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Abstract: We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive
Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from
the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that
the functional form of such entropies can be ascribed to a discordance in phase-space
coarse-graining between two generally different approaches: the Euclidean/Riemannian
metric one that reflects independence and picks cubes as the fundamental cells in
coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role.
Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of
many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates
for the minimal dimension beyond which these two approaches are close to each other.
We state and speculate about the role that dualities may play in this viewpoint.
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1. Introduction

Entropy is one of the central concepts in Statistical Mechanics. Although initially introduced in
thermodynamics, it has clearly superseded its modest origins and is currently widely used in numerous
fields extending from dynamical systems and geometry to communication theory, complexity and far
beyond. Due to its significance, considerable effort has been invested for almost 150 years, since
its introduction by R. Clausius (ca. ∼1865) in understanding its meaning and ways to calculate it
for specific systems. Fundamental contributions and interpretations, in various contexts, were made
by L. Boltzmann, J.W. Gibbs, J. von Neumann, C. Shannon, A. Kolmogorov, A. Renyi, I. Csiszar,
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E. Jaynes well as numerous other scientists and engineers ever since. The functional forms studied
by most of the above people resemble each other very closely, so they tend to be treated together as
one and the same entropy. For the purposes of the present work alone we will pretend they are the
same, although conceptually they are clearly very distinct from each other even in the specific context
of Statistical Mechanics [1–3]. Following this abusive bundling, we will be referring in the sequel to the
Boltzmann/Gibbs/Shannon functional form

SBGS = −kB
∑
i∈I

pi log pi (1)

where kB is a constant which is identified in Statistical Physics as Boltzmann’s constant. In Equation (1)
i is an index taking values in a finite cardinality or countable set I , which is used to label the probabilities
of possible outcomes.

As is well-known, Equation (1) has a subjective character in Classical Physics [1,2]. The probabilities
pi appearing in Equation (1) depend not only on the actual system under study but also on the level of
ignorance about the system by an experimenter/observer. In many occasions, it is worthwhile to consider
systems with continuous rather than with discrete sets of outcomes. In such cases, we naively translate
the definition (1) into the continuum, in which pi morph into a probability density function ρ : M→ R+.
The details and the exact way of considering such a continuum limit may be a highly non-trivial process,
during which one may have to introduce a metric or a homogeneous structure [1,2] etc., in order to reach
a well-defined, and unique, result. Ignoring such subtle and important issues, the one would naively get

SBGS = −kB
∫
M

ρ(x) log ρ(x) dµ (2)

where µ is an appropriate measure on the sample space M. In the case of Hamiltonian systems of many
degrees of freedom, which is our object of study, M usually stands for the phase space of the system,
endowed with a Riemannian metric g with µ being the unique Riemannian measure associated to g.

There are several problems with Equation (2) though: one is that it is not coordinate
independent [1–3]. This can be traced back to the fact that, very much like Equation (1) from which it
was naively inferred, Equation (2) does not depend on the graph of ρ, but just on its range of values.
The functional Equation (2) is not coordinate independent (diffeomorphism invariant). A second
objection, related to the above comments, is that taking naively the limit of discrete pi to the continuum
ρ gives a divergent expression, the infinite part of which has to be judiciously subtracted before
Equation (2) can be properly used or interpreted.

Fortunately, using a relative entropy expression, á la Kullback-Leibler for instance, addresses the first
problem. So what one actually computes in classical Statistical Mechanics is not really the “absolute”
entropy but rather a form of a relative entropy of a probability distribution with respect to an underlying
background measure. If such a reference measure is independent of the details of the particular model
at hand, then it results in an additive constant which eventually becomes irrelevant as almost all
experimentally verifiable quantities involve entropy variations rather than the “absolute” value of the
entropy itself. One chooses as a reference measure the probability density function resulting from the
continuum limit of a discretization, usually by cubes of side length

√
~ of the phase space M.
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One could question some of these statements, presenting in a counter-argument the case of the
Sackur-Tetrode equation which gives an expression for the (absolute) entropy of a classical monatomic
ideal gas

SBGS =
5

2
kBN + kBN log

{
m

3πh2

V

N

(
U

N

) 3
2

}
(3)

where U is the internal energy of the gas, m the mass of each atom, V the volume that the gas occupies
and N the number of atoms. It seems that Equation (3) contradicts the above statements pertaining
to the additive constant. However the appearance in Equation (3) of h, which is an arbitrarily chosen
regularisation parameter in classical Physics and only acquires physical significance as Planck’s constant
in Quantum Physics reinforces, rather than contradicts, the above statements. The implicit phase space
discretisation by cubes of side

√
~ appearing in expressions such as Equation (3) plays an important

part in the present work. Its implicit, therefore often forgotten, presence is also at the heart of a recent
controversy, to be mentioned below, about the existence, appropriate form and physical significance of
the continuum limit of the non-additive entropy Sq.

As seen in the previous paragraph, in order to overcome the infinities that inevitably creep in the
transition from Equation (1) to Equation (2) we can subtract a renormalisation constant. Alternatively
we can turn to Quantum Physics and using the non Neumann operator functional

SvN = −tr (ρ̂ log ρ̂) (4)

where ρ̂ stands of the density operator (matrix) on the (kinematic) Hilbert space of the wave-functions
and tr is the trace over a basis of such a Hilbert space. The von Neumann entropy may still need
some form of regularisation and renormalisation, especially in Quantum Field Theory. Its fundamental
“drawback” is that one has to know the underlying Quantum Theory, or at least to have a field theory
description of the effective degrees of freedom before it can be properly implemented. An underlying
quantum theory may not be known, as in the case of a quantum theory of gravity, for instance. We would
not want to even start a discussion about the technical obstacles of actually computing Equation (3)
for particular systems. However, becoming aware of such well-known and long-ago resolved issues
pertaining to SBGS shows the subtlety and care with which the concept of entropy has to be treated.

An additional incentive for looking into fundamental issues pertaining to entropy comes with the
great success of SBGS in quantifying the thermodynamic properties of systems at equilibrium. Such a
success is seen in the agreement of the predictions derived by using SBGS with numerous experimental
observations, since the formulation of SBGS . But what is the source of such a spectacular success
of SBGS? The dictum that we use SBGS “because it works” or it is the “cannon” cannot be possibly
satisfying, if someone is interested in getting a better understanding why things work the way they do.
It is not obvious, for instance, why or whether SBGS precisely describes the collective behaviour of
systems with long-range interactions, non-ergodic phase space evolution etc., not to even mention
systems out of equilibrium.

To understand the limitations of a particular functional one can compare its properties, predictions etc.
with those of another judiciously chosen or intelligently constructed functional. The Havrda-Charvát/
Daróczy/Cressie-Read/Tsallis entropy Sq [4–9] or the (Kaniadakis) κ− entropy Sκ [10–14], both to
be defined and used below as “alternative” (meaning in different regimes, or for different systems)
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functionals to SBGS . In addition, numerous other entropic functionals that have been recently introduced
and used in Statistical Mechanics [9], and more particularly the generalised exponential families specific
members of which are Sq and Sκ which were analysed in [15–17], can also be considered as playing, in
some part, such a role [17]. A better understanding of such functionals and the determination of what
are the essential physical features of the systems whose collective behaviour they describe will not only
help appreciate their significance but also set some boundaries to the complete dominance of SBGS in
Statisical Mechanics. Therefore, such an effort it will also help us understand better SBGS itself.

One of the many, still unanswered, questions pertaining to Sq, Sκ and the numerous other non-additive
entropic functionals is their dynamical basis. If SBGS successfully describes systems having an ergodic
evolution in their configuration or phase space, then what are the underlying dynamical features of
systems, if any, described by Sq, Sκ, etc.? The present work is partly motivated by and echoes to some
extent, the general viewpoint described in as well as some of the fundamental issues pointed out in [18].
Even though [18] was written more than a decade ago, and despite the intervening considerable activity
in understanding aspects of Sq, Sκ and other non-additive entropic functionals, it is probably fair to state
that most of the fundamental dynamical and statistical questions that [18] had pinpointed remain unclear
to this date.

In an attempt to address such questions, we explored in our relatively recent work [19–27], some
formal consequences of the definition of Sq. At no point however did we deal in any part of these
works with the actual nature of Sq per se. We just confined ourselves to formal algebraic and geometric
structures and conclusions stemming from its functional form. One of our key assumptions was that
some of the algebraic properties of Sq are not emergent from statistical averaging, but they directly
reflect dynamical properties of the phase space of the system. In other words, we assumed that such
algebraic properties of Sq are “typical” of the underlying Hamiltonian system whose statistical behaviour
is described by Sq. A part of the present work is to investigate this assumed “typical” behaviour and try
to determine how it may dictate, at least some parts of the functional form of the entropy used to describe
such systems.

At the core of the present work is a question that appears trivial at first sight: if one knows the
microscopic evolution of a Hamiltonian system of many degrees of freedom, can this person predict,
or pick among various “reasonable” entropic functionals a unique one or, to be less ambitious, a
class of entropies that would successfully describe the macroscopic behaviour of the system? The
obvious answer appears to be negative, as statistics seems in the eyes of many to be completely
independent/dissociated from the underlying dynamics. It seems that we can successfully do the former,
as in the case of SBGS without knowing almost anything about the latter. This is certainly the viewpoint
advocated, among others, by J.W. Gibbs, L.D. Landau and A.I. Khintchin who consider the underlying
dynamics to be largely irrelevant, inasmuch as the ergodic hypothesis can be used to justify the choice
of the micro-canonical ensemble. In this viewpoint the success of Statistical Mechanics is ascribed to
the large numbers of degrees of freedom of such systems [28,29]. The quantification comes by the
Central Limit Theorem which “justifies” the “ubiquity” of the Gaussians in physical, and not only,
processes. However, one may wish to note that the Central Limit Theorem does not hold if the random
variables are not independent or weakly correlated. When there are non-trivial (“strong”) correlations
among such variables the question naturally arises as to which statistics, hence which entropic functional,
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is appropriate for describing systems having such properties. This also emphasises the question about
the meaning of “independence” and how it needs to be modified, if at all, for the cases of these “different
kinds” of statistics.

By contrast, we follow the view of L. Boltzmann (in part), P. Ehrenfest and A. Einstein [30] according
to which the underlying dynamics is at the core of the thermodynamic behaviour of a system. We believe
that the recent emergence of numerous entropic functionals and the explorations into the realm of
non-ergodic evolutions in phase space, make the underlying dynamical explorations highly desirable
and potentially enlightening. We view the emergence of an entropic functional form for a Hamiltonian
system with many degrees of freedom as a manifestation of a dissonance in phase space: usually
one coarse-grains [28,31–33] phase space by using cubes of side length

√
~. Such cubes however do

not behave well under canonical transformations. Based on the symplectic non-squeezing theorem
and the subsequent formulation of symplectic capacities as fundamental constructions in symplectic
geometry, it is probably more prudent to coarse-grain M in terms of ellipsoids. This happens because
all symplectic capacities have the same value on ellipsoids. Generalizing cubes into convex polyhedra
to take into account the composition of the newer, non-additive, entropic forms, we can see such entropy
as arising from the difference in coarse-graining between ellipsoids and convex polyhedra. We choose
the Banach-Mazur distance to quantify such a difference. Hence the problem reduces to determining the
Banach-Mazur distance between polyhedra and ellipsoids in M of typical side/radius length

√
~. Since

ellipsoids are minimal from the viewpoint of dynamics/symplectic capacities but the polytopes do not
have any a priori lower bound on their size, we will consider the distance between such polytopes and
the largest spheres/ellipsoids that can be inscribed in them. A central result in the asymptotic limit of
large n is provided by Dvoretzky’s theorem, the lower bound in the dimension of which gives rise to the
functional form of SBGS and provides the leading asymptotic form for non-additive entropies.

In Section 2, we present some of the properties of Sq and Sκ that we need in this work. In Section 3,
we briefly discuss the geometry of “independence” and aspects of phase space coarse-graining.
In Section 4, we present background material about Hamiltonian systems and symplectic geometry.
In Section 5, we present basics of convex geometry/analysis needed to follow our exposition.
In Section 6, we discuss Dvoretzky’s theorem and dimension and the role played by dualities in this
viewpoint. Section 7 contains conclusions and some speculations.

2. Structures Induced by Two Non-additive Entropies

Two of the most commonly used non-additive entropies, which have attracted substantial attention
recently are presented in this Section. Pertinent properties, for this work, are also stated.

2.1. The Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Entropy Sq and Its Induced Operations.

The Havrda-Charvát [4], Daróczy [5], Cressie-Read [6,7], Tsallis [8,9] entropy Sq introduced and
developed, in part, in the context of Statistical Mechanics by Tsallis for a discrete set of outcomes {pi},
parametrized by the index set I and with i ∈ I , is given by
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Sq[{pi}] = kB
1

q − 1

{
1−

∑
i∈I

pqi

}
(5)

where kB is the Boltzmann constant. Its continuum analogue for a sample space Ω equipped with
a measure absolutely continuous with respect to the Lebesgue measure with Radon-Nikodym density ρ

is naively assumed to be [8,9]

Sq[ρ] = kB
1

q − 1

{
1−

∫
Ω

[ρ(x)]q dvolΩ

}
(6)

Here dvolΩ represents the infinitesimal volume element of Ω when it is a Riemannian manifold
M, as is usually the case for the Hamitonian systems of many degrees of freedom which are the focus
of our attention. It should be noted that most recently there has been a controversy regarding the validity
of this naive extension of Sq to continuous variables, without either side being definitively convincing,
in our opinion [33–40]. The controversy brought about by [34] is intimately related to the implicit
normalization of any entropy functional, such as SBGS for instance, required to make its definition
coordinate independent (diffeomorphism invariant). It is usually provided by the discretizaton of M

in cubes of side length
√
~, of the density distribution arising from its continuum limit. For SBGS due

ore the presence of log it results in a constant that is additive and hence can be ignored inasmuch as
entropy differences are the only relevant quantities in physical predictions. By contrast, such a term
is not additive, but rather multiplicative, therefore cannot be omitted in Equation (6) in considering
entropy differences. Subsequently the above authors have presented their views on this and related
matters that may make the use of Equation (6) rather questionable. This matter is of interest but not of
central importance in the line of arguments and viewpoint of the the present work, therefore will sidestep
these issues in what follows, and keep using Equation (6) pretending that this naive is indeed a valid
generalisation to the continuous case.

