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Abstract:

 The asymptotic procedure proposed allows to derive closed hydrodynamical equations from the kinetic equations of carriers and phonons (treated as a partecipating species) in a photon background. The direct generation-recombination processes are accounted for. The fluid-dynamical equations constructed for the chemical potentials of carriers, temperature, and drift velocity, are related to the extended thermodynamical (ET) ones for the chemical potentials of carriers, temperature, and drift velocity. In the drift-diffusion approximation the constitutive laws are derived and the Onsager relation recovered.
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1. Introduction

In bipolar devices an interacting population of positively charged carriers (holes) must be taken into account, besides electrons and phonons. The hole-phonon interactions, similarly to electron-phonon, are emission/absobption phenomena.

Several generation-recombination (GR) events occur in semiconductors. In the presence of a photon background the most important ones are the radiative GR events. In the direct GR events a photon (pt) interact with a valence band electron and a couple electron-hole (e-h)is created:



e+h⇌pt








If the intensity of the photon field is low we must consider the Auger effect [1], which consists of two different processes and their inverse


	(a)

	electron capture: an electron fills an hole. The resulting energy is absorbed by another electron , and vice versa



e+e+h⇌e*,








where * means “more energetic”.



	(b)

	hole capture: an hole combine with an electron. The resulting energy is absorbed by another hole, and vice versa



h+h+e⇌h*












We start with the Bloch-Boltzmann-Peierls coupled kinetic equations for the distribution functions of carriers and phonons. A small parameter ϵ is introduced to account for the umklapp processes and both the interaction kernels and the distribution functions are expanded with respect to ϵ. The lowest order equations show that the drifted maxwellian approximation is justified.

A hydrodynamical model, whose equations are similar to the ET ones [2] , is then constructed for the temperature T and the drift velocity [image: there is no content] of the system, in addition to the chemical potentials μe,μh of electrons and holes. Here such a model is not based on the Maximum Entropy Principle, like in ET, but strictly on kinetic theory.

The calculation of the source terms due to GR events takes advantage from the smallness of the GR collision frequencies

In the drift-diffusion approximation the constitutive laws are derived and the Onsager symmetry relationships verified.

We stress that in the present model


	(1)

	The displaced Maxwellians approximation is not an ad hoc assumption but is justified by the expansion we apply



	(2)

	Phonons are treated as a partecipating species , which brings energy and momentum



	(3)

	The correct Phonon-phonon, carrier-phonon, and GR interaction kernels are utilized: we avoid the use of the relaxation time approximation.





The most qualifying point is (2). In fact, the usual assumption that the phonon field can be treated as a fixed background is dropped here, since “any thermal gradient give rise to transport of heat by the phonons, whilst an electric current, thought carried by electrons, cannot fail to transfer some of its momentum to the lattice vibrations, and drag them along with it” [3]. The present model can be seen as a generalization of a previous one [4] (with generation-recombination, more mathematical oriented), by means of the explicit treatment of phonons.



2. Kinetic Equations

Consider three interacting populations: electrons (e), holes (h), and phonons (pn). Moreover a background of photons (pt) is present. Let [image: there is no content] be the distribution function of phonons [quasi-momentum [image: there is no content], energy [image: there is no content]([image: there is no content])] of type g (i.e., branch g of the phonon spectrum) and [image: there is no content] the distribution function of carriers [image: there is no content] (quasi-momentum [image: there is no content], energy [image: there is no content]). The kinetic equations for carriers and phonons read



[image: there is no content]








where


Dα=∂∂t+vα·∂∂x+λαeE·∂∂[image: there is no content],α=e,h,λα=-1,1Dpng=∂∂t+upng·∂∂x








with


vα=∂[image: there is no content]∂[image: there is no content],upng=∂[image: there is no content]∂[image: there is no content].








