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Abstract: In modern industrial processes, it is easier and less expensive to configure alarms
by software settings rather than by wiring, which causes the rapid growth of the number
of alarms. Moreover, because there exist complex interactions, in particular the causal
relationship among different parts in the process, a fault may propagate along propagation
pathways once an abnormal situation occurs, which brings great difficulty to operators to
identify its root cause immediately and to take proper actions correctly. Therefore, causality
detection becomes a very important problem in the context of multivariate alarm analysis and
design. Transfer entropy has become an effective and widely-used method to detect causality
between different continuous process variables in both linear and nonlinear situations in
recent years. However, such conventional methods to detect causality based on transfer
entropy are computationally costly. Alternatively, using binary alarm series can be more
computational-friendly and more direct because alarm data analysis is straightforward for
alarm management in practice. The methodology and implementation issues are discussed in
this paper. Illustrated by several case studies, including both numerical cases and simulated
industrial cases, the proposed method is demonstrated to be suitable for industrial situations
contaminated by noise.
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1. Introduction

Alarms are indications of abnormal situations in process industries, including food, beverages,
chemicals, pharmaceuticals, petroleum, ceramics, base metals, coal, plastics, rubber, textiles, tobacco,
wood and wood products, paper and paper products, etc, where the primary production processes are
either continuous or occur on a batch of materials that is indistinguishable [1]. In former times, due to the
limitations of high cost and low quality of industrial monitoring systems, alarms have been configured via
directly placing sensors to measure the physical quantity that needed to be monitored and transmitting
the measurements to the control panel through cables. This caused the number of alarms at that time
to remain at a low level. However, with the development of monitoring systems, modern plants in
process industries have a multitude of sensors that are recorded and archived by process historians and
monitored by distributed control systems (DCSs), supervisory control and data acquisition (SCADA)
systems or other monitoring systems. Thus, most of the process variables can be configured to have at
least one alarm and, in many cases, more than one. For example, for monitoring a pressure variable,
four alarm tags can be configured, namely high-high, high, low and low-low. As a result, the number of
alarm variables is often quite large, and hence, a large number of alarms are raised during an abnormal
situation. Moreover, there often exist complex interactions between the corresponding process variables
due to the process dynamics and the associated monitoring systems. Once an abnormal situation occurs
at some place in the process, the fault may spread to many other places through interconnections between
variables and process units. Such a situation often leads to alarm floods. In this case, it is difficult for
operators to identify the type of fault or to find its root cause to mitigate the source of the abnormality.
Without proper actions, such a situation may lead to serious and catastrophic events.

For example, in 1994, before an explosion accident happened in a fluid catalytic cracking unit of a
refinery of British Texaco Company, there were 1775 out of 2040 alarm tags set to be “high priority”
in DCS, and 275 alarms occurred in the last ten minutes, which caused operators not to take effective
actions, leading to a major accident [2].

There are different ways to reduce the number of alarms, in particular nuisance alarms. For univariate
methods, filtering, deadband, delay-timer and many other methods can be used [3].

On the other hand, for bivariate or multivariate situations, Folmer et al. [4] summarized several
approaches. Among these approaches, it is an essential method to identify the propagation paths between
variables and, thus, to localize the root cause of the abnormal situation. Yang et al. used signed directed
graphs to identify the process topology and connectivity that help in fault diagnosis and process hazard
assessment [5,6]. Noda et al. [7] and Yang et al. [8] used event correlation analysis to design a
policy to reduce alarms. Using causality information between alarm variables is another approach in
this area. Thereby, the propagation path of the fault can be found, and this will help operators identify
the root cause [9]. This enables operators to take preventative actions immediately. Thus, the detection
of causality between variables becomes important and has received a lot of attention.

The first experimental example of causality detection by analyzing consecutive time series was
demonstrated by Granger [10]. He formalized the causality identification idea in linear regression
models by the following thought: we consider that there exists causality from random variable I to
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J if the variance of the autoregressive prediction error of J can be reduced by additionally considering
the historical data of I .

After that, some more advanced techniques for causality identification have been proposed by
different researchers, such as extended Granger causality [11], nearest neighbor methods [12] and
transfer entropy (TE) [13].

Among these methods, TE, which was proposed by Schreiber in 2000, has been considered a useful
way to describe causality between variables. The major advantage of TE is that it can be used in both
linear and nonlinear situations. What is more, TE is equivalent to Granger causality in the presence
of Gaussian noise [14], which indicates that TE is also consistent with the concept of causality in the
predictive Granger sense. Since its introduction, TE has been successfully applied to industrial data to
identify causal relationships between process variables [15]. With the further development of TE, there
have been many extensions for causality identification. For example, Duan et al. extended the traditional
concept of TE and made it more applicable, especially for multivariate cases [16,17]. Yang et al. [18]
and Duan et al. [19] also summarized these methods for capturing causality in industrial processes.