The nonextensive parameter q can generically take any values in R. There has been a recent
proposal to extend its validity to q ∈ C which is certainly worth looking into as well as considering
the associated interpretation of such an extension [41]. To have desirable properties, such as relative
insensitivity to rare events, convexity, and decay in a polynomial manner [9], and following our past
work [19–27] as well as the more recent [38,39], we will assume that q ∈ [0, 1] ⊂ R everywhere in the
sequel. We straightforwardly notice, that for q → 1 one recovers SBGS . We will set henceforth kB = 1

for brevity.
Conventionally, two subsystems A,B ⊂ Ω are considered independent [42] if their marginal

probability distribution functions are related by

pA∪B = pApB (7)

Here A ∪ B indicates the system resulting from the interaction of A and B. For such subsystems
SBGS is easily seen to be additive, namely

SBGS(A ∪B) = SBGS(A) + SBGS(B) (8)

The entropy Sq however is not additive [9], at least not in the conventional sense, as it satisfies

Sq(A ∪B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) (9)
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This lack of additivity is usually ascribed to the long-range spatial and temporal correlations of the
systems that Sq entropy conjecturally describes [9]. For systems described by such Sq, additivity is
manifestly restored if the addition is redefined as [43,44]

x⊕q y = x+ y + (1− q)xy (10)

Then
Sq(A ∪B) = Sq(A)⊕q Sq(B) (11)

It took sometime before a generalized product, distributive with respect to the addition Equation (10)
was discovered [19,45]. Even though [19,45] gave different forms of such a product, conjecturally
equivalent, we will be using here the one introduced in [45] as more elegant and easier to work with.
The generalised product turned out to be

x⊗q y =
1

1− q
·
{

(2− q)
log[1+(1−q)x] log[1+(1−q)y]

[log(2−q)]2 − 1

}
(12)

The definition of the generalised product Equation (12) appears to be somewhat arcane. However, the
motivation behind its construction becomes more transparent, in our opinion, if we see it as a result of
demanding the commutativity of the diagram [20]

R× R ·−−−→ R

τq×τq
y yτq

Rq × Rq −−−→⊗q

Rq

(13)

Putting together the two generalized binary operations Equations (10) and (12), we set up [20,21]
a one-parameter family of deformations of the set of reals denoted by Rq. An explicit isomorphism
between these two sets τq : R→ Rq is given by [20,21]

τq(x) =
(2− q)x − 1

1− q
, q ∈ [0, 1) (14)

In terms of this field isomorphism, the product Equation (12) can be rewritten as

τq(x · y) = xq ⊗q yq = τq
(
τ−1
q (xq) · τ−1

q (yq)
)

(15)

By the above construction, we have in effect reduced the differences between SBGS and Sq to the
differences between R and Rq. This can more formally seen through a comparison between the axioms
used to determine SBGS [46,47] and Sq [48,49].

In closing this Section, we should point out that there are several distinct and non-equivalent
definitions of q-exponentials in the literature (see e.g., [50]) quite frequently associated to quantum
groups, which have nothing obvious to do with Sq. With eyes to the next subsection, the same words of
caution also apply to the several κ- distributions existing in the literature (e.g., [51,52] in space plasmas)
which have nothing obvious to do with Sκ. Due to this lack of uniformly in nomenclature, one should
be careful about the exact functional forms are used in each occasion.
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2.2. The κ-entropy Sκ and Its Induced Operations

Among the many entropic functionals that have been constructed over the years, the κ-entropy Sκ
has also attracted some attention since its introduction [10–14]. Unlike Sq whose origin can be traced
to the thermodynamic formalism, the origins and possible scope of Sκ are far more concrete: they rely
on attempts to understand the thermodynamic behaviour of the free relativistic gas, a system whose
thermodynamic behaviour has proved to be far harder to describe than could be naively suspected. Since
we do live in a relativistic world, where locally the principle of Relativity describes many physical
phenomena, determining how it dictates the collective behaviour of systems of many degrees of freedom
may be of considerable importance.

The κ-entropy was introduced as a functional that generates through the variational principle, a given
the κ-exponential distribution that arose from arguments pertaining to non-linear kinetics [10]. Lorentz
invariance is already built into the underlying dynamics in this formalism. The κ-entropy was defined
directly for a continuous probability distribution with density ρ on the sample space Ω as [10,12]

Sκ[ρ] =

∫
Ω

{
c(κ)ρ1+κ + c(−κ)ρ1−κ} dvolΩ, c(κ) = − Zκ

2κ(1 + κ)
(16)

where Z is a normalisation constant and κ ∈ R. So far as the author knows, there is no standing proposal
to extend κ ∈ C although we do not see any reason what this would not be feasible, if the need arose and
an appropriate physical motivation and interpretation would be provided as in the case of Sq. We expect
about this continuous functional form worries/objections similar to the ones that arose for Sq which were
alluded to above. The discrete analogue of Equation (16) for a set of outcomes I with corresponding
probabilities {pi}, i ∈ I would naively appear to be

Sκ[{pi}] =
∑
i∈I

{
c(κ)p1+κ

i + c(−κ)p1−κ
i

}
(17)

with c(κ) as in Equation (16). One should be quite careful though in providing such naive discrete
generalization, if one is interested in maintaining for Equation (17) some form of Lorentz-invariance
as the one that a gave rise to Equation (16). It is well-known, and probably obvious, that discrete
structures violate manifest Lorentz-invariance, something that has presented major technical challenges
to proponents of quantum gravity theories. The solutions, which could also be adopted here, is to either
forego completely any requirements for even remnants of Lorentz-invariance in Equation (17), or to use
arguments relying on randomness that preserve such a structure, as was done, for instance, in [53] for
the case of causal sets.

One can immediately observe that
lim
κ→0
Sκ = SBGS (18)

It is also immediately obvious that Sκ are not additive with respect to the usual addition and that to
restore manifest additivity one will leave to define the generalised sum as [12,14]

x
κ
⊕ y = x

√
1 + κ2y2 + y

√
1 + κ2x2 (19)

where |κ| < 1, mirroring Equation (10). This can be re-written as

x
κ
⊕ y =

1

κ
sinh (arcsinh(κx) + arcsinh(κy)) (20)
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to resemble more closely the generalized product, to be defined next. The generalised product [12,14],
which is distributive with respect to the generalised sum Equation (19) and mirroring Equation (12) turns
out to be [12,14]

x
κ
⊗ y =

1

κ
sinh

(
1

κ
arcsinh(κx) arcsinh(κy)

)
(21)

Then, in parallel to the case of Sq, one [12,14] can define the deformed field Rκ = (R,
κ
⊕,

κ
⊗) and set

set up [12,14] a field isomorphism τκ : R→ Rκ which is given explicitly by

τκ(x) =
1

κ
arcsinh(κx) (22)

with an inverse
τ−1
κ (x) =

1

κ
sinh(κx) (23)

in analogy with Equation (14) for Sq and also mimicking Equation (15) we get

τκ(x · y) = xκ
κ
⊗ yκ = τκ

(
τ−1
κ (xκ) · τ−1

κ (yκ)
)

(24)

We are not aware of an existing axiomatic formulation of the κ-entropy, but we do not consider this
as a drawback at a physical level, but rather as an open question at the formal level that remains to be
addressed, if such interest arises, in the future.

2.3. Features of Sq and Sκ Entropies

We observe from the above structures, that even though Sq and Sκ are, arguably, the two most
developed non-additive entropic functionals in Statistical Mechanics to date, they are not really all
that different from each other in terms of their induced structures. For instance, one can easily argue
as in [21,54], that Sκ also describes cases of “weak chaos”. To be more precise [21,54], one can
straightforwardly see that if a system is described by the κ-entropy and the composition Equation (20) or
Equation (21) is a reflection of its phase space metric properties, rather then being an emergent property
due to the statistical averaging, then the largest Lyapunov exponent of the underlying dynamical system
will be zero, in complete analogy with the case of Sq. This commonality can be traced back to the
similarity between the functional forms of Sq and Sκ: both Equations (6) and (16) can be seen to have
a functional form that is asymptotically exponential. These functional forms are actually suggestive of
the different parametrizations of the hyperbolic space [55]. Of course, this does not mean that the actual
functional forms of Sq and Sκ are the same, or that they will give rise to the same physical predictions,
but they should share asymptotical, some common features such as describing weak chaos. It would
be of great interest to compare the features of the systems that are described be each one of these two
entropic functionals. We believe that someone should be able to say some similar things for many, if not
necessarily all, probability distributions belonging to the exponential family, aspects of which have been
developed in [15–17].

The non-uniqueness of Sq, at least from the viewpoint of its composition properties, but the fact that it
is a part of a larger family of functional forms that share many common features was also briefly touched
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upon in [27]. It was noticed in [27] that even though Sq was an interesting case of a functional form
belonging to the displacement convexity class DCN for

N =
1

1− q
(25)

it was not unique, by any means. Its uniqueness was restored, when in addition to Equation (10), one
could invoke the other axioms of [48,49]. It is not obvious, to us at least, that some of these axioms, even
if reasonable, should necessarily describe the properties of the entropy for systems out of equilibrium,
with long range temporal and spatial correlations, etc. In accordance with the functional forms of the
generalized entropies used in defining the Bakry-Émery-Ricci curvature thorough optimal transportation,
as presented in [27], it may be more prudent to consider Sq as just one interesting example of an entropy
having a polynomial/power-law form rather than as the unique entropy that may describe properties of
the systems having properties that are mentioned above. Therefore the afore-mentioned interest in the
analysis of systems that are described by one of such entropies, but not for the others, may help clarify
their range of applicability or even the physical mechanisms leading to their effectiveness in describing
the macroscopic properties of such systems.

3. The “Shape” of Independence and Phase-space Coarse-graining

In this Section we analyse the concept of “independence” and the subsequent shape it induces on
the fundamental cells in phase-space coarse-graining, with a view toward SBGS and the non-additive
entropies of the previous Section.

3.1. Independence and Cubes

The conventionally accepted formalisation of the concept of independent interacting subsystems was
stated in Equation (7) and is realised through the multiplicative character of the marginal probability
distributions of the interacting subsystems. In the closely related case of random variables X and Y ,
they are called “independent” if

E[X · Y ] = E[X] · E[Y ] (26)

where E stands for “expectation value” of the corresponding random variable [56]. At the set-theoretical
level, “independence” is conventionally encoded via the Cartesian product of sets. From this viewpoint,
the simplest set expressing set-theoretic independence is the unit cube in Rn indicated by

In = [−1, 1]n (27)

From Equation (7) it becomes obvious that the concept of probabilistic independence is intimately
related to multiplicative-like structures [56]. Hence modifications in the definition of multiplication,
as in Equation (12), Equation (21) for instance, will have significant implications for determining what
constitutes “independent” outcomes. Through all this, we want to indicate that the introduction of (12)
which was induced by Sq and Equation (21) for Sκ, forces us to re-think and modify the concept of
“independence” in the framework of the non-additive entropies Equations (6) and (16). This modification
of “independence” is necessary due to the long-range temporal and spatial correlations of the systems
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that the non-additive entropies describe. When such correlations are present, the conventional definition
Equation (7) does not behave well (“covariantly”) with respect to the structures induced by the underlying
entropies such as Sq, or Sκ. As stated above, if we want to assume that the macroscopic algebraic
and geometric properties are a direct reflection of the microscopic dynamics, and not emergent due to
statistics, then a more “covariant” definition of independence at the microscopic level would be

pA∪B = pA ⊗q pB (28)

or
pA∪B = pA

κ
⊗ pB (29)

following Equation (12) or Equation (21) respectively. Since there is no obvious generalisation of the
Cartesian product in such cases, it is hard to see how one can find the counterparts of the unit cube
Equation (27) for the generalised products Equations (12) and (21).

3.2. Generalized Independence and Polytopes

The question that therefore naturally arises is how to determine such generalised “cubes” whose
shape would express generalized independence the same way that Equation (27) expresses conventional
independence. An answer is provided if one thinks of the cube in a metric, rather than in a set-theoretic,
way. Consider Rn. Its elements a are ordered n-tuples of real numbers a = (a1, . . . , an). Their
R 3 p-norm, for p ≥ 1 so as the triangle inequality to be satisfied, is defined by

‖a‖p =

(
n∑
i=1

|ai|p
) 1

p

(30)

where | · | stands of the absolute value of its argument. The sup-norm in Rn can be seen either as

‖a‖∞ = sup
i=1,...,n

{|ai|} (31)

or, equivalently, as the limit
‖a‖∞ = lim

p→∞
‖a‖p (32)

With such norms, Rn is a Banach space, indicated as lnp or ln∞ respectively. The ball indicated by
Br(x) of radius r centered at a point x of a metric space X with distance function d is defined by

Br(x) = {y ∈ X : d(x, y) ≤ r} (33)

and the sphere Sr(x) of radius r is defined by

Sr(x) = {y ∈ X : d(x, y) = r} (34)

One can easily see that the cube is the unit ball of ln∞, namely

In = B∞1 (0) (35)

where the superscript explicitly denotes the sup-norm. The advantage of this viewpoint is that it can
be carried over directly to infinite dimensions, namely to the space of sequences (a1, . . . , an, . . .) with
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elements in R, namely to the Banach space lp, p ∈ [1,∞]. Actually there are several such reasonable
infinite dimensional limits, depending on one’s goals, but we will not enter the details of this. Such
infinite dimensional limits are useful if one wishes to be able to consider the “thermodynamic limit”
n→∞ at some stage of these calculations. Moreover, such definitions can be generalised to uncountable
spaces, such as the Lebesgue spaces Lp(Rn) of p-integrable functions, to Orlicz, Sobolev and even more
general function spaces [57] that may be useful.

One can then use the generalized operations of the deformed fields Rq and Rκ instead those of the
usual addition and multiplication to define the generalised cubes Iqn and Iκn in exactly the same way
as it was done for Rn in the previous paragraph. This is possible because of the presence of the field
isomoprhisms Equations (14) and (23) which being distance non-decreasing maps, they also preserve
the order structure of R. Hence the induced topologies by the generalized operations of Rq, Rκ are
homeomorphic, the ordering of the elements of these sets is maintained, therefore the supremum has an
unambiguous meaning etc. Given such definitions, the polytopes playing the role of the cubes Iqn, Iκn
for the generalized products Equations (12) and (21) respectively, can all be seen to be given by

Iqn = τ̃q(In) (36)

and
Iκn = τ̃κ(In) (37)

where the tilde ∼ denotes the n-dimensional extension of its underlying isomorphism.

