (xn, yn)
→ 0

as n→∞ with probability one.

The measures gnX(xn) and gnXY (xn, yn) are computed using (A) and (B) of Algorithm 1, where the
value of K is the number of quantizations, and ĝnX(xn) and ĝnXY (xn, yn) denote the approximated scores
using finite quantization of level K.

Algorithm 1 Calculating gn.
(A) Input xn ∈ An, Output ĝnX(x

n)

1. For each k = 1, · · · ,K, gnk (x
n) := 0

2. For each k = 1, · · · ,K and each a ∈ Ak, ck(a) := 0

3. For each i = 1, · · · , n,

(a) A0 = X , a(0)i = xi

(b) for each k = 1, · · · ,K
i. Find a(k)i ∈ Ak from a

(k−1)
i ∈ Ak−1

ii. log gnk (x
n) := log gnk (x

n) + log
ci,k(a

(k)
i )+1/2

i−1+|Ak|/2 − log(ηX(a
(k)
i ))

iii. ci,k(a
(k)
i ) := ci,k(a

(k)
i ) + 1

4. ĝnX(x
n) :=

∑K
k=1

1
K g

n
k (x

n)

(B) Input xn ∈ An and yn ∈ Bn, Output ĝnXY (x
n, yn)

1. For each j, k = 1, · · · ,K, gnj,k(x
n, yn) := 0

2. For each j, k = 1, · · · ,K and each a ∈ Aj and b ∈ Bk, cj,k(a, b) := 0

3. For each i = 1, · · · , n

(a) A0 = X , B0 = Y , a(0)i = xi, b
(0)
i = yi

(b) for each j, k = 1, · · · ,K
i. Find a(j)i ∈ Aj and b(k)i ∈ Bk from a

(j−1)
i ∈ Aj−1 and b(k−1)i ∈ Bk−1

ii. log gnj,k(x
n, yn) := log gnj,k(x

n, yn) + log
ci,j,k(a

(j)
i ,b

(k)
i )+1/2

i−1+|Aj ||Bk|/2 − log(ηX(a
(j)
i )ηY (b

(k)
i ))

iii. ci,j,k(a
(j)
i , b

(k)
i ) := ci,j,k(a

(j)
i , b

(k)
i ) + 1

4. ĝnXY (x
n, yn) :=

∑K
j=1

∑K
k=1

1
K2 g

n
j,k(x

n, yn)

Propositions 1–3 are obtained for large K. However, we can prepare only a finite number of
quantizations. Furthermore, if n is small, then the number of examples that each bin contains is small,
and we cannot estimate the histogram well. Therefore, given n, K must be moderately sized, and
we recommend to set K = 1

m
log n because the number of examples contained in a bin decreases
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exponentially with increasing depth, where m is the number of variables in the local score. For example,
m = 1 and m = 2 for (A) and (B), respectively. Algorithm 1 (A)(B) of do not guarantee anything for
the theoretical property assured in Proposition 3 and Theorems 3–5 for finite K, however, as K grows,
consistency holds.

In Step 3(a) of Algorithm 1(A)(B), we calculate a(k)i from a
(k−1)
i and not from xi, which means that

the computational time required to obtain (a
(1)
i , · · · , a(K)

i ) from xi is O(K). Thus, the total computation
times of Algorithm 1 (A)(B) are at most O(nK).

In Step 3(b) of Algorithm 1(A), we compute for i = 1, · · · , n and k = 1, · · · , K:

log
gik(x

i)

gi−1k (xi−1)
= log

Qi
k(a

(k)
1 , · · · , a(k)i )

Qi−1
k (a

(k)
1 , · · · , a(k)i−1)

− log ηX(a
(k)
i )

if xi is quantized into a(k)i ∈ Ak, i = 1, · · · , n.
For the memory requirements, we require exponential orders of K. However, because we set

K = 1
m

log n, the computational time and memory requirements are at most O(n log n) and O(n) for
Algorithm 1(A)(B).

Based on the same notion, we can construct gnZ(zn), gnXZ(xn, zn), gY Z(yn.zn), gnXY Z(xn, yn, zn) from
examples xn ∈ X n, yn ∈ Yn and zn ∈ Zn, and Propositions 2 and 3 hold for three variables.