Observe that, being [image: there is no content](-[image: there is no content])=[image: there is no content]([image: there is no content]) and [image: there is no content](-[image: there is no content])=[image: there is no content]([image: there is no content]), we have vα(-[image: there is no content])=-vα([image: there is no content]) and upng(-[image: there is no content])=-upng([image: there is no content]).
At the right hand sides of the equations for phonons we have



(∂Npn/∂t)pnpn=∫[(1/2)∑g1g2wpnpn([image: there is no content]1,[image: there is no content]2→[image: there is no content])(-[image: there is no content](1+Npng1)(1+Npng2)+(1+[image: there is no content])Npng1Npng2)+∑g1g3wpnpn([image: there is no content],[image: there is no content]1→[image: there is no content]3)(-(1+[image: there is no content])(1+Npng1)Npng3+[image: there is no content]Npng1(1+Npng3)]d[image: there is no content]18π3,








where


[image: there is no content]2=[image: there is no content]-[image: there is no content]1+[image: there is no content]([image: there is no content]1,[image: there is no content]2→[image: there is no content]),[image: there is no content]3=[image: there is no content]+[image: there is no content]1+[image: there is no content]([image: there is no content],[image: there is no content]1→[image: there is no content]3)








([image: there is no content] is an appropriate vector belonging to the reciprocal lattice), which account for three-phonon processes:


(g,[image: there is no content])⇌(g1,[image: there is no content]1)+(g2,[image: there is no content]2),(g3,[image: there is no content]3)⇌(g,[image: there is no content])+(g1,[image: there is no content]1).








Moreover


(∂[image: there is no content]/∂t)pnα=2∑α∫wpnα([image: there is no content]→[image: there is no content]′,[image: there is no content])([image: there is no content](1-nα′)(1+[image: there is no content])-(1-[image: there is no content])nα′[image: there is no content])d[image: there is no content]γ8π3,








where [image: there is no content]′=[image: there is no content]-[image: there is no content]+[image: there is no content]([image: there is no content]→[image: there is no content]′,[image: there is no content]), is the difference between the number of phonons [image: there is no content] emitted by electrons with any quasimomenta [image: there is no content] and the number of phonons absorbed by electrons with any [image: there is no content]′, where [image: there is no content] is a vector of the reciprocal lattice appropriate to the present interaction.
For carriers we have



(∂[image: there is no content]/∂t)αpn=∑g∫wαpn([image: there is no content]′,[image: there is no content]→[image: there is no content])(nα′(1-[image: there is no content])[image: there is no content]-(1-nα′)[image: there is no content](1+[image: there is no content]))+wαpn([image: there is no content]′′→[image: there is no content],[image: there is no content])(nα′′(1-[image: there is no content])(1+[image: there is no content])-[image: there is no content](1-nα′′)[image: there is no content])]d[image: there is no content]8π3,








where


[image: there is no content]′=[image: there is no content]-[image: there is no content]+[image: there is no content]([image: there is no content]′,[image: there is no content]→[image: there is no content]),[image: there is no content]″=[image: there is no content]+[image: there is no content]+[image: there is no content]([image: there is no content]″→[image: there is no content],[image: there is no content]).








The first term corresponds to to processes with emission of a phonon having quasimomentum [image: there is no content] by an electron having a given quasimomentum [image: there is no content] and reverse processes. The second term corresponds to processes with absorption of a phonon by an electron with quasimomentum [image: there is no content] and reverse processes.
The w’s are transition probabilities which account for energy conservation and satisfy the following symmetry relations:



wpne([image: there is no content]→[image: there is no content]′,[image: there is no content])=wepn([image: there is no content]→[image: there is no content]′,[image: there is no content])=wepn([image: there is no content]′,[image: there is no content]→[image: there is no content]).








Consider now the carrier-phonon system in contact with a photon medium. Let [image: there is no content] be a Planck’s distribution function at the temperature [image: there is no content]



[image: there is no content]=1exp(ωpt/Tpt)-1,








where [image: there is no content] (c is the speed of light). The collision integrals for the GR interactions are given by


∂[image: there is no content]∂tαγ=2∫wαγ([image: there is no content]α,[image: there is no content]γ→[image: there is no content]pt)[-nγ[image: there is no content](1+[image: there is no content])+(1-nγ)(1-[image: there is no content])[image: there is no content]]d[image: there is no content]γ8π3,








where [image: there is no content].
The transition probabilities account for energy conservation and satisfy the following symmetry relations:



weh([image: there is no content]e,[image: there is no content]h→[image: there is no content]pt)=whe([image: there is no content]e,[image: there is no content]h→[image: there is no content]pt)