3.3. Euclidean and Dynamical Aspects of Coarse-graining with Cubes

The definitions of such cubes are particularly important in the context of coarse-graining of the phase
space [28,31,58–61]. Coarse-graining was introduced by P. Ehrenfest and T. Ehrenfest in an attempt to
explain the origin of macroscopic irreversibility, in the face of microscopic reversible dynamics. Many
of these ideas can be traced back to L. Boltzmann. One way to implement coarse-graining is to divide the
phase space of the microscopic dynamical system (Hamiltonian of may degrees of freedom, in the case
of our interest) in cells and substitute the smooth probability density ρ of phase space by a piece-wise
constant one ρcg in each of these cells. The size of each cell is assumed to be small but it should not
approach zero. For Boltzmann’s ideas about the behaviour of gases and the Sackur-Tetrode Equation (3)
the side length of each cube is taken to be

√
~. Effectively what this approach to coarse-graining does is

to combine elements of the microscopic evolution of the system with a periodic partial equilibration. The
end result is to determine a macroscopic kinetic equation that does not retain any memory of the initial
condition of the system but captures the evolution of these successive partial equilibrations [31,58,59].

The coarse-graining of the phase space, but in a different form than that described in the previous
paragraph can be attributed to the approximate knowledge that we have about the system, even at the
(quasi-)classical level [60,61]. In a physical situation there is always some uncertainty, either about
the dynamics or about the exact initial conditions of the system, or about both. Such uncertainties are
frequently encoded in dynamics as “noise” or some other stochastic process through which the system
interacts with its environment. “Noise”, or particular slowly varying background fields, can also be seen
as encoding the collective effect of degrees of freedom in the system which although present may be
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considered of secondary importance at the energy, time etc. scale of interest. This is the spirit behind the
Langevin approach in constructing kinetic equations [62].

In addition, since it is impossible to prepare a system with absolute accuracy at some pre-determined
state, we are inevitably led to consider not only a desired, or convenient, initial condition in our models,
but a set of initial conditions that are reasonably close to the desirable one for the level of accuracy that we
can tolerate in our predictions. Hence, one has to consider the evolution of sets of initial conditions under
the given dynamics, with or without stochastic sources. This uncertainty is expressed by performing a
periodic “ε-fattening” of the phase space evolution (orbit) of the system. After some judiciously chosen,
for a particular model, amount of time, one “fattens” the Hamiltonian orbit, so that it initially appears
to be like a tube. The question that arises is how such perturbations, assumed to be initially small,
either in the initial conditions or through noise, affect the system under study. The initial hope that they
would not affect the underlying system in any qualitatively significant way was proved to be too naive
in [63] (see also [64]), in the case of systems with phase space dimension dimM > 2. This instability
directly questions the physical relevance, for Statistical Mechanics, of the single orbit analysis of any
particular dynamical system, even if it were practically feasible. Hence one is forced to consider the
behaviour of sets of orbits which are initially near each other. Then one uses the ergodic theorem to
substitute averages over orbits with averages with respect to appropriate measures over the whole phase
space. This is a reasonable choice, assumed to be true, as ergodic measures are precluded from having a
“complicated” phase space behaviour such as possessing attracting sets etc. This is direct implication of
Birkhhoff’s ergodic theorem [65]. Either way, and irrespective of the reason or the way that one chooses
to perform phase space coarse-graining, during such process some of the features of the underlying
microscopic evolution are lost, a fact which is desirable if one wishes to capture the thermodynamic
behaviour of the system with the half-dozen or so (at most) macroscopic variables, as is usually the case.

The question that arises then is how to perform the coarse-graining of phase-space. The process
appears, and largely is, ad hoc. But it is fundamental for the definition of any entropic functional. Due
to its importance one may wish to make such a process a bit less less ad hoc by employing even partial
knowledge about the underlying dynamics of the system. The obvious choice is to assume that the
phase-space is divided into cubical cells of side length

√
~ each of which has obviously a volume ~n/2,

if dimM = n. That typical cells in the coarse-graining process should be cubes is not only supported
by the fact that geometrically they express “independence” or due to their geometric simplicity, but also
due to quantum nature of the underlying physical mechanisms.

Probably the simplest realisation of this underlying quantum nature is the emergence of the unit cube
of side

√
~ in the asymptotic expression for the spectrum of the Laplacian on M which is provided by

Weyl’s asymptotic formula [66]. Weyl’s asymptotic formula applies to a bounded domain Ω ⊂ Rn, but
this is not a problem in our case, since the cubes that we use to coarse-grain M have such a small side
that can be considered effectively flat, to a first order approximation. Assume that such a domain Ω has
also a smooth boundary and we indicate by λk, k = 0, 1, . . . , n, . . ., the eigenvalues of the Laplacian on
functions f : Ω → R subject to the Dirichlet boundary condition f |∂Ω = 0. Then the number N(Λ) of
such eigenvalues which are smaller than Λ > 0 behaves asymptotically as

N(Λ) ∼ volB1 · volΩ
(2π~)

n
2

Λ
n
2 , Λ→∞ (38)
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where we have used cubes of side length
√
~. This counts the number of quantum states of the

Laplacian inside Ω which can also be re-interpreted as the number of quantum cubical cells inside Ω,
for macroscopic values of Λ such as the ones needed in thermodynamics, hence Λ → ∞. Such validity
relies tacitly on the fact that fundamental kinetic terms are always quadratic and that long memory
effects that may give rise to non-Markovian evolutions described by anomalous kinetic terms are always
an effective description arising due to the underlying statistics.

Despite the above plausibility arguments, the choice of the fundamental cells to be cubes still remains
somewhat arbitrary. It should also be considered as still not acceptable as it ignores a central aspect of
the Hamiltonian dynamics on phase space: its canonical transformation invariance, or in other words the
existence of a symplectic structure on M. As will argue in the next Sections, choosing cubical cells for
coarse-graining is probably the worst choice that someone could make in a metric sense, but probably the
best in a measure-theoretical one: the best choice of a shape for the fundamental cells from the viewpoint
of the Hamiltonian evolution would be (Euclidean) balls/ellipsoids instead of cubes.

3.4. Riemannian Aspects of Phase Space Coarse-graining

An additional subtlety stems from the fact that the phase space on which the Hamiltonian evolution
takes place is not usually Rn but some Riemannian manifold M, with additional structure which
we chose to overlook in the previous Sections. Even though any Riemannian manifold can be
C1-differentiably embedded [67] (or even smoothly, i.e., Ck, 3 ≤ k ≤ ∞ embedded [68]) into some
RN , for N large enough, an intrinsic description is sought after that would allow us not to worry about
intrinsic vs the embedding features in the resulting geometric description. This is very much in the
spirit of Geometry since the time of K.F. Gauss and was implemented in General Relativity, for instance.
Riemannian manifolds are metrically almost Euclidean. Many of their metric properties can be expressed
in terms of their sectional curvature, which determines locally (second order deviation from “flatness”)
the distances on M [69–71]. Among by-products of the sectional creature, the Ricci curvature determines
the volumes of shapes lying in hyperplanes perpendicular to a given direction on M, such as the direction
of the Hamiltonian evolution. As a result of such curvatures, an initial shape will be distorted even if
parallel transported along a curve. Hence if someone starts by partitioning the phase space into cubical
cells, for the purposes of coarse graining, and wishes to follow the dynamics, the corresponding cells
will become distorted cubes, i.e., 2n-face polytopes, along any orbit of the Hamiltonian system. As long
as the underlying dynamics remains invertible, then the number of faces of such polytopes will remain
2n, even if the areas of the faces will no longer be equal to each other. If, for whatever reason (such as
taking the thermodynamic limit) the dynamics loses its invertibility [65], then such cells may acquire a
larger or smaller number of faces.

To summarise the discussion of this Section, coarse-graining and the curvature features of the
phase space M force us to consider not only cubes but more general polytopes as the basic cells of
coarse-graining of phase-space M. The need for such generalisation from cubes to polytopes becomes
obvious, if one wishes to incorporate in the formalism the effects of generalized products such as
Equations (12) and (21) via their induced generalised concepts of independence which are expressed
geometrically through their induced “unit” cubes such as Equations (36) and (37). In all this discussion
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so far, we have (on purpose) ignored the dictates of the symplectic structure of M, which as will be seen
in the next Section, point toward a very different, and largely incompatible, proposal on how to actually
perform such a coarse-graining.

4. Symplectic Basics: Capacities and the Role of Ellipsoids

In this Section, we provide some background on aspects of Symplectic Geometry/Topology that we
need for our arguments, in an attempt to make the manuscript reasonably self-contained. Even though
the concepts and facts that we present are very well-known to a mathematical audience, some of them
are very non-trivial and have either only been proved relatively recently or they are still a subject of
investigation. One might wish to consult some books, such as [72–78] or reviews [79–81] to get a grasp
of such matters that we can only very superficially touch upon here.

It may, for a moment, be worth thinking about the role of the Hamiltonian approach to Mechanics.
There are several, well-known advantages over the Lagrangian formulation (and vice-versa). From our
perspective, and for our purposes, the Hamiltonian approach is more suitable because it allows for more
symmetries between its variables. By elevating the canonical coordinates qi, i = 1, . . . , n and the
canonical momenta (not probabilities!) pi, i = 1, . . . , n to equal status, the number of independent
variables is doubled, hence there is greater possibility to detect and profitably use otherwise hidden
symmetries or invariances. To make this easier to understand, we can start from simple discrete case:
suppose we have been given one point. Then there is very little in terms of operations and symmetries
that one can detect, therefore very little latitude and substantial lack of direction in building, detecting
or utilising such structures. Now consider a set whose elements are multiple copies of this point. Then
one can easily start by determining its automorphism group and its algebraic properties, one can build
discrete geometric structures such as graphs or simplices etc. and then by some from of reduction one
can go back to the induced properties of such structures pertinent to one point. This approach seems to
have been appreciated first by E. Galois. The spirit of the Hamiltonian approach follows, to an extent,
these lines.

4.1. Basics about Symplectic Vector Spaces

Let H denote the Hamiltonian of a system (of many degrees of freedom, eventually). Hamilton’s
equations, as is well-known, are

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, i = 1, . . . , n (39)

were the dot indicates differentiation with respect to the evolution parameter (“time”). Since the
canonical coordinates and momenta are on equal footing in the Hamiltonian approach, we can put them
side by side as coordinates of a vector

ξ = (q1, . . . , qn, p1, . . . , pn) (40)

and re-express Hamilton’s equations as

ξ̇i = ωij
∂H
∂ξj

, i, j, k = 1, . . . , 2n (41)
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where the summation convention over repeated indices is assumed, and the matrix ω has elements
ωij, i, j = 1, . . . , n given by

ωij =

(
0n −1n
1n 0n

)
(42)

where 0n and 1n stand for the null and the unit n× n matrices with real entries. Moreover, we see that

ωT = −ω, ω−1 = −ω, ω2 = −12n×2n (43)

These statements are abstracted in the definition of a real (finite dimensional) symplectic vector space
V which is a finite dimensional real vector space V, of even dimension, endowed with an antisymmetric
and non-degenerate bilinear form ω, namely

ω(X, Y ) = −ω(Y,X), X, Y ∈ V (44)

and such that for any X 6= 0 ∈ V there is Y ∈ V such that

ω(X, Y ) 6= 0 (45)

The last equation is a non-degeneracy condition providing an isomorphism between V and
its dual V∗ by

X 7−→ iXω = ω(X, ·) (46)

where iX denotes contraction of the symplectic form in the direction of the vector X . A different way to
express the non-degeneracy of ω is by requiring that

ωn

n!
(47)

where the n! just fixes a normalisation, be a volume form on V, which is unique (up the normalisation).
Following the standard algebraic practice, one defines W to a be a symplectic subspace of V if ω is
non-degenerate on the linear subspace W. Obviously, the antisymmetry condition of ω is satisfied on W.

Even at this level, one can see that symplectic vector spaces are substantially different from spaces
endowed with symmetric bilinear forms. Requiring antisymmetry, instead of symmetry, of a bilinear
form on such a space has proved to have profound consequences, some of which will be noted below. One
such consequence is that the concepts of symplectic and Euclidean orthogonality are very different: Let U
be a linear subspace of the symplectic vector space V. Then the (symplectic) orthogonal complement
U⊥ of U is defined by

U⊥ = {X ∈ V : ω(X, Y ) = 0, ∀ Y ∈ U} (48)

Unlike the case of Euclidean geometry, U and U⊥ need not be complementary subspaces, even though
the non-degeneracy condition Equation (44) implies that

dimU + dimU⊥ = dimV (49)

On the one hand, if they are indeed complementary, namely if

U⊕ U⊥ = V (50)
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then one can prove this is equivalent to stating that U is a symplectic subspace W of V which is also
equivalent to stating that

U ∩ U⊥ = {0} (51)

On the other hand, one can observe that that every vector X ∈ V is orthogonal to itself due to
the antisymmetry of the symplectic form Equation (42). These relationships between U and U⊥ that
are absent in Euclidean geometry can be generalized: U is called isotropic if U ⊂ U⊥, co-isotropic
if U⊥ ⊂ U and Lagrangian if U is both isotropic and co-isotropic, namely U = U⊥. Clearly, in
2-dimensions, the lines passing by the origin are Lagrangian subspaces of the plane. The subspace
of canonical coordinates and that of canonical momenta are Lagrangian subspaces at a point of the
phase-space of a Hamiltonian system.

All these definitions are “strange” by Euclidean standards, as the Euclidean metric has been explicitly
defined to exclude such occurrences. However the vanishing of a bilinear form may be more familiar in
the context of Special, and General Relativity. If ω were a symmetric, rather than antisymmetric, bilinear
form then the fact that

ω(X,X) = 0, X ∈ V (52)

would define the light-like vectors X ∈ V. Since the usual 4− dim Minkowski “distance function”

ds2 = −c2dt2 + dx2 + dy2 + dz2 (53)

where c indicates the speed of light, can be formally seen as arising from the 4− dim Euclidean metric
through the formal substitution

t 7−→ −it (54)

one may be lead to suspect that there is an intimate relation between a Euclidean metric, an (almost)
complex structure and the symplectic structure in a vector space V. The (almost) complex structure of
V can be defined as an anti-involution J, namely J : V→ V such that

J2 = −1 (55)

In more concrete terms and for V = R2n, with respect to a Cartesian base J has the antisymmetric form

J =

(
0n 1n

−1n 0n

)
(56)

Then V can be made into a complex vector space by defining, for a, b ∈ R and X ∈ V

(a+ ib)X = aX + bJX (57)

where the action of J onX has the effect of a multiplication by−i. It is no confidence that Equations (42)
and (56) have a similar form: indeed, if we indicate by 〈·, ·〉 the Euclidean inner product on R2n and for
X, Y ∈ R2n we see that

ω(X, Y ) = 〈JX, Y 〉 (58)

or, since J2 = −12n×2n

ω(X,JY ) = 〈X, Y 〉 (59)
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The compatibility conditions Equations (58) and (59) have profound consequences in the case of
manifolds to which we will turn in the next paragraphs.