However, TE has primarily been used for continuous time series, which can describe the whole
characteristic of the process, but is computationally quite burdensome. In the context of alarm
management, causality under abnormal situations is usually of more concern rather than the exact
dynamic relationships under all situations. Therefore, it is unnecessary to take all cases (all situations
and process data) into account, and we would rather just focus on processing data in abnormal situations
(typically processing alarm data). In addition, because some alarm variables themselves are not
generated by continuous variables, such as switch variables (e.g., ON/OFF for a pump) and state
variables, a discrete version of TE is needed. Considering the computational cost and the above issues,
it is reasonable to detect causality between variables using alarm data directly.

Although there are already some discrete extensions of TE (for example, Staniek et al. proposed
symbolic transfer entropy to reduce the computational burden to estimate TE [20]), our purpose is not
the same. The main reason for emphasizing the discrete version of TE is that alarm data are binary
by nature. For analogue alarms, the corresponding process values are compared to the thresholds for
discretization. Thus, it is natural to use such binary alarm data for causality detection.

The main contribution of this paper is a new application of TE to identify causality between
variables by using binary alarm data in general multivariate systems. The proposed method and the
above-mentioned methods are compared in both variable type and their main characteristic, as shown
in Table 1. It can be seen that the types of methods used for the discrete situation are far fewer than
methods for the continuous situation, especially using such binary alarm data, which makes the method
easy to use.

The rest of this paper is organized as follows. In Section 2, the basic definition of transfer entropy
is revisited, and related concepts are also introduced. The TE method based on binary alarm data is
proposed in Section 3. Several simulated case studies are given in Section 4 to show the effectiveness
of the proposed method for detecting the causality between variables, followed by concluding remarks
in Section 5.



Entropy 2015, 17 5871

Table 1. The comparison of the mentioned methods and the proposed method. TE, transfer
entropy.

Method Authors Variable Type Main Characteristic

signed directed graph Yang, Shah and Xiao [5,6] continuous
qualitative model to
detect the cause and
effect relationship

event correlation analysis
Noda, Higuchi,

Takai and Nishitani [7]
continuous

a data mining method
to detect statistical
similarities

Granger causality Granger [10] continuous based on AR models

extended Granger causality
Ancona, Marinazzo
and Stramaglia [11]

continuous
nonlinear extension
of Granger causality

nearest neighbor methods
Bauer, Cox, Caveness,

Downs and Thornhill [12]
discrete

data-driven and operating
on the process measurements
stored in a data historian

transfer entropy Schreiber [13] continuous based on information theory

direct transfer entropy
Duan, Yang,

Chen and Shah [16]
continuous

extension of TE to
detect direct relationship

transfer zero-entropy
Duan, Yang,

Shah and Chen [17]
continuous

avoid estimating high
dimensional pdfs using
0-entropy

symbolic transfer entropy Staniek, Lehnertz [20] discrete
avoid estimating high
dimensional pdfs using
a technique of symbolization

this paper discrete
use natural binary alarm
data for causality detection

2. Concept of Transfer Entropy

In this section, the basic definition of TE is described. In addition, estimation methods and some
related concepts are also presented.

2.1. Basic Definition

Given two continuous random variables I and J , let them be sampled at time instant t and denoted by
it ∈ [imin, imax] and jt ∈ [jmin, jmax] with t = 1, 2,· · · , N , where N is the number of time bins.

Let it+h denote the value of I at time instant t + h, which means h steps in the future from t, and
h is called the prediction horizon. Let i(k)t = [it, it−τ , . . . , it−(k−1)τ ] denote the embedded vectors with
elements being the past values of I; j(l)t = [jt, jt−τ , . . . , jt−(l−1)τ ] the embedded vectors with elements
being the past values of J (thus, k is the embedding dimension of I , and l is the embedding dimension of
J); τ is the time interval, which can allow us to sample the embedded vector; f(it+h, i

(k)
t , j

(l)
t ) the joint

probability density function (pdf) of it+h, i(k)t and j
(l)
t ; f(it+h|i(k)t , j

(l)
t ) the conditional pdf of it+h given
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i
(k)
t and j

(l)
t ; and f(it+h|i(k)t ) the conditional pdf of it+h given i

(k)
t only. The differential TE (TEdiff) from

J to I , for continuous random variables, is estimated as follows:

TEJ→I =

∫
f(it+h, i

(k)
t , j

(l)
t ) log

f(it+h|i(k)t , j
(l)
t )

f(it+h|i(k)t )
dw, (1)

where w denotes the random vector [it+h, i
(k)
t , j

(l)
t ]. If we assume that the elements of w are

w1, w2, . . . , ws, then
∫

(•)dw denotes
∫∞
−∞· · ·

∫∞
−∞ (•)dw1· · · dws. Here, the numerator of the logarithm

expression, which is the conditional pdf of it+h given i
(k)
t and j

(l)
t , represents the prediction result of

the value of I when the historical data of both I and J are known; the denominator of the logarithm
expression, which is the conditional pdf of it+h given i

(k)
t , represents the prediction result of the value

of I , when only the historical data of I itself is known. Thus, the idea of TE is that if there exists
causality from J to I , it will be helpful to predict the value of I using the historical data of J ; then, the
value of the numerator should be greater than the value of the denominator, and the value of the whole
estimation equation should be greater than zero; if there does not exist causality from J to I , the value of
the whole equation should be close to zero. From another point of view, the estimated result of TE can
be considered as the information for the future observation of I obtained by discarding the information
about the future of I obtained from the past values of I alone from the simultaneous observations of both
the past values of I and J .

However, as TEdiff is defined for continuous random variables and, yet in real industrial cases,
sampled time series data are always used to describe continuous random variables, the formula of a
discrete version of TE for quantized sample data, i.e., TEdisc, needs to be used.

2.2. Discrete Version of TE

For continuous random variables I and J , let Ĩ and J̃ denote the quantized I and J , respectively.
Assume that the ranges of I and J , which are denoted as [imin, imax] and [jmin, jmax], are divided into ni
and nj non-overlapping bins, respectively, and let ∆i and ∆j denote the corresponding quantization bin
sizes of I and J , respectively. If a uniform quantization is used, we can have:

∆i =
imax − imin
ni − 1

, (2)

for I as an example. Here, the quantization bin size is related to the range of the variable and the
number of quantization bins. When the range of the variable is given, if we want to obtain a smaller
quantization bin size, the number of quantization bins has to be larger. Then, the TEdiff from J to I can
be approximated by the TEdisc from J̃ to Ĩ , that is:

TEJ̃→Ĩ =
∑

p(̃it+h, ĩ
(k)
t , j̃

(l)
t ) log

p(̃it+h|̃i(k)t , j
(l)
t )

p(̃it+h|̃i(k)t )
, (3)

where the meanings of the symbols in this equation is similar to those in Equation (1).
With some mathematical derivations similar to those in [16], the TEdiff from J to I is almost the

same as the TEdisc from J̃ to Ĩ as the quantization bin sizes of I and J tend to zero, which means that
the TEdisc is an estimator of the TEdiff.



Entropy 2015, 17 5873

For choosing the quantization bin size, there is a tradeoff between the quantization accuracy and
computational burden in the traditional methods. That is, the smaller the bin size chosen, the more
accurate is the quantization and the closer TEdisc is to TEdiff; yet, on the other hand, the computational
burden, especially the summation and the probability estimation parts, will increase significantly with
the smaller bin size, which means larger quantization bin numbers.

In this paper, a binary alarm series is suggested to use to estimate the TEdisc, which means the bin
numbers of I and J are chosen as ni = nj = 2, and thus, bin sizes ∆i and ∆j are equal to the full ranges
of I and J , respectively. In other words, {

∆i = imax − imin
∆j = jmax − jmin

. (4)

In addition, when continuous data are normalized to 0–1 series, this can be seen as the type of
alarm series. The main advantage of choosing the quantization bin sizes in this way is that it can
significantly reduce the computational burden, because in this way, one can avoid the estimation of a
high dimensional pdf.

Overall, binary alarm series are suggested for the following reasons: The first reason is obviously the
computational burden. In [16], the TEdiff is directly used to estimate TE in order to avoid the round-off
error. Mathematical techniques are used to estimate the TEdiff, which express the conditional pdfs by
joint pdfs and, thus, can be obtained by the kernel estimation method. For q-dimensional multivariate
data, the Fukunaga method [21] is used to estimate the joint pdf. As can be seen, the computational
burden is relatively high just because of the kernel estimation of the joint pdfs. If the binary alarm series
are used, the computational burden will be decreased significantly to an acceptable level.

The second reason is that the causality under abnormal situations is often of more concern rather than
the exact dynamic relationships under normal situations in the context of alarm management. Usually,
the information under abnormal situations is still contained in the binary alarm data, although most
information is lost. Thus, taking all of the situations or all of the process data into account is unnecessary,
and the processing of data in abnormal situations (typically only processing alarm data) is our focus.