The Auger GR contributions can be written [1] as



(∂fe/∂t)A=∫∫∫GeA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])d[image: there is no content]d[image: there is no content]1d[image: there is no content]2-2∫∫∫GeA([image: there is no content],[image: there is no content],[image: there is no content]2→[image: there is no content]1)d[image: there is no content]d[image: there is no content]1d[image: there is no content]2-∫∫∫GhA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])d[image: there is no content]d[image: there is no content]1d[image: there is no content]2,(∂fh/∂t)A=∫∫∫GhA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])d[image: there is no content]d[image: there is no content]1d[image: there is no content]2-2∫∫∫GhA([image: there is no content],[image: there is no content],[image: there is no content]2→[image: there is no content]1)d[image: there is no content]d[image: there is no content]1d[image: there is no content]2-∫∫∫GeA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])d[image: there is no content]d[image: there is no content]1d[image: there is no content]2,








where


GeA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])(fh([image: there is no content])fe([image: there is no content]1)fe([image: there is no content]2)(1-fe([image: there is no content]))-(1-fh([image: there is no content]))(1-fe([image: there is no content]2)(1-fe([image: there is no content]1)fe([image: there is no content]))GhA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])(fe([image: there is no content])fh([image: there is no content]1)fh([image: there is no content]2)(1-fh([image: there is no content]))-(1-fe([image: there is no content]))(1-fh([image: there is no content]1))(1-fh([image: there is no content]2)fh([image: there is no content])),








where [image: there is no content] and [image: there is no content] are the Waldmann kernels of Auger processes, for electrons and holes, respectively. We consider now a system, exact but not closed, of four balance equations, to be utilized later. By projecting the equation for particles α over 1 we have :


[image: there is no content]








where the carrier number density [image: there is no content] and the electric currents [image: there is no content] are given by


[image: there is no content]=2∫[image: there is no content]d[image: there is no content]8π3,[image: there is no content]=2λαe∫vα[image: there is no content]d[image: there is no content]8π3.








Moreover [image: there is no content], where we separated the radiative (R) and Auger (A) effects. By projecting the equations for particles α over 2[image: there is no content] and the phonon ones on [image: there is no content], summation gives the following balance equation for momentum:


∂P∂t+∇·IFP=-eE(Ne-Nh)+2∑α∫∂[image: there is no content]∂tαpn[image: there is no content]d[image: there is no content]8π3+∑g∫[∂[image: there is no content]∂tpnpn+∑α∫∂[image: there is no content]∂tpnα][image: there is no content]d[image: there is no content]8π3+SGR,








where


P=2∑α∫[image: there is no content][image: there is no content]d[image: there is no content]8π3+∑g∫[image: there is no content][image: there is no content]d[image: there is no content]8π3IFP=2∑α∫[image: there is no content]vα⊗[image: there is no content]d[image: there is no content]8π3+∑g∫[image: there is no content]upng⊗[image: there is no content]d[image: there is no content]8π3.








Moreover [image: there is no content]
Finally, by projecting the equations for particles α over 2[image: there is no content] and the phonon ones over [image: there is no content], summation gives the following balance equation for energy :



[image: there is no content]








where the energy density W and the energy flux [image: there is no content] are given by


W=2∑α∫[image: there is no content][image: there is no content]d[image: there is no content]8π3+∑g∫[image: there is no content][image: there is no content]d[image: there is no content]8π3








and


[image: there is no content]=2∑α∫vα[image: there is no content][image: there is no content]d[image: there is no content]8π3+∑g∫upng[image: there is no content][image: there is no content]d[image: there is no content]8π3,








Moreover [image: there is no content]
The source terms QR0,QR1,SR due to radiative GR events are given by



QRℓ=4∫∫weh([image: there is no content]e,[image: there is no content]h→[image: there is no content]pt)][-nhne(1+[image: there is no content])+(1-nh)(1-ne)[image: there is no content]][Ee([image: there is no content]e)+Eh([image: there is no content]h)]ℓd[image: there is no content]ed[image: there is no content]h64π6SR=4∫∫weh([image: there is no content]e,[image: there is no content]h→[image: there is no content]pt)][-nhne(1+[image: there is no content])+(1-nh)(1-ne)[image: there is no content]]([image: there is no content]e+[image: there is no content]h)d[image: there is no content]ed[image: there is no content]h64π6.