Before that though, it may be worth mentioning another difference between the symplectic and the
Euclidean cases: one can prove that in any symplectic vector space V one can choose a “symplectic
basis” where the symplectic form will have essentially the same form as in Equation (42), or to be more
precise, one can pick a basis ei, fj, i, j = 1, . . . , n so that

ω(ei, ej) = 0, ω(fi, fj) = 0, ω(fi, ej) = δij, i, j = 1, . . . , n (60)

From our experience with Hamiltonian dynamics, one can see that this is an abstraction of the fact
that, locally, the symplectic form looks like Equation (42) in each 2-plane made up of the canonical
coordinate qi and its conjugate canonical momentum pi for i = 1, . . . , n. Hence Equation (58) is the
antisymmetric/symplectic analogue of the Gram-Schmidt diagonalization process of symmetric bilinear
forms. We see that even though in the latter case there are numerous possibilities in this diagonalization
process, in the symplectic case, all symplectic vector spaces are locally the same. This is behind
Darboux’s theorem and the lack of local symplectic invariants for the case of symplectic manifolds
in sharp contrast to the Riemannian case.

Let V be a symplectic vector space endowed with the symplectic form ω. A linear map ϕ : V → V

is called symplectic or canonical if it preserves the symplectic structure, namely if the pull-back form
ϕ∗ω obeys

(ϕ∗ω)(X, Y ) = ω(ϕ(X), ϕ(Y )) (61)

As is clear from the terminology, symplectic maps are the linear canonical transformations of
Hamiltonian Mechanics. These maps can be represented as matrices Φ, and it turns out that they obey

det Φ = 1 (62)

whose geometric interpretation is that they are volume-preserving. This is the linear formulation of
Liouville’s theorem. The obvious question on whether there is any difference between volume preserving
and symplectic maps, in the case of manifolds, will be discussed in the sequel. To complete the
discussion of symplectic vector spaces, it turns out that if (U1, ω1) and (U2, ω2) are two symplectic vector
spaces of the same dimension, then there is a linear isomorphism ϕ : U1 → U2 such that ϕ∗ω2 = ω1.
Hence symplectic vector spaces of the same dimension are symplectically equivalent (indistiguishable
from a symplectic viewpoint) as was also previously mentioned.

4.2. About Symplectic Manifolds

To define symplectic manifolds M, one follows the same steps as in the Riemannian case, but
substitutes the symplectic for the corresponding Euclidean structures. Hence someone picks local
patches (“charts”) of symplectic (instead of Euclidean) vector spaces and glues them together using
symplectic (rather than regular) diffeomorphisms. The details of such intuitively obvious, but non-trivial
and cumbersome at times, construction can be found in the references. It is worth mentioning at this
point one consequence of the fact that we use symplectic diffeomorphisms to glue together patches of
symplectic vector spaces: the symplectic form ω is postulated to be closed on M

dω = 0 (63)
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where d denotes exterior differentiation on the space of differential forms of M. One way to interpret the
requirement Equation (63) is to use the canonical symplectic base Equation (60) translated to the case
of M. A non-degenerate 2-form (hence anti-symmetric) ω is closed Equation (63) if and only if at each
point of M there are coordinates (q1, . . . , qn, p1, . . . , pn) such that

ω =
n∑
i=1

dqi ∧ dpi (64)

This theorem is due to G. Darboux. It expresses the fact that all symplectic manifolds are locally
symplectically indistinguishable. Hence any non-trivial invariants of such manifolds will have to
be global. Contrast this with the Riemannian case: in the Riemannian case there are plenty of
local invariants which are encoded through the Riemann tensor at each point of M and its multiple
covariant (properly symmetrized) derivatives and their contractions. One can also see the lack of
local structure of symplectic manifolds “equivariantly”: symplectic structures can be seen as the
“quotient” of a topological space locally homeomorphic to Rn under a set of “symmetries” (actually
re-paramentrizations, therefore more akin to gauge rather than global symmetries) the action of the group
of symplectic diffeomorphisms. If the set of such symmetries is large enough, it is entirely possible that
the resulting structure is unique: this is what actually happens in the case of symplectic manifolds, locally
at least. The non-degeneracy condition Equation (45) carried over to the case of a symplectic manifold
M can be seen as expressing, via the isomorphism Equation (46), an isomorphism between the vector
fields and the one forms of M, namely its tangent TM and cotangent bundles T ∗M. Consider a vector
field X ∈ TM and the Lie derivative along it, indicated by [69] LX , of ω. Then according to Cartan’s
formula [69], we find

LXω = d(iXω) + iXdω (65)

If we assume that ω is closed (dω = 0), then

LXω = d(iXω) (66)

Due to the non-degeneracy condition Equation (45), for any smooth function f : M → R

(“Hamiltonian”) there is a unique vector field Xf : TM→ R (“Hamiltonian vector field”) such that

iXf
= df (67)

Substituting Equation (67) into Equation (66) one gets that

LXf
ω = 0 (68)

Therefore ω remains invariant under the flow generated by Xf . This is very desirable and natural
from a physical viewpoint: in the case that f = H, we would like the symplectic (canonical) form to
remain invariant under the (“time”) evolution of the system. Turning the argument around, we see that
the invariance under evolution of the symplectic form is equivalent to requiring it to be closed, something
which is usually assumed from the outset without further explanation.

A second point arising from the above short argument is to see that the local uniqueness of the
symplectic structure, expressed through Darboux’s theorem, can indeed be seen from an equivariant
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viewpoint as previously suggested. The set of “symmetries” of the symplectic structures is infinite
dimensional since it is generated by the “Hamiltonian vector fields” Xf corresponding to any smooth
enough functions f . This is a typical situation in topological field theories, for instance, and it is quite
extensively employed in field and string theories on models with enough supersymmetries etc. It may
be worth comparing this to the Riemannian case in which the isometry group of any metric is finite
dimensional, something that allows for local structure that is able to differentiate between different
Riemannian spaces.

Consider a system which is described by an autonomous Hamiltonian H and let SH0
∼= S0 indicate

the level set H = H0 where H0 is a regular value of H. As a result, its inverse image in M is of
codimension-1 (hypersurface). Let XH be the Hamiltonian vector field corresponding to H. Following
Equation (46)

dH(X) = ω(XH, X) (69)

which gives
dH(XH) = ω(XH, XH) (70)

Hence at each point of M, dH is the kernel of the map TM → R. In other words, the Hamiltonian
vector field XH is tangent to, and therefore it preserves, the level sets S0. This result is not totally
unexpected if one looks at it from the viewpoint of the local compatibility between the simplectic and
the almost complex structure expressed in the case of linear spaces in Equations (58) and (59). The
role of J Equation (56) is to generalise the complex unit i, hence its action can be seen to amount to a
rotation by a right angle. The usual gradient vector field XH is perpendicular to the level set S0. Hence
to compute the symplectic gradient, following Equations (58) and (59) one has to would rotate this by
an appropriate right angle thus making it tangential to the level set S0. The above statements of this
paragraph are a formal way of expressing the fact that the trajectory in phase space M of an isolated
system, evolves in the constant energy hyper-surface S0, a realisation which lies at the foundation of
the micro-canonical approach in Statistical Mechanics. Since the Lie derivative LX is a derivation, and
given Equation (68), we get

LXH
ωn

n!
= 0 (71)

which is the familiar Liouville’s theorem on the invariance of the phase space volume ωn/n! under
Hamiltonian flows. One can state more in this context: assume that the object of interest is not a particular
Hamiltonian function H, but instead the level set S0 and the symplectic form ω. Then if there are two
Hamiltonian functionsH1 andH2 for which S0 is a level set for generally distinct values ofH1 andH2,
then these two Hamiltonian functions will have the same trajectories on S0.

4.3. The Symplectic Non-Squeezing Theorem

We saw that symplectic geometry, in sharp contrast to the Euclidean/Riemannian case, is
fundamentally 2-dimensional, something which can also be justified in the following way. Let D1 be a
disk in R2 and D2 a subset of R2 diffeomorphic to D1. If D1 and D2 have the same area then there is
a symplectic diffeomorphism ϕ : D1 → D2. This is due to J. Moser. Hence in 2 dimensions, “volume
preserving” and “symplectic” are adjectives that can be used interchangeably. Therefore in 2-dimensions
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what distinguishes symplectic manifolds from each other is their total volume. The question that arose
is how much of all these statements can carried over in higher dimensions. A step toward answering
this question is the Gromov (-Eliashberg) alternative [82]: the group of symplectic diffeomorphisms of a
2n-dimensional connected symplectic manifold (M, ω) is C0-closed in the group of all diffeomorphisms
of M or its C0-closure is the group of volume preserving diffeomorphisms of (M, ω). The fact that the
former of these two alternatives is what actually occurs, was proved in the fundamental [83]. This result
is also known as the “symplectic non-squeezing theorem” or even as “the principle of the symplectic
camel”: consider the standard symplectic space (R2n, ω) parametrized by (x1, . . . , xn, p1, . . . , pn) where
each pi is canonically conjugate to the corresponding xi. Let Zi(R) indicate the cylinder of radius R
based on the symplectic 2-plane (xi, pi), namely

Zi(R) =
{

(x1, . . . , xn, p1, . . . , pn) ∈ R2n : x2
i + p2

i ≤ R2
}

(72)

Then, if there is a symplectic diffeomorphism ϕ : R2n → R2n embedding the ball Equation (33) into
Zj(R) we must have r ≤ R. It should be noticed here that the exact choice of the symplectic 2-plane
does not matter. Someone could choose any cylinder based on another symplectic 2-plane (xj, pj) and
the result would still hold. However this conclusion does not hold if the cylinder is based on an isotropic
2-plane (xi, xj) or (pi, pj) as a local rescaling, leaving all other coordinates unaffected, given by

ϕ(xi, xj) =
(
λ−1xi, λxj

)
, λ ∈ R\{0} (73)

is a volume preserving transformation which is moreover symplectic and can still embed the ball B(r)

into the cylinder Zi(R) for λ ≤ r
R

. In words, what the symplectic non-squeezing theorem states
is that it is impossible to squeeze a ball inside a symplectic cylinder if the ball’s radius is larger
than the radius of the cross-section (base) of the cylinder. This rigidity does not apply for isotropic
cylinders. The non-squeezing theorem can be seen as providing an obstruction for the existence of
symplectic embeddings and it clearly shows that the “symplectic” and “volume preserving” classes of
diffeomorphisms are not the same in dimension higher than 2, unlike the 2-dimensional case.

The non-squeezing theorem can be seen as a counterpart to Liouville’s theorem Equation (71)
which states that the symplectic volume of phase space remains invariant under a Hamiltonian (more
generally: divergence-free) vector field. Liouville’s theorem allows for the arbitrary change of shape of
any subset of phase space M under symplectic/canonical transformations generated by a Hamiltonian
vector field. This arbitrary change of shape, and in particular, the fact that its image under canonical
transformations can become arbitrarily “thin” in phase space, very much like “oil in water” is at the
heart of Boltzmann’s explanation of the macroscopic time-irreversibility of physical processes on the
face of their time-reversible microscopic dynamics [1,2,18,84]. The symplectic non-squeezing theorem
states that such an arbitrary change of shape of a given phase space volume is simply not possible under
canonical transformations and explicitly provides a limitation. Hence in higher dimensions “symplectic”
and “volume-preserving” are quite different terms. It is currently unknown what the effect(s), if any,
would be due to the non-squeezing theorem in the description of a Hamiltonian system of many degrees
of freedom is. Would this provide some constraints in applying Boltzmann’s irreversibility argument
with macroscopic consequences, or the presence of the many degrees of freedom would “wash out”
such “small-scale” features, as the Central Limit Theorem does for independently distributed random
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variables? In many ways, Boltzmann’s irreversibility argument lies on the solid ground of Katok’s
lemma [65,85] which goes as follows: Let U1,U2 be two bounded domains of equal volume in R2n both
of which are diffeomorphic to the ball B(r). Indicate by A4B the symmetric difference between the
sets A and B. Then for every ε > 0 there is a Hamitonian H and an evolution parameter (“time”) t,
so that

vol (ϕt(U1) ∩ U2) < ε (74)

where ϕt indicates the phase space flow generated by H calculated at time t. Due to this lemma, indeed
any subset of M can “turn and twist” and become thin, overall, under canonical transformations. What
cannot happen however, according to the symplectic non-squeezing theorem, is the projections of such
a shape, as it evolves, along the symplectic 2-planes to become thinner than the original ones. As stated
above, it is still unknown what are the effects of such a limitation on the projections of the initial shape
along the canonical 2-planes. From the viewpoint of the present work, one can claim that the concept
of entropy, for Hamiltonian systems of many degrees of freedom, can be seen as a manifestation of this
underlying symplectic rigidity described by the symplectic non-squeezing theorem.

It may probably be worth noticing, that during the 30 years that have elapsed since the formulation
and first proof of the non-squeezing theorem, several proofs different from the original one have also
appeared in the literature, none of which is elementary or even relatively simple. In the face of this
and in order to get a better feeling on why this theorem is true, one may wish to be less ambitious and
try to present a relatively simple proof of the non-squeezing theorem in the case of linear symplectic
diffeomorphisms as indicated, for instance, in [86]. The intuitive advantage of such an approach is
that such a proof involves concepts more familiar to physicists. We find it strange that 30 years
have passed since the proof of the non-squeezing theorem, but its significance has not been widely
appreciated in Physics. The most notable exception, in our opinion, is the work of M. de Gosson
and his collaborators, who have been consistently emphasizing the interpretation and implications of
the non-squeezing theorem, mainly for the physical cases of systems lying on the interface between
Classical and Quantum Physics [86–95]. In this work, we rely considerably on the concept of
“quantuum blob” [86,89,93,95] which will be presented shortly.