Theorem 3. With probability one as n→∞:

1

n
log

gnXY Z(xn, yn, zn)gZ(zn)

gnXY (xn, zn)gnY Z(yn, zn)
→ I(X, Y, Z) (8)

Proof. From Propositions 2 and 3 for two and three variables and the law of large numbers, we have:

lim
n→∞

1

n
log

gnXY Z(xn, yn, zn)gnZ(zn)

gnXZ(xn, zn)gnY Z(yn, zn)
= lim

n→∞

1

n
log

fnXY Z(xn, yn, zn)fnZ(zn)

fnXZ(xn, zn)fnY Z(yn, zn)

= lim
n→∞

1

n

n∑
i=1

{log
fXY Z(xi, yi, zi)fZ(zi)

fXZ(xi, zi)fY Z(yi, zi)
} = E log

fXY Z(X, Y, Z)

fXZ(X,Z)fY Z(Y, Z)
= I(X, Y, Z)

with probability one, which completes the proof.

From the discussion in Section 2.1, even when more than two variables are present, if D(P ∗||P ) > 0,
we can choose P ∗ rather than P with probability one as n→∞.

Now, we prove that the continuous counterpart of the decision based on (1) is strongly consistent:

Theorem 4. With probability one as n→∞:

X ⊥⊥ Y |Z ⇐⇒ pgnXZ(xn, zn)gnY Z(yn, zn) ≥ (1− p)gnXY Z(xn, yn, zn)gnZ(zn) , (9)

where p is the prior probability of X ⊥⊥ Y |Z.

Proof: Suppose that X 6⊥⊥ Y |Z. Then, the conditional mutual information between X and Y given
Z is positive, and from Theorem 3, the estimator converges to a positive value with probability one as
n→∞; thus, pgnXZ(xn, zn)gnY Z(yn, zn) ≥ (1−p)gnXY Z(xn, yn, zn)gnZ(zn) holds almost surely. Suppose
that X ⊥⊥ Y |Z. The discrete variables X and Y are conditionally independent given Z if and only if:

cQn
XZ(xn, zn)Qn

Y Z(yn, zn) ≥ (1− c)Qn
XY Z(xn, yn, zn)Qn

Z(zn)
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with probability one as n → ∞ for any constant 0 < c < 1, even if c does not coincide with the
prior probability p. If X, Y and Z are continuous, we quantize xn, yn and zn into (a

(j)
1 , · · · , a(j)n ),

(b
(k)
1 , · · · , b(k)n ) and (c

(l)
1 , · · · , c

(l)
n ). Thus, for each j, k and l, we have:

pwjlwklQ
n
jl(a

(j)
1 , · · · , a(j)n , c

(l)
1 , · · · , c(l)n )Qn

kl(b
(k)
1 , · · · , b(k)n , c

(l)
1 , · · · , c(l)n )

≥ (1− p)wjklwlQn
jkl(a

(j)
1 , · · · , a(j)n , b

(k)
1 , · · · , b(k)n , c

(l)
1 , · · · , c(l)n )Q(l)

n (c
(l)
1 , · · · , c(l)n )

with probability one as n→∞. Thus, if we divide both sides by:

ηX(a
(j)
1 ) · · · ηX(a(j)n )ηY (b

(k)
1 ) · · · ηY (b(k)n )ηZ(c

(l)
1 ) · · · ηZ(c(l)n )

and take summations of both sides over j, k.l = 1, 2, · · · , we have:

pgnXZ(xn, zn)gnY Z(yn, zn) ≥ (1− p)gnXY Z(xn, yn, zn)gnZ(zn)

with probability one, where we have assumed wj,k,l > 0 =⇒ wjl, wkl > 0 because of K = 1
m

log n,
which completes the proof.

Note that even if either X or Y is discrete, the same conclusion will be obtained. The generalized
density functions cover the discrete distributions as a special case.

From the discussion in Section 2.1, even when more than two variables are present, if D(P ∗||P ) = 0,
we can choose P ∗ rather than P with probability one as n→∞.

Let hnZ(zn),hnXZ(xn, zn), hnY Z(yn, zn) and hnXY Z(xn, yn, zn) take the same values of gnZ(zn),
gnXZ(xn, zn), gnY Z(yn, zn) and gnXY Z(xn, yn, zn), except that the log n terms in − logQn

Z(zn),
− logQn

XZ(xn, zn),− logQn
Y Z(yn, zn) and − logQn

XY Z(xn, yn, zn) are replaced by 2(1 + ε) log log n,
respectively, where ε > 0 is arbitrary. Then, we obtain the final result:

Theorem 5. With probability one as n→∞:

phnXZ(xn, zn)hnY Z(yn, zn) ≥ (1− p)hnXY Z(xn, yn, zn)hnZ(zn)⇐⇒ X ⊥⊥ Y |Z. (10)

This paper focuses on the theoretical aspects of the BN structure learning, in particular for consistency
when continuous variables are present. For the details of the practical matters we deal with in this section,
see the conference paper [14].