The last reason is that in industrial processes, not all alarms are generated by quantizing continuous
series. For example, switch variables (e.g., ON/OFF) and state indicators often describe the manual
operations or the sudden changes in some units; they generate digital alarms. Thus, a discrete version of
TE can be applied.

Considering the above issues, the causality between variables can be detected using alarm
data directly.

2.3. Required Assumptions

Since the concept of TE is still employed, the assumptions required here are exactly the same as
those for continuous TE. Two assumptions are required: there should be sufficient relevant data points
to estimate the probability density function of data; the time series used should be stationary in a wide
sense, which requires that all of the dynamical properties of the process cannot change during the whole
sampled data period [22,23].
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The first assumption is rather easy to satisfy, while the second one should be tested before estimating
TE. However, in most cases, the process cannot be directly accessible, and the only information that
can be obtained is from the sampled data. Thus, in order to test the stationarity, the simplest and most
widely-used way is to measure whether the mean, the variance and the auto-correlation of the time series
are time-independent.

3. Transfer Entropy Based on Alarm Data

In this section, a method is proposed to estimate the TE based on alarm data. The brief procedure is
shown in Table 2.

Table 2. The procedure to detect causality between industrial alarm series based on TE.

1 Obtain the original data;
2 Preprocess data and obtain series I , J ;
3 Estimate the TEJI = TE(I, J, k, l);
4 for t = 1:reptime{
5 J ′ = surrogate(J);
6 Estimate the TEt = TE(I, J ′, k, l);
7 }
8 threshold = P95(Fn(TEt));
9 Compare TEJI with threshold

3.1. Alarm Series and Data Collection

(1) Format of the alarm series: As mentioned above, up to now, continuous process data have been
used in most studies to detect causality between variables using TE. However, in this paper, alarm series
or event series are used. Actually, the so-called alarm series used here is a generalized concept, which
may include not only the common alarm series, but also other types of binary series. In such binary
series, there are two possible values at each sampling instant, i.e., zero and one. There are two ways
to present alarms [24]. The first way is just setting the start time of alarms “1”, and the other way is
setting all of the time instants with alarms “1”. As there are numerous false and missed alarms in a real
situation, it is inaccurate to just use the start time. Moreover, when there are many variables with alarms,
it is difficult to say which alarm tags are related. However, the second way converts the alarm sequences
into binary sequences with “0’s” and “1’s” representing normal and abnormal situations, respectively.
Such a method is suitable for the pdf estimation. Therefore, in this report, zero represents no alarm, and
one represents an alarm. Note that the binary series or the alarm series here just simply shows whether
there is an alarm or not, as generated by the DCS system according to some configuration, while it does
not show whether there is a fault or an abnormal situation. A false alarm or a false positive is one where
there is an alarm, but there is no fault, while a missed alarm or a false negative is one where there is a
fault, but an alarm is not raised. The difference can be caused by many reasons, such as noise.



Entropy 2015, 17 5875

(2) Comparison of the alarm series in different areas: Although continuous process data are used in
most of the literature, binary series are also used in different areas. For example, in neuroscience, Ito et
al. used a binary electrical signal series to detect causality [25].

Although these binary series used in different areas are all composed of 0–1 digits, there are different
characteristics of them.

Firstly, because electrical signals in neuroscience are usually used to transmit the instructions from
one nerve cell to another with stimulations, they only exist in a very short time period like spikes.
Thus, the series of electrical binary signals are often very sparse, and people put more emphasis on the
start time of signals; while alarms in industrial processes usually mean the change from the normal
state to an abnormal state of the process; so, they often last for a period of time, and once an abnormal
situation occurs, the alarms will probably be intensive.

On the other hand, electrical signals in neuroscience are usually clean, because they just transmit the
instructions between neurons; while there are often some false alarms and missed alarms in industrial
processes when using the thresholds to generate the alarms due to the existence of noise [26], just as
shown in Figure 1. As a result, false alarms and missed alarms will bring some wrong information into
the alarm data, which in other words will reduce the amount of information that can be obtained from
the data.

Figure 1. False alarms and missed alarms generated by noise (a false alarm at t = 7, a
missed alarm at t = 62).

Since we cannot change the thresholds or use deadband or delay timers to change the alarm series
here, like the methods in process data, some other methods of data preprocessing are needed before
using industrial data for analysis in order to reduce the rates of false alarms and missed alarms.