4.4. About Symplectic Capacities

As it befits a fundamental work, the contribution of the non-squeezing theorem was profound
in actually establishing symplectic geometry/topology as a distinct field of mathematics rather than
an interesting, but mostly, afterthought. The work of Gromov [83] is also credited for developing
concepts, such as the J-holomorphic curves that have proved to be enormously influential in a variety
of contexts, some of which have significant overlap with developments in string/brane theories [96].
For our purposes, the significance of the non-squeezing theorem lies in that it provides an explicit
construction for a class of (global) symplectic invariants called “symplectic capacities” [73,77,97–99]
whose definition is the following: consider the class of symplectic manifolds (M, ω), possibly with a
boundary, of dimension 2n. A symplectic capacity is a map c : (M, ω)→ R+ ∪ +∞ with c having the
following properties
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• Monotonicity: If there is a symplectic embedding ϕ : (M, ω) ↪→ (N, ω′) then

c(M, ω) ≤ c(N, ω′) (75)

• Conformality:
c(M, λω) = |λ|c(M, ω), λ ∈ R\{0} (76)

• Normalization:
c(Br, ω) = c(Zr, ω) = πr2 (77)

where Br is the radius r ball and Zr is the cylinder of radius base r lying on a symplectic 2-plane,
both in R2n endowed with its standard symplectic structure Equation (64).

It should be noticed that the conformality condition Equation (76) can also be expressed, for U ⊂M

and a fixed symplectic structure, as

• Conformality:
c(λU) = λ2c(U) (78)

The normalisation condition Equation (77) can also be relaxed by just requiring

• Weak normalization:
c(B1) > 0 and c(Z1) < +∞ (79)

It is a non-trivial fact that the symplectic capacities are invariant under symplectic diffemorphisms.
The converse is partly true: a differentiable map ψ not necessarily invertible, of (R2n, ω) that leaves the
capacities invariant is either symplectic or anti-symplectic, namely it satisfies

ψ∗(ω) = ±ω (80)

The existence of symplectic capacities is not obvious at all, but it is guaranteed by the validity of
the symplectic non-squeezing theorem. Conversely, the existence of symplectic capacities implies the
non-squeezing theorem. Obviously

c(R2n, ω) =∞ (81)

but for a symplectic cylinder Zr, which is also an unbounded set in R2n, its symplectic capacity is
bounded and given by Equation (77). By contrast, for a cylinder Z̃r based on an isotropic 2-plane of R2n

the symplectic structure vanishes (by definition), therefore

c(Z̃r, ω) = +∞ (82)

Based on the results of the non-squeezing theorem one can define the lower Gromov width (or just
“Gromov width”, or symplectic radius) of a subset U ⊂ R2n by

cmin(U) = sup
ϕ
{πr2 : ϕ(Br) ⊂ U} (83)

which means that the lower Gromov width is the maximum radius for which a ball of such a radius can be
symplectically embedded through via ϕ into U. Hence, if cmin(U) = r0, thenBr cannot be symplectically
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embedded in U, if r > r0. By analogy, the upper Gromov width (or cylindrical capacity) of V ⊂ R2n is
defined as

cmax(V) = inf
ψ
{πR2 : ψ(V) ⊂ ZR} (84)

where ZR is a symplectic cylinder of base radius R lying on any symplectic 2-plane of R2n. This
also means that the smallest radius of the symplectic cylinder inside which V can be symplectically
embedded via the symplectic map ψ is R and it is impossible to find a symplectic embedding of V to a
symplectic cylinder with a smaller radius thanR of its base. Given these two definitions, and based on the
non-squeezing theorem, one sees that the lower Gromov width is the smallest possible capacity and the
the upper Gromov width is the largest possible. Moreover, one can check that their convex combination

ct = t cmax + (1− t) cmin, t ∈ [0, 1] (85)

is also a symplectic capacity. Hence there is an infinity of symplectic capacities on R2n. Despite this fact,
constructing explicitly such capacities has proved to be a substantial challenge: to this date several such
capacities have been constructed, such as [80,83,97–101], none of which is obvious to either construct
or prove that they indeed obey the axioms Equations (75)–(77) or Equations (75), (76) and (79). Without
going into any details, we can indicatively mention that the Hofer-Zehnder capacity for compact, convex
U ⊂ R2n takes the form of an integral along the shortest periodic orbit γ0 on the boundary of U of
the first Poincaré invariant pdq familiar from Hamiltonian mechanics, namely

cHZ(U) =

∫
γ0

pi dqi (86)

where the summation convention for i = 1, . . . , n has been assumed.

4.5. Symplectic Capacities of Ellipsoids and the Uncertainty Principle

Calculating explicitly the symplectic capacities of manifolds, or even subsets of R2n has proved to be
a difficult task. Among the very few cases for which an answer is known, the ellipsoids in R2n stand out,
because all symplectic capacities have the same value on them. This is straightforward for someone to
see based on the symplectic non-squeezing theorem. Suppose that we have a real ellipsoid, the smallest
two axes of which are of equal length l. Then a sphere of the radius l can be barely embedded in the
ellipsoid, and the ellipsoid itself barely fits in a symplectic cylinder of the base radius l. Hence the upper
and lower Gromov widths of this ellipsoid are l, so all its symplectic capacities are proportional to l2.

This argument can be made more concrete as follows [86]. Let A be a 2n× 2n real positive-definite
matrix, and J be as in Equation (56). The eigenvalues of the matrix JA have the form ±iλk with λk > 0

and are called the symplectic eigenvalues of A. The set λk, k = 1, . . . , n is called the symplectic
spectrum of A. Williamson’s theorem states that there is a unique element B of the symplectic group
Sp(2n,R2n) such that

BtAB =

(
Λn 0

0 Λn

)
(87)

where the superscript T stands for transposition and Λn = diag(λ1, . . . , λn). Parametrize R2n by the row
vector z = (zi), i = 1, . . . , 2n and consider the ellipsoid

E : ztAz ≤ 1 (88)
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Then for any symplectic capacity c one finds that

c(E) =
π

λmax

(89)

where
λmax = {max

k
(λk), k = 1, . . . , n} (90)

Hence, from a Hamiltonian/symplectic viewpoint, the most appropriate/natural cells in which one
should divide the phase space during coarse-graining are the ellipsoids Equation (88).

It is a non-trivial fact [86] about which we would not like to elaborate, that the Heisenberg uncertainty
principle, or its generalisation, the Robertson-Schrödinger inequality

(∆xi)
2(∆pi)

2 ≥ (∆(xi, pi))
2 +

~2

4
(91)

where ∆(xi, pi) stands for the covariance matrix element, can be re-cast in terms of the symplectic
capacities as

c(W) ≥ ~
2

(92)

where W is the Wigner ellipsoid associated to the covariances and c a symplectic capacity. This falls
within the framework of the Wigner-Weyl approach to quantisation which is extensively used in the
more mathematically rigorous or the quantum/classical interface treatments. In more familiar terms, one
can see the content of the uncertainty principle as being expressed by the dictum that a function and its
Fourier transform cannot be simultaneously sharply localized [102,103]. Since we know that coherent
states (Gaussians) represent minimum uncertainty states, and that they are mapped into Gaussians under
the Fourier transform, let’s assume that a wave-function ψ : R2n → C and its Fourier transform F [ψ]

are bounded, in modulus, by such Gaussians, i.e.,

|ψ(x)| ≤ C exp(− 1

2~
Ax2), |F [ψ](p)| ≤ C exp(− 1

2~
Bp2) (93)

where C is a constant and A,B are real symmetric matrices. Then consider the phase-space ellipsoid
E : Ax2+Bp2 ≤ ~. The Robertson-Schrödinger uncertainty principle can be expressed via a symplectic
capacity c by

c(E) ≥ 1

2
~ (94)

These conditions imply that from a symplectic viewpoint, the appropriate choice of cell that should
be used for phase-space coarse-graining is an ellipsoid rather than a cube. This is also compatible with,
if not necessarily dictated by, Quantum Mechanics and provides a justification, in part, for our approach
an interpretations presented in the sequel.

4.6. Symplectic vs. Riemannian Features

It should be noticed that the symplectic capacities for an n-dimensional manifold M are genuinely
new invariants that cannot be deduced from its Riemannian volume volM by setting, for instance

c(M) = (volM)
2
n (95)
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as this would violate Equation (77) for a symplectic cylinder, for instance. On the other hand, we see
that if the underlying manifold M is compact, then it will have a finite volume hence

cmin(M, ω) < +∞ (96)

which is true for all compact manifolds. In the special case of 2 (real) dimensions, it is known
that all symplectic capacities coincide with the area, as long as the manifold M is connected and
simply connected [104,105]. Hence in two dimensions the symplectic and volume-reserving geometries
coincide. But two dimensions are special in symplectic geometry. There is a suspicion/conjecture
that this statement may be partly true (“all symplectic capacities coincide”) for convex bodies in R2n

but there seems to be neither a proof nor a counterexample needed to resolve it. A fundamental,
generally still unresolved, question is whether there exist intermediate symplectic invariants [80].
The simple-sounding question about finding the necessary and sufficient conditions for an ellipsoid to
be symplectically embeddable in another is still generally unresolved; an answer became only recently
known in 4-dimensions [81].

At this stage, there is an obvious question about the possible relation between Riemannian and
symplectic invariants of a manifold M. As noticed previously, no such obvious relation exists for
a power of the volume Equation (95). But, the capacities c are a symplectic way of measuring the size of
a manifold. On top of that, in the phase space of a Hamiltonian system M there is a Riemannian metric
g, which is usually deduced from the quadratic term (“kinetic term”) of the Hamiltonian. Therefore,
one may wish to compare the areas of (real) 2-dimensional sub-manifolds V ⊂ M expressed via
their embeddings ϕ : V → M. Such an area is computed symplectically via the pullback of the
symplectic form

As =

∫
V

ϕ∗(ω) (97)

or in a Riemannian manner by the area formula [106]

AR =

∫
V

ϕ∗(g) dvolM (98)

where we use the volume on V induced by the pullback metric given by the embedding ϕ. It turns out
that Equations (97) and (98) are equal for pseudo-holomorphic curves V [83,107] which come about
due to the extension of Equations (58) and (59) to almost complex target manifolds M, if endowed
with a tame symplectic structure ω. Such pseudo-holomorphic curves turn out to be minimal surfaces
in the Riemannian sense, hence can be considered as the analogue of geodesics in symplectic geometry.
As strings move in space-time by “sweeping out” surfaces that should be of stationary (“minimal”) area
with respect to variations of the area functional, according to the principle of “least”/stationary action,
the pseudo-holomorphic curves have been of great interest to string theory for the last two decades.

Not much is generally known about the relation between symplectic and Riemannian invariants of
manifolds. A prominent role in such a relation is furnished by the conjecture of C. Viterbo [108] which
is formulated for convex domains in R2n. Let U be such a convex domain and B1 be the Euclidean unit
radius ball in R2n Equation (33). For any symplectic capacity c and any such convex U one has

c(U)

c(B1)
≤
(
vol (U)

vol (B1)

) 1
n

(99)
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where vol denotes the Riemannian volume of the corresponding sets. One immediately sees that
this conjecture follows the same philosophy as the failed attempt to relate the volume and the
symplectic capacity Equation (95). The big difference between Equation (95) and Equation (99), is
that Equation (99) makes a similar, in spirit, statement but expressed in relative terms, i.e., relative to
the corresponding quantities for a ball. The meaning of this symplectic isoperimetric conjecture is that
among all convex domains U in R2n with a given volume, the Euclidean ball has the maximal symplectc
capacity. Such a statement has a clearly isoperimetric flavour (“why is a droplet/bubble spherical”? or,
among all shapes having a fixed volume, determine the one(s) with the least boundary/surface area).
Viterbo’s conjecture Equation (99) is not fully proved yet, although weaker versions of it have been
proved, which rely on inserting a constant A(n) on the right hand side of Equation (99)

c(U)

c(B1)
≤ A(n)

(
vol (U)

vol (B1)

) 1
n

(100)

Initially C. Viterbo proved Equation (100) [108] forA(n) ∼ n, in particularA(n) ∼ 2n for symmetric
convex domains with respect to the origin, andA(n) ∼ 32n for general convex domains. After that [109]
improved the estimate to A(n) ∼ (log n)2. The best known estimate, to our knowledge, was furnished
by [110] withA(n) becoming an actual constant, i.e., independent of the dimension n altogether, namely
A(n) = A0. It should be noticed that the assumption of U being convex is essential: indeed, star-shaped
domains were constructed in [111] having an arbitrarily small volume but fixed capacity, which violates
Equation (99). The conjecture itself is true for ellipsoids and convex Reinhardt domains [111]. In
the exact opposite direction of Viterbo’s conjecture, namely in finding the worst possible symplectic
capacities to volume ratios, one can see the symplectic cylinders are candidates, since this ratio is zero
in their case.

We see from the preceding analysis that ellipsoids are in some sense minimal and still are invariant
under symplectic diffeomorphisms. Hence, from a purely Hamiltonian/symplectic viewpoint it makes
more sense to use as cells in coarse-graining the phase space M ellipsoids rather than cubes. This is
in sharp contrast to the Euclidean/Riemannian viewpoint of the previous Section for which, as we saw,
cubical cells appear to be the most appropriate for such a coarse-graining process. Quantifying aspects
of this mismatch between ellipsoids/spheres and cubes (or polytopes/convex bodies) to which we will
ascribe the origin of entropy, is the topic of the next Section.

5. Basic Concepts and Implications of Convexity

In this Section we will be using convexity exclusively in Rn. This is not as big of a compromise as it
may appear since all manifolds, symplectic or not, are locally isometric to Rn up to first order deviations.
Curvature appears as a second order deviation from the Euclidean metric of Rn. Hence, if one focuses
on local properties of a manifold, understanding convexity of subsets of Rn already accomplishes quite
a bit. Moreover, as was mentioned above, Nash’s embedding theorems show that a generic manifold is
not “too different” from a Euclidean space since it can be isometrically embedded in a Euclidean space
of high enough dimension. Working in Rn allows us to use its linear structure to arrive in results that
would not otherwise be accessible. Since we are working with Hamiltonian systems of many degrees
of freedom, we should be able to eventually consider the thermodynamic limit. Even though taking
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such a limit can be a non-trivial, model dependent, process, it may not be unreasonable to assume,
naively, that it is related to the limit n → ∞. Hence we are interested in the behaviour of convex
subsets of Rn, for n very large. This is the realm of the “local theory of Banach spaces”, or “asymptotic
geometric analysis”, or “asymptotic convex geometry”. It turns out that there are highly non-trivial and
unexpected/counter-intuitive results in this realm (such as the “concentration of measure”) which lies
somewhere between linear algebra (for n:fixed, finite) and functional analysis (where one deals with
infinite dimensional spaces). We would like to know about geometric structures that are, in a sense,
“typical”, so they can encode results of importance for Statistical Mechanics. The field of asymptotic
convex geometry is highly developed. For our very limited purposes for this work, we have drawn,
in various degrees, material from the books [112–118] and the reviews [119–122] to which one can
turn, as well as to the numerous other outstanding references, for details and proofs and authoritative
and comprehensive expositions on these topics In the sequel, we will confine ourselves to concepts and
results needed in the present work.