3.3. The Number of Local Scores to be Computed

We refer the conditional independence (CF) score w.r.t. X and Y given Z to the left of (8). Suppose
we follow the fastest Bayesian network structure learning due to [6]: let Pa(X, V ) be the optimal parent
set of X ∈ V contained in V − {X} for V ⊆ U := {1, · · · , N} and S(X, V ) its local score. Then, we
can obtain:

T (V ) := max
x∈V
{S(X, V ) + T (V − {X})}

For each V ⊆ U , the sinks:

XN = argmaxX∈UT (U) , XN−1 = argmaxX∈U−{XN}T (U − {XN}) , · · · ,
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and the parent sets:
Pa(XN , U) , P (XN−1, U − {XN}) , · · · , {} .

For each fixed pair (X, V ), maximizing the local score
1

n
log

gW+{X}

gW
and maximizing the CF score

1

n
log

gV−{X}gW+{X}

gV gW
w.r.t. V − {X} and W + {X}, given W are equivalent. In other words,

1

n
log

gW+{X}

gW
≤ 1

n
log

gW ′+{X}

gW ′
⇐⇒ 1

n
log

gV−{X}gW ′+{X}

gV gW
≤ 1

n
log

gV−{X}gW ′+{X}

gV gW ′

for W,W ′ ⊆ V − {X}.
On the other hand, from [15,16], we know that the relationship between the complexity term and the

likelihood term gives tight bounds on the maximum number of parents in the optimal BN for any given
dataset. In particular, the number of elements in each parent set Pa(X, V ) is at mostO(log n) forX ∈ V
and V ⊆ U . Hence, the number for computing the CF scores is much less than exponential with N .

4. Concluding Remarks

In this paper, we considered the problem of learning a Bayesian network structure from examples and
provided two contributions.

First, we found that the log n terms in the penalty terms of the description length can be replaced
by 2(1 + ε) log log n to obtain strong consistency, where the derivation is based on the law of iterated
logarithms. We claim that the Hannan and Quinn principle [7] is applicable to this problem.

Second, we constructed an extended version of the score function for finding a Bayesian network
structure with the maximum posterior probability and proved that the decision is strongly consistent
even when continuous variables are present. Thus far, consistency has been obtained only for discrete
variables, and many authors have been seeking consistency when continuous variables are present.

Consistency has been proven in many model selection methods that maximize the posterior
probability or, equivalently, minimize the description length [1]. However, almost all such methods
assume that the variables are either discrete or that the variables obey Gaussian distributions. This paper
proposed an extended version of the MDL/Bayesian principle without assuming such constraints and
proved its strong consistency in a precise manner, which we believe provides a substantial contribution
to the statistics and machine learning communities.
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Appendix: Proof of Theorem 1

Hereafter, we write P (X = x|Z = z) and P (Y = y|Z = z) simply as P (x|z) and P (y|z),
respectively, for x ∈ X , y ∈ Y and z ∈ Z . We find that the empirical mutual information:

In(xn, yn, zn)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

cn(x, y, z) log
cn(x, y, z)cn(z)

cn(x, z)cn(y, z)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

cn(z)P (x|z)P (y|z) · cn(x, y, z)

cn(z)P (x|z)P (y|z)
log

cn(x, y, z)

cn(z)P (x|z)P (y|z)

−
∑
x∈X

∑
y∈Y

∑
z∈Z

cn(z)P (x|z) · cn(x, y, z)

cn(z)P (x|z)
log

cn(x, z)

cn(z)P (x|z)

−
∑
x∈X

∑
y∈Y

∑
z∈Z

cn(z)P (y|z) · cn(x, y, z)

cn(z)P (y|z)
log

cn(y, z)

cn(z)P (y|z)

=
∑
z∈Z

{

∑
x

∑
y

cn(z)P (x|z)P (y|z) · cn(x, y, z)

cn(z)P (x|z)P (y|z)
log

cn(x, y, z)

cn(z)P (x|z)P (y|z)
(11)

−
∑
x

cn(z)P (x|z) · cn(x, z)

cn(z)P (x|z)
log

cn(x, z)

cn(z)P (x|z)
(12)

−
∑
y

cn(z)P (y|z) · cn(y, z)

cn(z)P (y|z)
log

cn(y, z)

cn(z)P (y|z)
(13)

}

is approximated by
∑

z∈Z I(z) with:

I(z) :=
∑
x

∑
y

{cn(x, y, z)− cn(z)P (x|z)P (y|z)}2

2cn(z)P (x|z)P (y|z)