Moreover, the contribution of Auger effect reads


[image: there is no content]








where


QℓA=∫(∂fe/∂t)A(Ee+Eh)ℓd[image: there is no content]e,










SAℓ=∫(∂fe/∂t)A([image: there is no content]e+[image: there is no content]h)d[image: there is no content]e,










3. Asymptotic Expansion and Hydrodynamical Equations

By following ref. [5], we expand both the interaction kernels and the distribution function with respect to a small parameter ϵ which accounts for umklapp (U) processes (which do not conserve momentum) in addition to normal (N) processes (which conserve momentum).

We start with carriers (the extension to phonons is trivial). The singular expansion for [image: there is no content] reads



[image: there is no content]=(1/ϵ)wαpnN+wαpnU.








The sought expansions for [image: there is no content] and [image: there is no content] read


[image: there is no content]=[image: there is no content]+ϵnαU,[image: there is no content]=NptgN+ϵNpngU.








According to [3], at low temperatures ϵ decreases exponentially as [image: there is no content], where T is a characteristic temperature of the system, [image: there is no content] is the Debye temperature, and [image: there is no content] is of the order of unity. Therefore we can say that the present expansion is valid for T<<[image: there is no content].

We can write now



∂[image: there is no content]∂tαpn=∂[image: there is no content]∂tαpnN+ϵ∂[image: there is no content]∂tαpnU








where


∂[image: there is no content]∂tαpnN=(1/ϵ)∂[image: there is no content]∂tαpnNN+∂ne∂tαpnNU










∂[image: there is no content]∂tαpnU=(1/ϵ)∂[image: there is no content]∂tαpnUN+∂ne∂tαpnUU








By collecting all these terms we have


Dα[image: there is no content]-∂[image: there is no content]∂tGRN=(1/ϵ)∂[image: there is no content]∂tαpnNN+∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN,








where we neglected the terms of order [image: there is no content].
At the orders [image: there is no content] and [image: there is no content] we get



∂[image: there is no content]∂tαpnNN=0Dα[image: there is no content]-∂[image: there is no content]∂tGRN=∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN.








Analogously, for phonons


∂[image: there is no content]∂tpnpnNN+∑α∂[image: there is no content]∂tpnαNN=0DpngNpngN=∑α∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN+∂[image: there is no content]∂tpnpnNU.








By taking into account momentum (it is a [image: there is no content] process) and energy conservation, the equations of order [image: there is no content] are solved (see Appendix) by


[image: there is no content]=F[([image: there is no content]-[image: there is no content]·[image: there is no content]-μα)/T],NpngN=B[([image: there is no content]-[image: there is no content]·[image: there is no content])/T],








where


F(ζ)=1eζ+1,B(ζ)=1eζ-1,








that is the drifted Fermi-Dirac (FD) and Bose-Einstein (BE) distribution functions.
The meaning of [image: there is no content] is simple. Let [image: there is no content] the most probable velocity of carriers α, given by



∂∂[image: there is no content]([image: there is no content]-[image: there is no content]·[image: there is no content])=0.








It is easily seen that [image: there is no content]=[image: there is no content]. Analogously, for phonons, u^png=[image: there is no content].

The distribution functions are usually expanded as follows



[image: there is no content]=F[([image: there is no content]-μα)/T]-β[image: there is no content]·[image: there is no content]F′[([image: there is no content]-μα)/T]=nα0+nα1NpngN=B([image: there is no content]/T)-β[image: there is no content]·[image: there is no content]B′([image: there is no content]/T)=Ng0+Ng1,








where


F′(ζ)=-F2(ζ)eζ,B′(ζ)=-B2(ζ)eζ.