5.1. Convex Bodies, Polar and Functional Dualities

A convex set K ⊂ Rn is a set such that

∀ x, y ∈ K, tx+ (1− t)y ∈ K, t ∈ [0, 1] (101)

A convex body is a compact, convex subset of Rn having a non-empty interior. Hence balls,
ellipsoids, cubes, polytopes etc. are convex bodies. A fundamental theorem in convexity is that
Hahn-Banach separation theorem which implies that each convex bodyK is an intersection of half-spaces
and that at each point of the boundary ∂K of such a convex body there is at least one supporting
hyperplane. Intuitively, this should be obvious. We will be mostly interested in convex bodies that
are symmetric with respect to the origin of Rn. A convex body K is symmetric with respect to the origin
of Rn if x ∈ K implies −x ∈ K. Symmetric convex bodies are of great interest for the following
reason: consider a finite dimensional normed space X. Then it is possible to choose a bijection X→ Rn

such that X can be identified with (Rn, ‖ · ‖) for some norm ‖ · ‖. What we have in mind is either the
usual Euclidean norm, or a “generalised” norm induced by generalized products such as Equation (12) or
Equation (21). The unit balls, centered at the origin, B1(X) of such norms are symmetric convex bodies,
with respect to the origin. Conversely, for any symmetric convex body K one can assign canonically a
corresponding (Minkowski) ‖ · ‖K norm given by

‖x‖K = min{s ≥ 0 : x ∈ sK} (102)

whose unit ball isB1(X) = K. As examples, with the notation of Equation (33), one can see thatB1(ln2 )

is the Euclidean ball,B1(ln∞) is the usual cube Equation (35) whose edge is the interval [−1,+1] of length
2 units, so it is symmetric with respect to the origin. Another example, needed for our future reference,
is the n-cross polytope, which is defined as the convex hull Equation (97) of the endpoints of the unit
orthonormal coordinate vectors ei, i = 1 . . . , n in Cartesian basis of Rn. The metric having the cross
polytope and the unit ball is called the Manhattan/taxicab metric, or more concretely, the cross-polytope
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is B1(ln1 ). The significance of the cross-polytope, for our purposes, stems from the fact that it is the polar
set of the unit cube B1(ln∞). Consider a convex set K ⊂ Rn. Then its polar set K◦ is defined by

K◦ = {b ∈ Rn : 〈a, b〉 ≤ 1, ∀ a ∈ Rn} (103)

where 〈·, ·〉 is the Euclidean inner product on Rn. What polarity does is to exchange the faces with
the vertices. By inspection, a cube in Rn has 2n faces and 2n vertices and the converse is true for the
n cross-polytope. Upon a more careful examination, one can see that the polar of an n-cube is the n
cross-polytope.

There is an equivalent functional way of expressing the above polar facts, mainly because Rn is a
linear space. Let X,Y be Banach spaces, whose corresponding norms even though different from each
other, will still be indicated by ‖ · ‖ for simplicity of notation. Consider a linear operator T : X → Y.
Such an operator is bounded if there is some constant C > 0 such that

‖Tx‖ ≤ C‖x‖, ∀ x ∈ X (104)

Then the infimum of such numbers is the operator norm of T , indicated by ‖T‖, so it is defined by

‖T‖ = sup
x∈X\{0}

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖ (105)

In the case that Y = R then T is called a linear functional on X. The space of continuous linear
functionals of X endowed with the operator norm is called the dual space of X and it is indicated by
X∗. The dual space of a Banach space tuns out to be a Banach space too. As is well-known from linear
algebra such a T is an isomorphism if it is a bijection and in addition both ‖T‖ and ‖T−1‖ are bounded.
Such an isomorphism is an isometry if

‖Tx‖ = ‖x‖, ∀ x ∈ X (106)

According to the Riesz representation theorem, every element a ∈ X∗ has the form a 7→ 〈a, b〉 for
some b ∈ Rn. The unit ball of X∗ is therefore

B1(X∗) = {b ∈ Rn : 〈a, b〉 ≤ 1, ∀ a ∈ B1(X)} (107)

which due to Equation (103) can be rewritten as

B1(X∗) = (B1(X))◦ (108)

Hence the convex concept of polarity of symmetric convex bodies in Rn corresponds exactly to the
functional analytic concept of duality of n-dimensional normed spaces. Given the well-known duality

(ln1 )∗ = ln∞ (109)

are see that Equation (108) is the generalisation of the polar relation

B1(ln1 ) = (B1(ln∞))◦ (110)

indicated in the discussion preceeding Equation (104).
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5.2. The Banach-Mazur Distance

We would like to compare, quantitatively, the coarse-graining of phase space by cubes (and their
images under generalised operations induced by non-additive entropies, which are convex polytopes)
and the balls/ellipsoids that should be the cells of coarse-graining of phase space as dictated by its
symplectic structure. This can be accomplished by introducing a distance d in the set of all convex
bodies. To define such a distance consider two symmetric convex bodies K1 and K2 of Rn. Then such a
distance d is given by

d(K1,K2) = inf {αβ : K1 ⊆ αK2, K2 ⊆ βK1, α > 0, β > 0} (111)

What this essentially states is that the distance between K1,K2 is the smallest number δ such that
if K1 can be barely inscribed in K2, then δK1 can be barely circumscribed around K2 and vice versa,
with the role of K1,K2 interchanged. This definition relies on dilations of the symmetric convex bodies
K1,K2 and therefore it is, not surprisingly, multiplicative. To get an additive distance, one should take
the logarithm of such d. Moreover, and since physical theories use extensively metric concepts, it may be
worthwhile comparing Equation (111) with the well-known Hausdorff distance as well as the numerous
other distance functions that someone can come up with, many of which are disucssed in [71].

Consider the n-dimensional spaces X1,X2 whose unit balls are K1,K2 respectively, as explained the
previous subsection. Then, following Equation (111) their Banach-Mazur distance is defined as

d(X1,X2) = inf{d(K1, TK2) : T ∈ GL(n,R)} (112)

where T is an operator which is an element of the general linear (Lie) group GL(n,R). Essentially what
T does is to move around “rigidly” K1,K2 until their mutual distance Equation (111) becomes as small
as possible, i.e., one of them “barely fitting” inside and outside the other, and vice versa. This can be
expressed more succinctly by stating that d is such that K1 ⊆ T (K2) ⊆ dK1 for any T ∈ GL(n,R).
Since, as seen in the previous subsection, there is an intimate link between convex geometry in Rn and
functional analysis, one can further translate the Banach-Mazur distance Equation (112) in the functional
analytic language as

d(X1,X2) = min{‖T‖ · ‖T−1‖, T : X1 → X2 isomorphism} (113)

which is a form of the Banach-Mazur distance between normed spaces also frequently encountered.

5.3. The Banach-Mazur Distance between a Sphere and a Cube

Consider now the cube In = [−1,+1]n in Rn. It is easy to see that one can inscribe in it a ball of
radius 1 and can circumscribe around it a ball of radius

√
n, for any n, and one cannot do better than

that. Hence, it is intuitively obvious that the Banach-Mazur distance between a cube and a ball is
√
n.

Therefore as the dimension increases the cube looks less and less like a ball: the vertices of the cube
“move” further and further away from the centre of the ball, assumed fixed, or conversely the ball “curves
more” as n increases and therefore it becomes smaller and smaller inside a fixed cube. To make this a bit
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more precise, one can start form the well-known formula for the volume of the Euclidean unit-radius
ball in Rn

vol B1 =
π

n
2

Γ(n
2

+ 1)
(114)

where Γ stands for the (Euler) gamma function. Using Stirling’s approximation

Γ
(n

2
+ 1
)
∼
√

2π e−
n
2

(n
2

)n+1
2

(115)

provides the estimate

vol B1 ∼

(√
2πe

n

)n

(116)

Therefore one can see that due to the curvature of the surface of the ball, the ball of unit radius has a
volume that approaches zero very fast as n → ∞. This is in sharp contrast with the case of the cube In
whose volume increases as n→∞. Hence it is expected that the distance between the cube and the ball
of unit radius will increase as n increases. Not only that, but such a distance is as large as possible for
the ball and the cube, a direct outcome of F. John’s theorem.

Based on the above and from a metric viewpoint, as was also previously remarked, coarse-graining
the phase space M with balls instead of cubes (or vice versa) should provide the greatest possible
discrepancies than the coarse-graining of M with any other regular polytopes. But entropy, and
this is probably clearest in the definition of the Kolmogorov-Sinai case [65], involves considering
the supremum over all possible phase space partitions. Since coarse-graining involves a piece-wise
(for each cell) constant probability density ρcg, phase space measures are constant multiples, per cell, of
their phase space volumes. As a result, substituting small enough cubic cells for balls (and vice versa) in
coarse-graining will provide the maximal possible measure discrepancy, namely the maximal possible
phase-space volume loss, which is what SBGS has been designed to capture.

It should be noticed that the polar duality is of fundamental importance in asymptotic convex
geometry hence it may be desirable to compare pairs of polar dual polytopes rather than single convex
bodies. In this respect the Euclidean ball is unique in that it is the only is self-dual polytope under
polarity. If it is pairs of polar dual polytopes that are of fundamental interest, the one should also consider
the Banach-Mazur distance between B1(ln2 ) and the cross-polytope B1(ln1 ). It should also be intuitively
obvious that such a distance is n and this is as bad as things can get. Intuitively the cross-polytope and
the cube are the “pointiest” of all convex bodies hence their distance from the “roundest” of all of them,
which is the ball, should be maximal.

For our purposes the ball, or more generally ellipsoids, are a manifestation of the symplectic structure
of Rn and the cube encodes geometrically the concept of independence, as seen in the previous sections.
Since however we would like to allow for generalised concepts of “independence” induced by entropies
such as Sq, Sκ etc. whose induced “cubes” are, in general, symmetric polytopes/convex bodies what we
would like to ask is what is the Banach-Mazur distance between convex bodes and ellipsoids. And since
actually calculating the Banach-Mazur distance between convex bodies has proved to be quite hard, in
general, one can settle either by asking for upper bounds for that distance or for asymptotic estimates as
n→∞ (the “thermodynamic limit”). That there is a unique ellipsoid of maximal volume that can barely
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fit inside a convex body is guaranteed by F. John’s theorem where conditions for this maximal ellipsoid
to actually be the Euclidean sphere are also spelled out.

Another result, intuitively plausible, if not obvious, is that a reasons why a sphere and a cube are so
different is that the cube has too few faces. What would happen if one allowed for a symmetric convex
body with far more faces? Then the answer is that its distance form the sphere should decrease. And
this is actually what is happening but the crucial matter, for our purposes, is that the increase has to be
exponential in terms of the dimension. More precisely, consider a symmetric convex body K ⊆ Rn

such that d(K, B1(ln2 )) = d. Then K must have at least exp( n
2d2

) faces. Since the distance between the
cube and the ball is

√
n, a cube in Rm has almost spherical sections of dimension logm. A substantial

generalisation of this fact, Dvoretzky’s theorem, we will be used in Section 6.
Having stated that the distance between a cube an Euclidean ball is the maximum possible, we may

turn to a desirable consequence already embedded in the definition of entropy [1–3]. Entropy, like any
thermodynamic quantity, involves ignoring a lot of the details of the underlying dynamical processes
as noticed earlier in this subsection. All such details are contained in the phase space evolution of
the underlying dynamical system. Hence skipping many of these details, for small enough cells in a
coarse-graining of phase-space, is tantamount to glossing over or even ignoring a substantial volume
of the cells, if we think that such an omission will not make, statistically, any substantial difference.
Since SBGS describes systems having a simple phase space evolution according to Birkhoff’s ergodic
theorem [65], hence the micro-canonical density ρ is uniform on a constant energy hypersurface of
the isolated system, we can simplify our considerations and use balls instead of cubes, as the distance
between them is the largest possible, for coarse-graining. By doing that, we have to ignore most of the
volume of these cubes, thus simplifying the description, without losing much, due to the uniformity of
the micro-canonical measure and its proportionality to volume within each cell.

This procedure is effective due to the fact that the majority of the volume of the cube In is close
to its vertices, something that can be justified as follows: place the cube’s centre of symmetry at the
origin of Rn and express its volume in spherical coordinates. Let let θ collectively express the angular
coordinates, parametrising the unit sphere Sn−1 and r(θ) be the radial coordinate. Then

vol (In) = vol(B1)

∫
Sn−1

rn(θ) dΣ(θ) (117)

where dΣ expresses the infinitesimal area element of the surface of In. Since In is a cube of side length 2,
its volume is 2n. Therefore ∫

Sn−1

rn(θ) dΣ(θ) =
2n

vol(B1)
(118)

which, after using Equation (112) gives approximately∫
Sn−1

rn(θ) dΣ(θ) ∼
(

2n

πe

)n
2

(119)

This corresponds to a cube of average radius about
√

2n/πe. Given that the distance between the
vertices of the cube and its centre is

√
n, and that centre of each face is 1 unit away from its centre, we

conclude from Equation (119) that most of the volume of the cube is closer to its vertices than to the
centre of its faces. Hence substituting the cubes In by Euclidean balls inscribed in them, hence of unit
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radius, omits most of the volume of the cube, which however is rather innocuous, as can be inferred from
the above discussion.

We should be very careful however, since such an argument may not necessarily apply for systems
described by Sq,Sκ or any of the other non-additive entropies. Such systems will have more complicated
phase space behaviour, potentially attracting sets and the like [123], which a regular measure ρ may not
be able to adequately describe. As the case of the Sinai-Ruelle-Bowen [124] measures indicates, one
may have to use measures some of the marginals of which may be nowhere absolutely continuous with
respect to the phase space volume, thus invalidating the above arguments and complicating substantially
the coarse-graining process.