(3) Collection of the alarm data: The alarm data can be obtained in different ways according to
the different kinds of cases. For stochastically-simulated cases, we can either generate the continuous
process data first and then convert them into binary alarm data with appropriate thresholds or generate
discrete binary series directly by software configuration. Under this situation, abnormal states can be
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set freely as one wishes. For real industrial processes, discrete binary series can be obtained directly
using DCS. In this way, alarms are usually listed in the logs in some specific format, which may include
some key information of the alarms, such as the start time of the alarm, the name of the variable, the
type of the alarm and so on. Thus, log files need to be converted to binary series before using them.
Even more, there may be more complex circumstances in real industrial processes, including noise and
other disturbances. However, this type of binary series can reflect more information in real industrial
processes than in stochastic examples. Thus, the proposed method should be tested with both simulated
cases and real industrial cases to testify its effectiveness.

3.2. Data Preprocessing

As mentioned above, because of the high rates of false alarms and missed alarms caused by noise and
other disturbances, data preprocessing is essential before the estimation of TE.

Filtering is a widely-used and effective way to reduce noise, among which the moving average method
is the most simple and common one. Thus, the moving average method is chosen here. With such data
preprocessing, usually the number of false and missed alarms can be observably reduced, and thus, the
information obtained from the binary alarm series can be improved. The result for Figure 1 after the data
preprocessing is shown in Figure 2.

Figure 2. Data preprocessing to remove false and missed alarms.

Some discussions for data processing are given below:
(1) Interpretation of the preprocessing: The starting point to use the moving average method is quite

natural. Generally speaking, the state of a real industrial process will last for quite a long time, no matter
if in the normal state or the abnormal state. For that reason, those single alarms with no other alarms
before or after them over a long period of time are more likely to be considered as false alarms caused by
noise, which is different from those similar single signals or “spikes” in neuroscience, while alarmless
time bins surrounded by alarms are more likely to be considered as missed alarms. Furthermore, these
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false alarms or missed alarms can be seen as originating from high-frequency variables, and with the
moving average method, they can be reduced significantly.

(2) Determination of the parameters: The window width u should be determined in the algorithm.
However, u is influenced by several factors. The first one is the property of the industrial process itself,
which means the structure and the operation mode of the process, such as whether it is a fast process or
a slow process. If it is a slow process, which means the measured value changes slowly, both the normal
state and the abnormal state will last for a longer time, and the influence of the noise is smaller, so u can
be set to a larger value to improve the accuracy. If it is a fast process, u should be set small. The second
factor is the sampling interval. If the interval is large, u should be set small in order not to lose more
information of the process, otherwise u can be set large. Furthermore, the total length of the time series
should be considered, and the ISA (The International Society of Automation) 18.2 standard [27], in
which the limit of an alarm flood is 10 alarms per 10 min, should be met. Thus, the determination of u
is quite complex.

Here, an experiment is made to show the impact of u when using the moving average method.
In Figure 3a, x is a continuous random variable, and there are two abnormal situations during the
whole time period. When it is converted into binary series using different thresholds, the false positive
rate (FPR) and the true positive rate (TPR) in the result will be different. Thus, a receiver operating
characteristic (ROC) curve with FPR as the X axis and TPR as the Y axis can be drawn. Such a binary
series is just the original data we need. Then, the moving average method can be used to preprocess the
original data. When different u values are chosen, different results and, thus, different ROC curves can
be obtained, as shown in Figure 3b. It can be seen that the curves with small u are closer to the upper-left
corner, which means the effect of the filtering is better. The area under the curve (AUC) criterion for
u = [2, 5, 10, 15, 30, 50] in Figure 3b is [0.9133, 0.8633, 0.8912, 0.8148, 0.7984, 0.7955], respectively.
Thus a u smaller than 10 might be a better choice.

(a) (b)

Figure 3. The impact of u of the moving average filters. (a) A random time series x; (b) the
ROC curve of x by using moving average filters with different u.
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There is one point worth noting: in order to meet the stationarity assumption, the series are in steady
states, rather than in transitional states, which means that the transitional period from the normal state to
abnormal state or in the opposite direction should be chosen.

3.3. Estimation of TE

After finishing the data preprocessing, the validated data are obtained. Then, the TE can be estimated,
and the causality between variables can be detected using these preprocessed binary series. Here, the
preprocessed series of variables I and J is taken as an example.

(1) Estimation of first-order TE: For each pair of variables I and J , to estimate TE from J to I , there
are two main steps. The first step is to estimate the pdfs in Equation (3). The second step is to compute
the TE with the pdfs estimated by using Equation (3).

It is easy to see that the first step is more important and more computationally expensive. For this
reason, binary series are used instead of continuous process data to reduce the computational cost. As the
traditional pdf can be expressed with joint pdfs, only the joint pdf needs to be estimated here. As binary
series are used, the number of possible values of p(̃it+h, ĩ

(k)
t , j̃

(l)
t ) is reduced from a huge amount to merely

2l+k+1 possible patterns. For first-order TE, i.e., k = l = 1, there are only 23 = 8 possible patterns.
Thus, it is unnecessary to use a kernel estimation method or other complex mathematical methods to
estimate the high dimensional joint pdfs in the equation. Instead, the numbers of each possible patterns
of the joint pdf need to be counted.