This simplification is valid when the drift energy is small compared to thermal energy. Under this assumption, after some calculations we find


(∂[image: there is no content]/∂t)ppNU=β[image: there is no content]·{∫[(1/2)∑g1g2(1+Npng0)Npng0Npng20wpnpnU([image: there is no content]1,[image: there is no content]2→[image: there is no content])([image: there is no content]2+[image: there is no content]1-[image: there is no content])(1)+∑g1g3(1+Npng30)Npng0Npng10wpnpnU([image: there is no content],[image: there is no content]1→[image: there is no content]3)([image: there is no content]3-[image: there is no content]1-[image: there is no content])]d[image: there is no content]18π3},










(∂[image: there is no content]/∂t)pnαNU=β[image: there is no content]·{2∫(1-nα′0)nα0(1+Npng10)wpnαU([image: there is no content]→[image: there is no content]′,[image: there is no content])([image: there is no content]-[image: there is no content]-[image: there is no content]′)d[image: there is no content]8π3}



(2)




and


(∂[image: there is no content]/∂t)αpnNU=β[image: there is no content]·∑g{∫(1-n[image: there is no content]0)nα′0Npng0wαpnU([image: there is no content]′,[image: there is no content]→[image: there is no content])([image: there is no content]+[image: there is no content]′-[image: there is no content])(3)+(1-nα0)nα′0(1+Npng0)wαpnU([image: there is no content]′→[image: there is no content],[image: there is no content])([image: there is no content]′-[image: there is no content]-[image: there is no content])}d[image: there is no content]8π3.








Starting from the equations of order [image: there is no content], a hydrodynamical model can be constructed now, related to ET one [2], for the temperature T and the drift velocity [image: there is no content] of the system, in addition to the chemical potentials μe,μh.

By projecting the equation for carrier α over 1, the balance equation for particles α reads



∂∂t∫[image: there is no content]d[image: there is no content]+∇·∫vα[image: there is no content]d[image: there is no content]=8π3Q0NGR.








Hereinafter the subscript N in the source terms means that in their definition we utilize [image: there is no content] for the integration.
By projecting the equations for carriers over 2[image: there is no content] and the phonon ones on [image: there is no content], summation gives the following balance equation for the total momentum:



∂∂t2∫∑αnα1[image: there is no content]d[image: there is no content]+∫∑gNg1[image: there is no content]d[image: there is no content]+∇·2∫∑αnα0vα⊗[image: there is no content]d[image: there is no content]+∫∑gNg0ug⊗[image: there is no content]d[image: there is no content]=2E∑αλα∫nα0d[image: there is no content]+2∑α∫∂[image: there is no content]∂tαpnNU[image: there is no content]d[image: there is no content]+∑g∫∂[image: there is no content]∂tpnpnNU+∑α∂[image: there is no content]∂tpnαNU[image: there is no content]d[image: there is no content]+SNGR.








where we took advantage of


2∫∂n[image: there is no content]∂tepUN[image: there is no content]d[image: there is no content]+∑g∫∂[image: there is no content]∂tpnpnUN+∑α∫∂[image: there is no content]∂tpnαUN[image: there is no content]d[image: there is no content]=0,








due to momentum conservation for N-processes.
Finally, by projecting the carrier equations over 2[image: there is no content] and the phonon ones over [image: there is no content], summation gives the following energy balance equation:



∂∂t2∑α∫[image: there is no content]nα0d[image: there is no content]+∑gωgNg0d[image: there is no content]+∇·2∑α∫vα[image: there is no content]nα1d[image: there is no content]+∑g∫ugωgNg1d[image: there is no content]=∑αλαeE·∫vαnα1d[image: there is no content]+8π3Q1NGR.










4. Source Terms

The source terms are small quantities since the relaxation time [image: there is no content] of the RG processes is much larger than the one ([image: there is no content]) of the [image: there is no content] interactions [6]. Hence we shall utilize for their calculation an approximation which properly accounts for this smallness.

The equations of order [image: there is no content] can be written, after a suitable adimensionalization, as follows



Dα[image: there is no content]-∂[image: there is no content]∂tGRN=(1/η)∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN,DpngNpngN=(1/η)∑α∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN+∂[image: there is no content]∂tpnpnNU+∂[image: there is no content]∂tpnpnUN








where η=O([image: there is no content]/ταγ) is a small parameter. At the orders [image: there is no content] and [image: there is no content] we have, respectively


∂[image: there is no content]∂tαpnNU+∂[image: there is no content]∂tαpnUN=0



(4)






Dα[image: there is no content]=∂[image: there is no content]∂tGRN



(5)




Analogously we have


∂[image: there is no content]∂tpnpnNU+∂[image: there is no content]∂tpnpnUN+∑α∂[image: there is no content]∂tpnαNU+∂[image: there is no content]∂tpnαUN=0



(6)