5.4. Unit Euclidean Balls and Gaussians

There is another reason for considering, and quantifying, the discrepancy between balls/ellipsoids and
cubes/convex bodies/polytopes. Consider the, arguably, simplest system of many degrees of freedom:
the classical (non-relativistic) ideal gas of N identical particles of mass 2 units which is placed inside
an isolated cubical box of side length L. The phase space of this system factorizes as L3N × R3N .
The Hamiltonian is

H =
N∑
i=1

p2 (120)

Given that the system is isolated, its total energy is conserved. Set it equal to unit for simplicity. Hence
the momentum space reduces from R3N to the unit sphere S3N−1. The thermodynamic limit corresponds
to taking N → ∞ which gives rise to the Maxwell distribution, which is Gaussian with respect tot
the molecular speeds. Probabilistically, this is a simple manifestation of the Central Limit Theorem.
This result, interpreted geometrically, shows that a unit radius sphere of high dimension (N → ∞)
should be an excellent approximation to the Gaussian distribution.

That this is indeed true had been stressed by É. Borel and later by P. Lévy. More recently, it has been
emphasized in the work of V.D. Milman and M. Gromov. The argument can be made more precise as
follows [119]: consider the Euclidean ball Bn

R of radius R in Rn. Due to the homogeneity of volume,
its volume is

vol Bn
R = Rn vol B1 (121)

where B1 is given by Equation (114). Assume that volBn
R = 1. Hence

R = (vol B1)−
1
n (122)

Hence a section of this ball of codimension 1 passing through the origin, will be an n−1 dimensional
ball Bn−1

R of radius R whose volume is according to Equations (118) and (119)

vol Bn−1
1 Rn−1 = vol Bn−1

1 (vol Bn
1 )−

n−1
n (123)

After using Stirling’s approximation Equation (115), we see that for large n this section has a volume
approximately equal to

√
e. Consider now an n− 1 dimensional section of this ball at a distance r from
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the ball’s center. Its radius will be (R2 − r2)
1
2 . As a result its volume will be, for large n, approximately

given by
√
e

(
(R2 − r2)

1
2

R

)n−1

=
√
e

(
1− r2

R2

)n−1
2

(124)

Following Equation (116) we can see that the a Euclidean ball of volume 1, for large n, has a radius
of about

R ∼
√

n

2πe
(125)

Substituting Equation (125) in Equation (124) gives for the volume of the spherical section at distance
r from the origin

√
e

(
1− 2πer2

n

)n−1
2

∼
√
e exp(−πer2) (126)

So, the projection of the unit volume of the ball in a spherical section of co-dimension 1, which is at
a distance r from the ball’s centre, for large n, is almost a Gaussian distribution of variance 1

2πe
. What

we have done is a geometric re-formutation and “derivation” of the Central Limit Theorem.
What we also observe in the above derivation is that most of the volume of the ball concentrates in

a lower dimensional section passing through its center. This observation turns out to be independent
of the validity of the Central Limit Theorem, even if this is not obvious from the above arguments.
Counter-intuitive as it may be, it is frequently encountered in convex asymptotic geometry, i.e., in Banach
spaces as their dimension increases to infinity. Extensions for the cases of Riemannian manifolds with a
Ricci curvature bounded from below or in terms of the behavior of the lowest non-trivial eigenvalue the
spectrum of their Laplacian also exist. The same can be stated for smooth metric measure spaces under
additional assumptions and generalizations of the definition of convexity. This underlying behavior has
been called “concentration of measure” [71,114,118,125–130] and was the main avenue for V.D. Milman
proving Dvoretzky’s theorem which we will come to in the next Section.

5.5. About “Quantum Blobs”

In the previous Sections we saw that there is a substantial discrepancy between the coarse-graining
approach that rely on cubes which are the outcome of independence/simplicity arguments and
balls/ellipsoids induced from symplectic capacities. Ultimately one would like to have a “natural way”,
to the extent possible, to decide on such coarse-graining. The existence of the fundamental constant
~ arising in Quantum Physics, partially helps provide a scale for such a phase-space coarse-graining,
but the exact shape of the fundamental cell employed is still a matter of choice, as previously has been
pointed out. Since balls/ellipsoids minimise all symplectic capacities and their high dimensional sections
are Gaussian, as seen in the previous subsection, one may be willing to use them as the fundamental
cells for phase-space coarse-graining. This would be favourably supported by Quantum Mechanics
where the minimum uncertainty, hence “as precise as possible”, wave-functions for quadratic potentials,
which are the lowest order approximations to any “generic” analytic potentials, are Gaussians. See
also the discussion in Section 4.5. In this subsection we rely on the work of M. de Gosson and
collaborators [86–95] where many more details on simiar topics can be found.
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“Quantum blobs” are, very much like Gaussians, minimum uncertainty sets whose size is measured
using symplectic capacities instead of volumes. Their advantage, as opposed to cubic cells, is that they
remain invariant under canonical transformations, hence they preserve the Hamiltonian structure of the
dynamical system. To be more specific, we work in R2n, and define a quantum blob Q2n(x0) to be the
image of the Euclidean ball B√~(x0) ⊂ R2n under a canonical/symplectic transformation. Using the
results of Section 4.5 we see that for a quantum blob

c(Q2n(x0)) =
1

2
~ (127)

which has the same order of magnitude as the symplectic capacity of a cube. By contrast,
since symplectic transformations are volume-preserving, the volume of a quantum blob, following
Equation (118), is

vol (Q2n(x0)) =
hn

n! 2n
(128)

As result, this volume is n!2n times smaller than that of a cube. Since we are interested in the
thermodynamic limit n → ∞, the quantum blob has far (“infinitely” ) smaller volume than that of a
cube, despite the fact that its sections along all symplectic 2-planes are of comparable area.

The above considerations of cubes versus ellipsoids as fundamental cells of phase-space
coarse-graining raise another question. If the two-dimensional sections of these two candidates for
fundamental cells are of almost the same area but their volumes are so different, is there any intermediate
situation? Given that quantum blobs have a substantially smaller volume than the corresponding cubes
and that inside each cube, or polytope, there is a maximal volume ellipsoid (F. John’s theorem), is there
any intermediate dimensional section of the cube which is close to being a ball/ellipsoid?

6. Dvoretzky’s Theorem, Dvoretzky Dimension and Dualities

In this Section we present Dvoretzky’s theorem and the Dvoretzky dimension, and its implications for
the definition of entropy. We do not claim that we can actually predict the functional form of entropy to
be used in each occasion, as would be desirable, if feasible, in our opinion. However we can at least see
that the choices of SBGS and Sq are plausible, asymptotically, for the case of the “thermodynamic limit”
(n → ∞) seen through a perspective/viewpoint induced by Dvoretzky’s theorem and its implications.
The choices of the appropriate deformation fields such as Rq and Rκ contribute in determining the
shape of the fundamental cells in which the phase space M of the Hamiltonian system should be divided
in a coarse-graining process. However such a choice, if it is also followed by the other axioms of
Shannon/Khintchin or Abe/Santos etc. amounts to the choice of the entropic functional employed in any
particular situation. Still the viewpoint that we follow in this Section may be useful in seeing the entropy
under a different light, which may allow inferences that may not be easily accessible otherwise, such as
the origin of dualities in non-additive entropies etc.

6.1. Dvoretzky’s Theorem, Dvoretzky’s Dimension and Entropies

The above considerations of cubes versus ellipsoids as fundamental cells of phase-space
coarse-graining raise another question. If the two-dimensional sections of these two candidates for
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fundamental cells of phase-space coarse-graining are of almost the same 2-dim “area” but their volumes
are so different, is there any intermediate situation? Given that quantum blobs have a substantially
smaller volume than the corresponding cubes and that inside each cube or convex body/polytope there
is a maximal volume ellipsoid (F. John’s theorem), is there any intermediate dimensional section of the
cube which is close to being a ball/ellipsoid? We saw in Section 5.3 that for a symmetric convex body to
be close to a ball, it must have exponentially many faces. Equivalently, a cube in Rn has almost spherical
sections of dimension at least log n. Hence, if the dimension of a section of a cube is larger than log n

then it can be reasonably close to a ball, therefore the discrepancy between phase space coarse-graining
by cubes and by balls can be seen as non-significant. On the other hand, as seen in Section 5.3, if such
a section has dimension much larger than log n, then the cube and the ball will be substantially different
from each other in their volumes, hence a coarse-graining procedure would give quite different results
for these two fundamental cells. Since cubes and balls are as distinct from each other as possible as
measured by their Banach-Mazur distance, getting the same coarse-graining results for both of them can
be seen as relatively re-assuring that we will get the same results by using as fundamental cell of phase
space any other symmetric convex body (polytope).

From a physical viewpoint, one can interpret this way of thinking to mean that log n as n →
∞ is, asymptotically, the optimal order of magnitude dimension that one can use in order for the
coarse-graining results of phase space to be virtually independent of the exact shape of the fundamental
cell. Hence the statistically important characteristics of the underlying dynamical system would be
preserved, geometrically, but there would still be a reduction in the complexity as measured by the
number of the effective degrees of freedom of the system. But this is exactly what the entropy was
designed to capture. Of course, the entropy is associated to a measure, which may not be just the
volume. However, if one assumes the validity of the ergodic hypothesis, the micro-canoncal density is
uniform on the constant energy hyper surface under consideration, as was also previously pointed out
(Section 5.3). Hence all the arguments pertaining to the micro-canonical measure are reduced to the
corresponding ones about volumes. Hence, in the most conventional sense, the entropy should have
the form of a natural logarithm of the accessible phase space, in accordance with Boltzmann’s, Gibbs’,
Shannon’s etc. ideas.

One wonders on whether anything similar can be stated about non-extensive Statistical Mechanics and
the non-additive entropies such as Sq and Sκ. After all, the underling geometric structures are almost the
same, the only difference being that cubes will have to be replaced by their images under Equation (14),
Equation (23) and their generalisations, generalised shapes which are symmetric convex polytopes. The
underlying symplectic structure, by contrast, remains the same as Hamilton’s equations are still assumed
to be applicable for such systems (see also the related comment in Section 3.3 after Equation (38)).
Hence the question that arises, in analogy with the cube, is whether there is any dimension beyond
which a symmetric convex body (polytope) has almost spherical sections. There is an additional level of
difficulty however: it is not clear that the systems described by Sq or Sκ are ergodic. On the contrary,
it has been conjectured that these non-additive entropies describe exactly non-ergodic systems (see also
the last paragraph of Section 5.3). Even though any “reasonable” measure admits a decomposition into
ergodic components [65], this is not enough to justify the reduction of the phase-space measure to just the
volume. To proceed, we assume that each phase space cell is so small that such a reduction is possible.
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This can occur, for instance, when the measure density variation is slow, when compared to the spatial
extent of each cell.

To make the question more precise and general, assume that X is an n-dimensional Banach
space whose unit ball expresses the generalized independence induced by some non-additive entropic
functional. Then, is there a subspace E of X of dimension k(ε, n) such that d(E, lk2) ≤ 1 + ε, for
ε > 0 ? In this expression d stands for the Banach-Mazur distance between E and the k-dimensional
Euclidean (Hilbert) space lk2 . Slightly more geometrically, one can start from the symmetric convex
body K in Rn which expresses the afore-mentioned independence. Does there exist a section K ∩ E
of K by a subspace E of dimension k(ε, n) so that if E is an ellipsoid, one has the inclusion
E ⊆ K ∩ E ⊆ (1 + ε)E? It should be noticed that the above questions are asymptotic, in the sense
that n is large, namely n → ∞. The answer to these equivalent questions is affirmative as was proved
in 1961 by A. Dvoretzky [114,118,119,121,122,125,126] a result which is one of the cornerstones of
Geometric Functional Analysis/Asymptotic Convex Geometry. The result is extremely counter-intuitive
as someone can easily see by trying to imagine a section of a cube which is almost spherical. Such a
result is possible exactly because the dimension n is assumed to be quite large.

As it befits a fundamental result, there are different re-formulations in slightly different contexts
under the general title of “Dvoretzky’s theorem” and several alternative proofs. One of the still unsettled
questions is the optimal form of the Dvoretzky dimension k(ε, n) in the above statements. The best
known estimate is

k(ε, n) ≥ cε2 log n, ε ∈ (0, 1) (129)

The case of our interest (see also the discussion in the next subsection) involves the n-dimensional
Banach spaces endowed with the norms Equations (30) and (31) which were indicated as lnp , 1 ≤ p ≤ ∞.
It is a non-trivial result that the corresponding Dvoretzky dimensions k(lnp ) are given asymptotically
n→∞ by

k(lnp ) ∼


n, 1 ≤ p ≤ 2

p n
2
p , 2 < p <∞

log n, p =∞
(130)

We observe that when p > 2 then we have a power-law behaviour. If the Dvoretzky dimension of
a cube k(ln∞) is responsible for giving rise to the logarithmic form of the entropy as we previously
suggested, then one can see that power-law entropic forms such as Sq and Sκ may be seen, at a first
glance, as arising from the Dvoretzky dimension of lnp , p > 2. Even though this would not be exactly
correct, in the face of the comments of the next subsection, at least it may be considered as suggestive,
and indicative of yet not fully appreciated underlying structures. We observe in Equation (130) the
remarkable property that k(lnp ) ∼ n, 1 ≤ p ≤ 2. Pushed to its limit, and substituting q for p in
Equation (130), if the above discussion is pertinent for Sq, then the assumed range of entropic indices
q ∈ (0, 1) would cover all possible cases for the leading power-law behaviour of the entropic functional.
If the conclusions of [38,39] prove to be correct, the range q ∈ (0, 1) in Sq is the only acceptable one for
the entropic index related to a Hamiltonian system of many degrees of freedom. Similar things can be
probably stated about the entropic parameter κ and the entropic functional Sκ.
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Potentially existing sub-leading terms in the non-additive power-law functionals cannot be detected
by the asymptotic form Equation (130), so far as we can see. It is probably exactly such sub-leading
terms that determine the differences between functionals such as Sq and Sκ and therefore these terms
may turn out to able to distinguish which one of these functionals is more appropriate for describing
which system. Still, referring to more general systems described by the above two, or any other, entropic
functionals of power-law form, we are not quite certain about how to interpret the significance, if any, of
the “phase transition” in the Dvoretzky dimension of lnp exhibited between p ∈ [1, 2] and p ∈ (2,∞).