In order to estimate the TE between two variables, the most computationally-costly part is to estimate
the joint pdf, which is our first step.

Assume that the number of time bins is N ; then, the computational cost to estimate the joint pdf can
be seen as growing linearly inN . Even more, the computational cost of this part is almost the majority of
all of the cost to estimate TE. Thus, the total computational cost to estimate TE for each pair of variables
grows linearly in N , i.e., O(N).

(2) Higher-order TE estimation: For higher orders of TE estimation, the method is a generalization of
the first-order method.

The complexity of higher-order TE is also very similar. Except for the number of time bins, the total
order r(= l+k+1) is also an important factor to affect the computational cost. As there are r = l+k+1

series to be considered and 2r possible patterns in total, r bits need to be examined, which will make a
linear complexity in Nr. After all frequencies of every possible pattern and the corresponding joint pdfs
are obtained, they will be summed up, leading to a complexity of 2r. Thus, the total computational cost
of the higher-order TE estimation for each pair of variables is O(Nr + 2r).

(3) Determination of the parameters of TE: When TE is estimated to detect causality between
variables, there are four parameters to be determined, namely h, τ , k, l, as shown in Section 2. As
for h and τ , h = τ ≤ 4 if the process dynamics are unknown is recommended in [15]. However, in fact,
correlation properties can be used to estimate τ [28]. Anyway, in this manuscript, small h and τ are still
used, as the cases used here are all of a small time delay. Thus, the rest of the work is just to determine
the embedding dimensions k and l.
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First, the embedding dimension k, which corresponds to the window size of the historical data of
I itself used to predict the future I , should be determined. Here, the conditional Shannon entropy is
used, i.e.,

H (̃it+h|̃i(k)t ) = −
∑

p(̃it+h, ĩ
(k)
t ) log p(̃it+h|̃i(k)t ), (5)

which quantifies the amount of information obtained from historical data of I itself to predict future I
with the current embedding dimension. Here, p(̃it+h, ĩ

(k)
t ) denotes the joint probability mass function

(pmf) of ĩt+h and ĩ
(k)
t ; p(̃it+h|̃i(k)t ) denotes the conditional pmf of ĩt+h given ĩ

(k)
t . Thus, the change rate

of H (̃it+h|̃i(k)t ) shows how much more information can be obtained at the price of the increase of the
embedding dimension, which will increase the computational cost. Because the least computational
cost possible is what is wanted to be used here, it is a good strategy for the determination of k, which
can be determined as the minimum non-negative integer above which the change rate of H (̃it+h|̃i(k)t )

decreases significantly.
Then, the embedding dimension l, which shows the window size of the historical data of J used to

predict the future I , can be determined as the minimum positive integer above which the change rate of
the TE from J to I decreases significantly.

3.4. Estimation of the Significance Level

The idea of TE is to detect whether the historical data of J are helpful to predict the value of I .
If it is helpful, we can say that there exists causality from J to I , and thus, the TE result estimated by
Equation (3) should be larger than zero; otherwise, the result should be zero. However, in real industrial
processes, generally speaking, the estimated result of TE will not be exactly zero, because of the impact
of noise or other disturbance, even if data preprocessing has already been made and such an impact
has been reduced. For this reason, a threshold is needed to identify when the conclusion can be drawn
that there is causality from J to I or, in other words, the significance level needs to be confirmed.
In order to obtain such a threshold, Kantz and Schreiber suggested using a Monte Carlo method with
surrogate data [29]. Monte Carlo methods solve the problem by generating appropriate random data with
some desired property. The problem can then be considered as accepting or rejecting a null hypothesis.
The null hypothesis here is that there exists no causality from J to I , implying that the TE is statistically
indistinguishable from zero. On the contrary, if a large value for the TE result is estimated, the null
hypothesis should be rejected.

When this method is used, the number of alarms in the time series for the variable J is kept while
the sequence and occurrence times of these alarms are changed randomly, which generates a surrogate
series J ′. Then, TE is estimated using I and J ′ with the procedure described in Sections 3.2 and 3.3.
Since the locations of alarms in J ′ are randomly generated, a possibly existing causality between series
is removed, and the distribution of the estimated values of TE based on the surrogates can be used to
estimate the significance threshold. In the experiment, we generate nsuch surrogate alarm series and
obtain a series of TE values TE1, TE2, · · · , TEn.
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As the data obtained may not follow a normal distribution, it is recommended to take the 95% quantile
of the empirical distribution of the series of TE values as the significance threshold.