Dpng[image: there is no content]=∂[image: there is no content]∂tpnphN



(7)




By projecting the equations of order [image: there is no content] for carriers over 2[image: there is no content] and the phonon ones on [image: there is no content], summation gives


2∑α∫∂[image: there is no content]∂tαpNU[image: there is no content]d[image: there is no content]+∑g∫∂[image: there is no content]∂tpnpnNU+∑α∂Nαg∂tpnαNU[image: there is no content]d[image: there is no content]=0,








which, due to (1,2,3), shows that in the present approximation [image: there is no content]=0, so that Q0GR,Q1GR, are simply approximated by setting [image: there is no content]=nα0 and [image: there is no content]=Ng0. Moreover, symmetry arguments lead to [image: there is no content].
In the low density approximation [6] (1-[image: there is no content]≃1) we can write



nα0=[image: there is no content]Cα(T)exp(-[image: there is no content]/T),








where [image: there is no content] is the number density of particles α and


Cα(T)=4π3∫exp(-[image: there is no content]/T)d[image: there is no content]α,








so that


Qℓ=4∫∫weh([image: there is no content]e,[image: there is no content]h→[image: there is no content]pt)[Ee([image: there is no content]e)+Eh([image: there is no content]h)]ℓ{NeNhCeChexp[ωpt(βpt-β)]-1}[image: there is no content]d[image: there is no content]ed[image: there is no content]h8π6








Observe that [image: there is no content] and [image: there is no content] depend linearly on [image: there is no content] while


[image: there is no content]








where


GeA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])(ChCe2NhNe)exp[-Ee([image: there is no content]1)-Ee([image: there is no content]1)]-CeNeexp(-Ee([image: there is no content]))GhA([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content]1,[image: there is no content]2→[image: there is no content])[CeNeCh2Nh2exp(-Ee([image: there is no content])-Eh([image: there is no content]1)-Eh([image: there is no content]2)])-ChNhexp(-Eh([image: there is no content])),








are cubic with respect the number densities.


5. Revised Drift-Diffusion Approximation and Constitutive Laws

In the drift-diffusion approximation [7,8] (and, in particular for bipolar devices, [9]), we assume that the total momentum of the mixture does not vary appreciably over the momentum relaxation time. From the momentum balance equation we get



-2β(IR2+IR4)·∇T-2eIR1·[image: there is no content]+2eIR3·[image: there is no content]-βIR5·∇T=IB·[image: there is no content],








which gives [image: there is no content], where [image: there is no content] and


IRl=∫F′[β([image: there is no content]-μα)][image: there is no content]⊗vαd[image: there is no content],α=e,h,l=1,3IRl=∫F′[β([image: there is no content]-μα)]([image: there is no content]-μα)[image: there is no content]⊗vαd[image: there is no content]=IMl-μαIRl-1,α=e,h,l=2,4IR5=∑g∫B′(β[image: there is no content])[image: there is no content][image: there is no content]⊗upngd[image: there is no content].








The tensor IB, can be written in the following symmetric form


IB=-∑g1g2g3∫∫Npng20Npng30(1+Npng10)wpp([image: there is no content]2,[image: there is no content]3→[image: there is no content]1)([image: there is no content]1-[image: there is no content]2-[image: there is no content]3)⊗([image: there is no content]1-[image: there is no content]2-[image: there is no content]3)d[image: there is no content]1d[image: there is no content]216π3-2∑α∑g∫∫nα0(1-nα′0)(1+Npng0)wαp([image: there is no content]→[image: there is no content]′,[image: there is no content])([image: there is no content]-[image: there is no content]-[image: there is no content]′)⊗([image: there is no content]-[image: there is no content]-[image: there is no content]′)d[image: there is no content]d[image: there is no content]8π3.