6.2. On the (ε, τ ) Entropy and the Use of lnp Spaces

It may be of interest to elaborate a bit upon the dynamical origin and role of ε appearing in Dvoretzky’s
theorem. This parameter expresses, as was previously discussed in Section 3.3, our fundamental inability
to follow the evolution of the underlying dynamical system with absolute precision. One way to quantify
this, is through a modification of the Kolmogorov-Sinai entropy [65] such as the one presented in [131]
called ε-entropy: in the case of the Kolmogorov-Sinai entropy, one introduces partitions/cells of the
phase space of size ε over which one defines SBGS . Eventually, one takes the size of the partition ε→ 0.
By contrast in the ε-entropy the size of the fundamental cell remains finite, but all other steps as the same
as in the case of the Kolmogorov-Sinai entropy construction. One can refer to [131] for the advantages
and difficulties that such a definition implies. What is important, for our purposes however, is that in
this definition the finite, even if small, phase-space “resolution” ε enters explicitly the definition entropy.
Hence this parameter will invariably appear, explicitly or implicitly, in the composition properties such
as Equation (8), Equation (9) or Equation (19) and therefore R,Rq or Rκ respectively. Since one defines
the fundamental polytopes of phase space coarse-graining, which express geometrically “independence”,
via these algebraic operations and structures, the shape of these cells/polytopes will invariably contain a
dependence on ε. Therefore there will be some finite uncertainty about the exact shape of the convex body
that one should use in Dvoretzky’s theorem, based on the above physical arguments. This uncertainty
is quantified and appears in Dvoretzky’s theorem as the upper bound requirement of the Banach-Mazur
distance in the theorem and explicitly in the Dvoretzky dimension κ(ε, n) as its dependence on ε. In this
paragraph, we have used ε twice, in two quite different contexts. This is clearly a substantial abuse of
notation: even though one may possibly expect to find a relation between the indeterminacies expressed
by ε in these two contexts, one should not assume that they are equal, let alone the same.

A second point that may be clarifying, is the extensive use of the lnp , 1 ≤ p ≤ ∞, Banach spaces
in arguments (Section 3.2 and forth) in this work. One reason for such use is that a lot of their features
are reasonably well-understood, when compared to general Banach spaces. This however does not make
them physically more relevant, just formally more tractable. Based on SBGS and Sq, Sκ it appears that
the concept of independence as expressed by cubes, namely the unit ball of ln∞, should be sufficient
for our purposes. After all, the field isomorphisms Equations (14) and (23) are invertible and distance
non-decreasing. So they preserve the number of vertices of these cubes. All that they do is to uniformly
expand the sides of the fundamental cubical cells of the phase space partition used in coarse-graining. In
addition, any legitimate cube should have clearly defined vertices. However, all lnp , 1 < p <∞ have unit
spheres that are everywhere differentiable, hence they do not possess any clearly defined (point) vertices.
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To address the last concern, one should refer to the ideas leading to the use of the (ε, τ ) entropy in
the first paragraph of this subsection. In realistic models, even classical ones, there is always some
uncertainty associated to the scale of phase-space coarse-graining ε. This should be reflected on the
composition property of the pertinent entropic functional. This indeterminacy, in turn, makes the concept
of independence become a bit “vague”: the corresponding cubes do not have well-defined vertices and
faces, but rather areas of small but finite “thickness” as faces, and areas of small spatial extent/“radius”
as vertices. Hence one should not be able to distinguish between “cubes” in lnp for, let’s say, p = 1

and for p = 1 + δ, where 0 < δ � 1. A second reason in favour of using nn only the spaces lnp
but also more general Banach spaces in employing Dvoretzky’s theorem for physically relevant cases
is that we want to have a formalism that is flexible enough to accommodate, many families of entropic
functionals. If the price that one pays for such a flexibility is small, then one is willing to go along with a
slightly more elaborate, but far more general, formalism to accomplish these ends. Consider, for instance,
models of highly anisotropic systems, of as practical as materials possessing layered structures [132],
or as exotic and conjectural as of anisotropic (Hořava-Lifshitz [133] etc.) gravity. Then it may not
be entirely unreasonable to propose a direction-depedent entropic form for such systems, as long as
there is a relatively clear separation of the dynamics and scales in the different directions. This would
elevate the non-extensive parameters of entropic functionals such as Sq,Sκ into vectors. If this is
true, then the corresponding unit cells, expressing independence, in phase-space coarse-graining will
be anisotropic convex bodies which however can still be accommodated by the convexity formalism
presented here. To this date though, there has not been any compelling theoretical reason to introduce
any such vector-valued entropic index functionals, so far as we know.

6.3. Polarity, Mahler’s Conjecture and Symplectic Rigidity

An issue that may be worth discussing is that of polar duality. From a geometric as well as analytical
viewpoint, polarity has turned out to be of considerable significance, since the earliest days of Euclidean
geometry. The functional analytic analogy of the polar of a convex body K◦ with the dual space
X∗ presented in Section 5.1 has important and far-reaching consequences. One of them is that the
Banach-Mazur distance remains invariant under such a duality, namely for any normed spaces X,Y,
the Banach-Mazur distance obeys

d(X,Y) = d(X∗,Y∗) (131)

An immediate implication is that since, according to John’s theorem

d(ln2 , l
n
∞) =

√
n (132)

and because (ln1 )∗ = ln∞ and the Hilbert space ln2 is self-dual (the Euclidean ball is the polar of itself),
one also has

d(ln2 , l
n
1 ) =

√
n (133)

Since the different lnp via their unit balls express different ways of defining independence, induced by
the various non-additive entropies, one also needs the extension of the above to

d(lnp , l
n
q ) = n

1
p
− 1

q (134)
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where either 1 ≤ p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞. The remaining option, namely 1 ≤ p ≤ 2 < q ≤ ∞
gives only bounds for the Banach-Mazur distance as

C1n
β ≤ d(lnp , l

n
q ) ≤ C2n

β, β = max

{
1

p
− 1

2
,

1

2
− 1

q

}
(135)

with C1, C2 being positive constants. Going back to Dvoretzky’s theorem, the
Figiel-Lindenstrauss-Milman theorem provides for the Dvoretzky dimension k of a Banach space
X and its dual X∗ the lower bound

k(X) k(X∗) ≥ Cn2

d(X, ln2 )2
(136)

which since d(X, ln2 ) ≤
√
n gives that

k(X) k(X∗) ≥ C ′n (137)

where C and C ′ are positive constants. As a result, for any such Banach space X, one has that either
k(X) ≥ C

√
n or k(X∗) ≥ C

√
n, a result that turns out to be sharp.

We refer to dualities in this work, not only because they play an important role in Convex Geometry,
but also because they may be of importance for the case of non-additive entropies. It has been
surmised from some data, for Sq for instance, that some systems seem to be invariant under the entropic
parameter changes

q 7−→ 2− q, q 7−→ 1

q
(138)

Whether this actually happens, and if so what is the origin of such invariances is still an open question.
The transformations Equation (138) are the generators of Möbius transformations for q ∈ C. Clearly the
case q = 1 in Equation (138) which corresponds to SBGS remains invariant under such transformations,
hence issues that can be raised for q 6= 1 pertaining to Equation (138), are undetectable for SBGS .
Convex polarity of the unit balls and the corresponding Banach space duality may somehow be related
to Equation (138) in a currently not understood manner. However a pattern that starts emerging that the
above considerations are suggestive of, is that it may be worthwhile to analyse in parallel, and compare
to each other, features of systems whose entropic indices are connected by some duality transformation.
Assuming that such systems are described by different values of the entropic parameter of the same
single-parameter family of functionals such as Sq or Sκ, it may be worth investigating what features of
such systems that are common, or in some, still vague, sense “opposite”/“complementary”.

To push this viewpoint a little bit further, it may be worth examining concurrently from both a convex
and a symplectic geometric viewpoints properties of the unit balls of dual to each other finite dimensional
Banach spaces X endowed with the norm ‖ · ‖ and X∗ endowed with the dual norm ‖ · ‖∗. To this
end, one may consider examining convex and symplectic geometric properties of properties of X × X∗.
A straightforward observation is that this vector space has a canonical symplectic structure: assume that
X, Y ∈ X and that X∗, Y ∗ ∈ X∗ are their respective duals. Then the canonical simplectic structure ω on
X× X∗ is defined by

ω((X,X∗), (Y, Y ∗)) = X∗(Y )− Y ∗(X) (139)

and the corresponding Liouville form of X × X∗ is, of course, ωn/n! . We saw during all this work t
hat the Euclidean ball and the cube are, in some sense, as different from each other as possible, and that
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even though the former behaves quite well under symplectic transformations the same is not true for the
latter. Therefore, it may come as a complete surprise that for the case of the cube In ⊂ Rn and its polar,
the cross-polytope, I◦n ⊂ Rn, the interior of In × I◦n turns out to be symplectically diffeomorphic to the
interior of the Euclidean ball in R2n of the same volume [76]. This again shows the unexpected features
of symplectic geometry where flabbiness and rigidity can be found in totally unexpected places.

On the geometric side, a question in the spirit of the isoperimetric problem [71,114,134] which was
posed by Mahler (ca. 1939) was to find upper and lower bounds for the Liouville volume of B1 × B◦1
where B1, B

◦
1 stand for the unit balls of X and X∗ respectively. This volume vol(B1 × B◦1), often

called “Mahler volume”, is invariant under linear invertible transformations. The upper bound was
determined in 2 and 3 dimensions in [135], and generalised in any dimension [136], if and only if X is the
Euclidean space (Blaschke-Santaló inequality). The equality was proved in [137]. Mahler conjectured
that the lower bound is 4n/n! and would be sharp. This lower bound would clearly apply for the pair
of the cube its polar, the cross-polytope. Mahler himself verified this conjecture in 2 dimensions but
in higher dimensions the conjecture remains unproven. What has been proved though is the conjecture
up to multiplicative factor whose best value known today is given in [138]. In an interesting recent
development, [139,140] assumed the validity of the Viterbo conjecture (Equations (99) and (100) and
the discussion around them), and proved that the Hofer-Zehnder capacity for a symmetric convex body
K and its polar K◦ is

c(K ×K◦) = 4 (140)

which, in turn, showed that the Viterbo conjecture implies the validity of the Mahler conjecture.
This subsection used some symplectic and convex geometric facts and conjectures to suggest that it

may be formally fruitful for someone to look at the same time at pairs of systems, rather than single
systems, described by entropies, belonging to the same single-parameter family but having harmonically
conjugate indices (which represent geometrically polarity and Banach space duality). It remains to
be seen whether this approach may provide some insights into the nature of such systems as well as
about the possible invariances and their origin, of non-additive entropies such as Sq under “duality”
transformations such as Equation (138).

7. Conclusions and Discussion

In this work we presented the view that the source of entropy can be ascribed to two mutually
exclusive ways of performing phase space coarse-graining. for Hamiltonian systems with many degrees
of freedom. The underlying Euclidean/Riemannian structure favours cells that are cubical. By contrast,
the symplectic structure favours ellipsoids. We discussed ways to measure the discrepancy of these two
disjoint approaches and also gave estimates, via Dvoretzky’s dimension of minimal dimensions spaces
in which they give almost the same results. So, it is in some sense, as if there is a set of variables present
at the microscopic level that reflects the number of variables that one sees as the outcome of a statistical
analysis, i.e., in thermodynamics. We cannot quite dare claim that these variables are the same, or
even more so, that there is a “phase-space thermodynamic” behaviour. It just appears from Dvoretzky’s
theorem that at the microscopic level one can infer a number of variables that are of the same order of
magnitude as the ones needed for a macroscopic descriptio of the system. Further investigation in this
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direction may be of some interest. Moreover, we saw some preliminary formal indications about the
suspected presence and about the origin of dualities of non-additive entropies via polarity.

One could certainly expand this work in both the symplectic and the convex geometric directions,
if deemed necessary. The symplectic capacities are still not very well understood objects. In case
this looks too removed from the modelling of physical systems, it may be worth mentioning that there
is an elaborate and flourishing research area on the interface between symplectic geometry and string
theory. Even though the goals and approaches in this area may appear substantially different from the
ones of Statistical Mechanics, some general ideas and technical approaches especially pertaining to
dualities [141–143] may be profitably adapted in the present context. After all, quantum perturbative
string theory, like any quantum theory, has a statistical interpretation and explicitly uses methods of
statistical mechanics relying on SBGS . To what extent one may wish to consider other functionals
in such a statistical approach is unclear. However, given string theory’s origins in dual resonance
models that were eventually superseded by QCD which is asymptotically free and has a Wilson loop
formulation [144], shows us that low energy correlations become dominant, a feature of systems
that non-additive entropies such as Sq claim to describe. Hence it may be worth looking into string
theory from an non-additive entropy viewpoint. There is more than just pure speculation on this front:
using the phenomenological asymptotic bootstrap approach of Hagedorn for strong interactions, some
recent results suggest an important role that Sq may play in this regime. Such phenomenological
approaches relying partly on Sq, seem to be, most importantly, in accordance with existing experimental
data [145–150].

One can also use several well-known results of convex geometric analysis, such as the Bourgain
distortion theorem or the Johnson-Lindenstrauss flattening lemma etc. to expand upon the results that
just used Dvoretzky’s theorem and the associated dimension [113,115,116,118,121,122]. Whether such
results can be generalized and can lead to interesting conclusions pertinent to non-additive entropies is
not clear in our mind. However, the thought of using a physical idea, such as a non-additive entropic
functional, to potentially help prove a purely geometric conjecture such as that of Mahler, is probably
too enticing to not motivate someone to look carefully and further develop the symplectic/asymptotic
convex point of view.

In closing, and from a formalistic viewpoint, one could not avoid mentioning a trend toward
categorification that exists in some mathematical quarters. Such categorification may provide a
formalism that may be able to bring forth unexpected aspects of non-extensive statistical mechanics, and
touches upon on some aspects of topics discussed in this work. One application of this categorification
that has touched upon Physics is that of Khovanov homology [151,152] in relation to Chern-Simons
theory and the Jones polynomial. It may also be worth studying the case of the Fukaya categories related
to Lagrangian Floer cohomology in symplectic geometry [153] and mirror symmetry. In the context of
entropy, alas only for SBGS and in the spirit of categorification, one may appreciate some unique insights
and viewpoints explored in the recent [154,155] which may eventually turn out to be particularly useful
and illuminating.
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