−
∑
x

{cn(x, z)− cn(z)P (x|z)}2

2cn(z)P (x|z)
−
∑
y

{cn(y, z)− cn(z)P (y|z)}2

2cn(z)P (y|z)

where the difference between them is zero with probability one as n → ∞, and (1 + t) log(1 + t) =

t+ t2/2− t3/{6[1 + δ(t)t]2} with 0 < δ(t) < 1 and:

t =
cn(x, y, z)

cn(z)P (x|z)P (y|z)
− 1,

cn(x, z)

cn(z)P (x|z)
− 1,

cn(y, z)

cn(z)P (y|z)
− 1

has been applied for (11), (12) and (13), respectively. Furthermore, we derive:

I(z) =
1

2
trace(tV V )− 1

2
||tuV ||2 − 1

2
||V w||2 , (14)

where V = (Vxy)x∈X ,y∈Y with Vxy =
cn(x, y, z)− cn(z)P (x|z)P (y|z)√

2cn(z)P (x|z)P (y|z)
, and u and v are the column

vectors [
√
P (x|z)]x∈X and [

√
P (y|z)]y∈Y , respectively. Hereafter, we arbitrarily fix z ∈ Z . Let U =
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(u[0], u[1], · · · , u[α − 1]) with u[0] = u and W = (w[0], w[1], · · · , w[β − 1]) with w[0] = w being
eigenvectors ofEα−[

√
P (x|z)P (x′|z)]x,x′∈X andEβ−[

√
P (y|z)P (y′|z)]y,y′∈Y , whereEm is the identity

matrix of dimension m.
Then, tuV w = 0, and for Ũ = (u[1], · · · , u[α− 1]) and W̃ = (w[1], · · · , w[β − 1]), we have:

tUVW =

[
tu
tŨ

]
V
[
w W̃

]
=

[
0 tuV W̃

tŨV w tŨV W̃

]
.

and:

t(tUVW )(tUVW ) =

[
0 t{tŨV w}

t{tuV W̃} t{tŨV W̃}

][
0 tuV W̃

tŨV w tŨV W̃

]

=

[
t{tŨV w} · tŨV w t{tŨV w}tŨV W̃
t{tŨV W̃}tŨV w t{tuV W̃}tuV W̃ + t{tŨV W̃}tŨV W̃

]
.

If we note that U tU = tUU = Eα and W tW = tWW = Eβ , we obtain:

trace(tV V ) = trace(t{tUVW )(tUVW )} = t{V w}V w +t {tuV }tuV + tracet{tŨV W̃ )(tŨV W̃}

and find that (14) becomes:

I(z) =
1

2
trace[t{tŨV W̃}tŨV W̃ ] =

1

2

α−1∑
i=1

β−1∑
j=1

r2ij

with rij := tu[i]V w[j]. Then, we can see:

E[2I(z)] =
∑
x∈X

∑
y∈Y

{1−P (x|z)P (y|z)}−
∑
x∈X

{1−P (x|z)}−
∑
y∈Y

{1−P (y|z)} = (α−1)(β−1) , (15)

and that the (α − 1) × (β − 1) matrix tŨV W̃ consists of mutually independent elements rij with
i = 1, · · · , α− 1 and j = 1, · · · , β − 1: E[rij] = 0, and:

E[rijri′j′ ] =

{
σ2
ij, (i, j) = (i′, j′)

0, otherwise
,

where σ2
ij is the variance of rij and the expectation of r2ij , so that (15) implies:

α−1∑
i=1

β−1∑
j=1

σ2
ij = (α− 1)(β − 1) . (16)

If we define for each x ∈ X and y ∈ Y and for i = 1, · · · , n:

Zi,j,k :=
∑
x∈X

∑
y∈Y

u[i, x]w[y, j]
I(X = xk, Y = yk, Z = zk)− P (x|z)P (y|z)√

P (x|z)P (y|z)σij
,

where u[i] = (u[i, x])x∈X and w[j] = (w[y, j])y∈Y , then we can check E[Zi,j,k] = 0 and V [Zi,j,k] = 1,
where expectation E and variance V are with respect to the examples Xn = xn and Y n = yn, and I(A)

takes one if the event A is true and zero otherwise. We can easily check:
n∑
k=1

Zi,j,k =
√
cn(z)

rij
σij

. (17)
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We consider applying the obtained derivation to Lemma 1. From (17), we obtain:

1 = lim sup
n→∞

√
cn(z) · rij√

2cn(z) log log cn(z) · σij
= lim sup

n→∞

rij

σij
√

2n log log n

which means that (14) is upper bounded by (1+ε)(α−1)(β−1) log log nwith probability one as n→∞
for any ε > 0, from (16). This completes the proof of Theorem 1.
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