SJI = P95(Fn(TE1, TE2, · · · , TEn)), (6)

where P95 means the 95% quantile and Fn(x) is the empirical distribution of the obtained TE values
from the experiment.

When the estimated TE value exceeds this threshold, there exists significant causality from J to I .
However, the method used here may sometimes bring some new problems, especially when there

are series of correlated events. In such circumstances, the shuffling procedure would destroy the
relationships. Thus, it could be better to shuffle the events block-wise instead of individually.

4. Case Studies

In this section, two stochastic examples and one simulated industrial case are studied to show the
effectiveness of the proposed method. In the stochastic examples, the causality between variables is
expressed by simple mathematical equations. In the simulated industrial case, a benchmark simulation
platform, the Tennessee-Eastman Process (TEP), is used.

4.1. Stochastic Processes

Example 1. The first case is described by the following equations:

{
Yk+1 = 0.8Xk + 0.2Yk + v1k,

Zk+1 = 0.6Yk + v2k,
(7)

where X , Y and Z are three continuous random variables, v1k, v2k ∼ N(0, 0.12), Xk ∼ N(0, 12) in the
normal situation and, then, a constant value of four added to X in the time intervals [501, 1000] and
[1501, 2250] to realize abnormality; and then, Y and Z can be calculated according to Equation (7).

We convert these variables into binary alarm series with upper limits of normal states as thresholds,
which are 2, 3, 2 for X , Y and Z, respectively, as shown in Figure 4.

It is known from Equation (7) that there exists direct causality from X to Y and Y to Z and indirect
causality from X to Z. Yet, there is no causality from Y to X , Z to Y or Z to X .

To estimate the TE between x, y and z, the four parameters in Equation (3) need to be determined
beforehand. Here, the TE from x to y is taken as an example. As mentioned above, h = τ = 1 is
taken first. Then, H(yt+1|y(k)

t ) and its change rate with k = 0, 1,· · · , 10 are estimated to determine
the embedding dimension of y, which is shown in Figure 5a. It can be seen that the change rate of
H(yt+1|y(k)

t ) decreases significantly after k = 1. Thus, k = 1 is chosen. Finally, the TE from x to y with
k = 1 and l = 1,· · · , 10 and its change rate are estimated, as shown in Figure 5b. It can be seen that the
change rate increases most significantly when l = 1. Thus, l = 1 is chosen. With the same procedure,
the parameters in the remaining pairs can be determined.
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Figure 4. Measured values of X , Y , Z and the corresponding alarm series based on
thresholds represented by green lines.

(a) (b)

Figure 5. Selection of the embedding dimension of y and x for Example 1. (a) Selection of
the embedding dimension of y; (b) selection of the embedding dimension of x for TEx→y.

If the TE result is estimated using the original alarm series, the result in the upper part of Table 3 is
obtained. Here, the numbers in brackets are the corresponding significance thresholds, and the numbers
with underscores mean that the result is greater than the corresponding threshold; the conclusion can be
drawn that there exists significant causality.
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Table 3. Estimated TE values and the corresponding thresholds without and with
preprocessing, respectively, for Example 1.

TErow→col X Y Z

X N/A 0.0088(0.0005) 0.0082(0.0006)
Y 0.0979(0.0008) N/A 0.0225(0.0007)
Z 0.0934(0.0004) 0.0163(0.0014) N/A

X N/A 0.0134(0.0006) 0.0117(0.0007)
Y 0.0004(0.0007) N/A 0.0127(0.0007)
Z 0.0007(0.0015) 0.0006(0.0007) N/A

It can be seen that the results in the upper part of Table 3 do not fit Equation (7) very well. Now, we
preprocess the alarm data with the window width of five first. The result is shown in the lower part of
Table 3 and indicates the causality from X to Y , Y to Z and X to Z, which fits Equation (7) well.

Example 2. The second example is described by the following nonlinear equations:{
Zk+1 = 1− 2|0.5− (0.8Xk + 0.4

√
Zk)|+ v1k,

Yk+1 = 5(Zk + 7.2)2 + 10
√
|Xk|+ v2k,

(8)

where X , Y and Z are three continuous random variables, X follows a uniform distribution on the
interval (4,5), i.e., Xk ∼ U(4, 5), and v1k, v2k ∼ N(0, 0.12). X is abnormal in two periods of time, and
Y and Z can be calculated.

With the same procedure as in Example 1, the result shown in Table 4 can be obtained.

Table 4. Estimated TE values and the corresponding thresholds for Example 2.