By utilizing the drifted FD or BE distribution functions, the electrical ([image: there is no content]) and thermal ([image: there is no content]) currents are given by



[image: there is no content]=λαe4π3∫vα[image: there is no content]d[image: there is no content]=-λαeβ4π3∫vα[image: there is no content]·[image: there is no content]F′[β([image: there is no content]-μα)]d[image: there is no content]Uα=14π3∫vα([image: there is no content]-μα)[image: there is no content]d[image: there is no content]=-β4π3∫vα[image: there is no content]·[image: there is no content]([image: there is no content]-μα)F′[β([image: there is no content]-μα)]d[image: there is no content]Upn=18π3∑g∫[image: there is no content]upngNgd[image: there is no content]=-β8π3∑g∫[image: there is no content]upng[image: there is no content]·[image: there is no content]B′(βωg)d[image: there is no content]








Now, by introducing [image: there is no content],


[image: there is no content]=-eβ4π3[2e(IK11·[image: there is no content]-IK13·[image: there is no content])+β(2IK12+2IK14+IK15)·∇T]Ue=β4π3[2e(IK21·[image: there is no content]-IK23·[image: there is no content])+β(2IK22+2IK24+IK25)·∇T][image: there is no content]=eβ4π3[2e(IK31·[image: there is no content]-IK33·[image: there is no content])+β(2IK32+2IK34+IK35)·∇T]Uh=β4π3[2e(IK41·[image: there is no content]-IK43·[image: there is no content])+β(2IK42+2IK44+IK45)·∇T]Upn=β4π3[2e(IK51·[image: there is no content]-IK53·[image: there is no content])+β(2IK52+2IK54+IK55)·∇T],








where IKlm=IR˜l·IB-1·IRm (∼ means transpose). Since IB=IB˜, the following Onsager symmetry relation is in order:


IKlm=IK˜ml.








The cross effects of [image: there is no content] on [image: there is no content] and of [image: there is no content] on [image: there is no content] in a drift-diffusion model are discussed in [10].
Moreover, we can calculate the energy flux by its very definition:



[image: there is no content]=-β{2∑α∫vα⊗[image: there is no content][image: there is no content]F′[β([image: there is no content]-μα)]d[image: there is no content]8π3+∑g∫upng⊗[image: there is no content][image: there is no content]B′(β[image: there is no content])d[image: there is no content]8π3}·[image: there is no content]=-β8π3[2(I˜M2+I˜M4)+IR˜5]·[image: there is no content].








The system of the drift-diffusion equations is obtained by inserting [image: there is no content] and [image: there is no content] into the carrier balance equations and [image: there is no content] into the energy balance one.


6. Conclusions

A new fluid-dynamical model for a carrier-phonon system in a photon background is proposed, whose equations are certainly related to ET ones, based on the maximum energy principle [11,12,13,14]. However here the treatment is based entirely on kinetic theory, with no need to adjust some free parameters, based on comparisons with Monte Carlo calculations. A revised drift-diffusion approximation has been derived, which include an energy balance equation. The fulfilment of the Onsager symmetry relations is not trivial, since it cannot taken for granted in many macroscopic models [15].

Finally we observe that the asymptotic expansion is valid ([image: there is no content]) when the room temperature is much lower than the Debye one (in silicon, for example). Hence, proper candidates for applications are silicon devices.







Appendix

Consider the equations at order [image: there is no content]:



∂[image: there is no content]∂tepNN=0∂[image: there is no content]∂tppNN+∂[image: there is no content]∂tpeNN=0.








By following the same approach as in [5] it can be shown that these conditions are equivalent to


NpngN(1+Npng2N)(1+Npng1N)=(1+NpngN)(1+Npng1N)Npng2N∀[image: there is no content],[image: there is no content]1



(8)






[image: there is no content]([image: there is no content])[1-[image: there is no content]([image: there is no content]′)](1+NpngN)=[image: there is no content]([image: there is no content]′)[1-[image: there is no content]([image: there is no content])]NpngN∀[image: there is no content],[image: there is no content].



(9)




Condition (8) shows that [image: there is no content] is a collisional invariant for phonons. In the case of N-processes


lnNpngN1+NpngN=([image: there is no content]·[image: there is no content]-[image: there is no content])/T.



(10)




By inserting (10) into (9), since


[image: there is no content]=[image: there is no content]′+[image: there is no content],[image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content]′)+[image: there is no content],








we find tha


ln[image: there is no content]([image: there is no content])1-[image: there is no content]([image: there is no content])+([image: there is no content]-[image: there is no content]·[image: there is no content])/T








is a collisional invariant for α-particles:


ln[image: there is no content]([image: there is no content])1-[image: there is no content]([image: there is no content])=(-[image: there is no content]+[image: there is no content]·[image: there is no content]+μα)/T.
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