TErow→col X Y Z

X N/A 0.2926(0.0009) 0.0923(0.0005)
Y 0.0015(0.0014) N/A 0.0487(0.0004)
Z 0.0006(0.0005) 0.3163(0.0006) N/A

It can be seen that, according to the result, there is only one falsely-detected causality from Y to Z.
Except for this, the results fit Equation (8) well.

4.2. Simulated Industrial Case

The benchmark Tennessee-Eastman Process (TEP) [30], which is proposed by Downs and Vogel as
a simulation for continuous industrial chemical processes with two simultaneous gas-liquid exothermic
reactions and two byproduct reactions, is used to further test the effectiveness of the method. Here, a
TEP model built by MATLAB Simulink with the decentralized control method proposed by Ricker is
used [31]. The typical flow chart of TEP can be seen in Figure 6. Because the whole TEP is too large,
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six typical variables are chosen, and their cause and effect relationships are tested using the proposed
method. The chosen variables represent flow rates and can be seen as highlighted circles in Figure 6.

All estimated TE values between each pair of variables above are shown in Table 5. According to the
obtained results, a schematic illustration is shown in Figure 7. Here, the thin arrows show that there is an
estimated cause and effect relationship between these two variables. The bold arrows show that there is
a true cause-effect relationship between the two variables based on process connectivity. The thin arrows
with solid lines mean that the estimated result is consistent with the real situation, and those with broken
lines mean that the estimated result is wrong. However, there is causality between variables through
several mediating variables, which is still shown with broken arrows, such as the one from Stream 1 to
Stream 11 through Streams 6 and 10.

Figure 6. Flow chart of Tennessee-Eastman Process (TEP).

Table 5. Estimated TE values and the corresponding thresholds for the simulated industrial
case.

TErow→col Stream 1 Stream 8 Stream 6 Stream 9 Stream 10 Stream 11

Stream 1 N/A 0.0010(0.0001) 0.0014(0.0001) 0.0010(0.0008) 0.0003(0.0001) 0.0055(0.0001)
Stream 8 0.0005(0.0002) N/A 0.0087(0.0002) 0.0012(0.0012) 0.0085(0.0002) 0.0094(0.0002)
Stream 6 0.0005(0.0002) 0.0075(0.0001) N/A 0.0003(0.0003) 0.0082(0.0003) 0.0098(0.0003)
Stream 9 0.0004(0.0002) 0.0031(0.0002) 0.0020(0.0003) N/A 0.0144(0.0001) 0.0004(0.0002)
Stream 10 0.0004(0.0003) 0.0022(0.0014) 0.0015(0.0009) 0.0005(0.0002) N/A 0.0013(0.0003)
Stream 11 0.0001(0.0004) 0.0008(0.0003) 0.0008(0.0003) 0.0001(0.0002) 0.0030(0.0010) N/A
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It can be seen from Figure 7 that most arrows in the figure point at the right direction. For a more
detailed statistics, there are 30 pairs of variables, and only four of the inferred relationships are incorrect
(from Stream 1 to Stream 8, from Stream 8 to Stream 10, from Stream 10 to Stream 9 and from Stream
9 to Stream 10). Thus, the true rate of the result is 86.7%, which is quite satisfactory.

Figure 7. Schematic illustration obtained from the estimated results. Bold arrows show
that there is a true cause-effect relationship between the two variables based on process
connectivity. Thin arrows with solid lines mean that the estimated result is consistent with
the real situation, and those with broken lines mean that the estimated result is wrong.

The FPR and the TPR of these variables are also obtained, as shown in Table 6. It can be seen from
Table 6 that the FPR and the TPR values show that our result is quite reasonable.

Table 6. The FPR and the TPR of the variables for the simulated industrial case.

% Stream 1 Stream 8 Stream 6 Stream 9 Stream 10 Stream 11

FPR 0.03 0.44 0.45 1.95 0.81 1.13
TPR 99.77 96.95 97.95 99.76 81.01 45.92

5. Concluding Remarks

Although the TE technique using continuous data has been widely used, the application to discrete
time series is in its infancy. However, for the reasons mentioned in the Introduction, the application of
discrete time series should receive more attention. The method proposed in this paper is just a starting
point for studying the application of TE to discrete time series, and there will likely be more useful
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methods in the future. In this paper, the TE method is applied to detect the causality between variables
using binary alarm data and to obtain some useful results. Such a cause and effect relationship can be
used to configure some new alarm variables that can better reflect the states of the process by combining
the old ones in order to reduce the number of alarms and to provide more accurate information.

The most important point is that, even though most information has been removed when converting
continuous process data to binary alarm series, there is still useful remaining information. This part of
information can be used more effectively in the future.

Because the estimation of TE based on binary series is quite computational-friendly and the alarm
series directly faces alarm management applications, the research and application in this area have
reasonable significance.
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