
Article

Distributed Consensus of Nonlinear Multi-Agent
Systems on State-Controlled Switching Topologies

Kairui Chen 1, Junwei Wang 2,* and Yun Zhang 1

Received: 6 November 2015; Accepted: 11 January 2016; Published: 18 January 2016
Academic Editor: J. A. Tenreiro Machado

1 Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China;
kraychen@139.com (K.C.); yz@gdut.edu.cn (Y.Z.)

2 Department of Applied Mathematics, Guangdong University of Foreign Studies, Guangzhou 510006, China
* Correspondence: wangjwlj@gmail.com; Tel.: +86-20-3710-5926

Abstract: This paper considers the consensus problem of nonlinear multi-agent systems under
switching directed topologies. Specifically, the dynamics of each agent incorporates an intrinsic
nonlinear term and the interaction topology may not contain a spanning tree at any time. By designing
a state-controlled switching law, we show that the multi-agent system with the neighbor-based
protocol can achieve consensus if the switching topologies jointly contain a spanning tree. Moreover,
an easily manageable algebraic criterion is deduced to unravel the underlying mechanisms in reaching
consensus. Finally, a numerical example is exploited to illustrate the effectiveness of the developed
theoretical results.
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1. Introduction

Recent years have witnessed a growing interest in the consensus problem of multi-agent systems
in system and control community. A lot of effort has been made to design distributed control law
for each agent such that the system as a whole can perform complex tasks in a cooperative manner.
The distinguishing feature of such control law lies in its lack of global information while aiming to
cooperate with all agents. In this paper, we deal with the consensus problem of multi-agent systems
with nonlinear dynamics and switching topologies jointly containing a spanning tree.

Over the past decade, many well-known results on consensus have been reported in [1–7],
to name just a few. Based on algebraic graph theory, Olfati-Saber and Murray [1] discussed the
consensus problem for networked single-integrator agents over directed fixed and switching topologies
with communication time-delays. Following this work, the consensus problem has been recently
investigated from various perspectives, for example, system with second-order dynamics [8,9],
nonlinear agent dynamics [10,11], time-delays [12,13], quantization [14], saturation [15], etc. However,
most of the aforementioned works were predominantly concerned with the multi-agent systems under
fixed communication topologies.

In practical application, the interaction topology among agents may change dynamically due to
the limited sensing regions of sensors or effect of obstacles. Different assumptions on the switching
topologies for multi-agent systems have been explored in recent years [16–18]. By assuming that the
switching topologies keep connected or contain a spanning tree at every time, a heap of results have
been reported [19–23]. However, it is impractical to impose the connectivity condition on all possible
topologies. Thus, seeking feasible while less restrictive condition on the switching topologies becomes
a mix of diverse challenging, yet interesting topic. In discrete-time setting, Jadbabaie et al. [24] provided
a simple consensus protocol for Vicsek’s model [25], which was analyzed theoretically by exploiting
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properties of products of stochastic matrices under jointly connected topologies. The result was
later extended in [26] to the case of directed graphs where conditions for consensus under switching
interaction topologies were presented. For continuous-time systems, Hong et al. [27] proposed a local
control strategy for multi-agent systems with jointly connected topologies. In [28–30], the switching
communication topologies were assumed to be governed by continuous-time homogeneous Markov
processes, whose state space corresponds to the communication patterns. The authors of [31–33]
considered continuous-time multi-agent systems under jointly connected topologies, which had less
constraints on each possible topology. However, these results are quite conservative in the sense
that the underlying topology of the system switches without concerning the current states of the
multi-agent systems.

Inspired by the above discussion, this paper aims to investigate the leadless consensus problem
of multi-agent systems with Lipschitz nonlinear dynamics over state-controlled switching topologies.
Relevant work can be found in [34], where the author studied leader-following consensus for
double-integrator-based multi-agent systems under jointly connected topologies. In this paper,
all possible topologies are allowed to be disconnected, and only jointly contains a spanning tree
is required for the system to achieve consensus. By using the state transformation method, the
consensus problem becomes a stability problem of a nonlinear switched system. Then, based on the
Lyapunov stability approach, the consensus of the considered system is proved to be achieved with
a prescribed consensus error. The contribution of this paper can be ascribed as follows: (1) Inspired by
the stabilizing switching theory [35], we design a state-controlled switching law for the considered
switching topologies. To avoid the switching signal from chattering, a new mechanism is introduced,
and then, the low bound of dwell time of switching topologies is explicitly calculated. This is neglected
in [34]; therefore, the controllers therein may suffer from chattering. (2) The dynamics of multi-agent
system incorporates nonlinearities, which have been less reported in the literature, especially when the
topologies are assumed to jointly contain a spanning tree. This paper attempts to explore the consensus
of multi-agent systems with both nonlinear dynamics and state-controlled switching topologies, which
thus constitutes a necessary complement to the existing literature.

The rest of the paper is organized as follows. In Section 2, some preliminaries on algebraic
graph theory and model formulation are given. Sufficient conditions are given to ensure consensus of
first-order multi-agent systems in Section 3. In Section 4, we give a numerical example to illustrate the
proposed protocol. Conclusions are drawn in Section 5.

Throughout the paper, the following notations are adopted for the ease of presentation. Rn is
the n-dimensional Euclidean space and Rn×n stands for the set of n× n real matrix. In and On are
n× n identity and zero matrices, respectively. diag{x1, x2, . . . , xm} denotes the diagonal matrix with
diagonal elements x1 to xm. ‖ · ‖ refers to the Euclidean vector norm and the induced matrix norm.

2. Preliminaries and Problem Statement

A weighted digraph (or directed graph) G = (V , E ,A) of order n consists of a set of nodes
V = {1, . . . , n}, a set of edges E ⊆ V × V and a weighted adjacency matrix A = [αij] ∈ Rn×n.
A directed edge in E is denoted by eij = (i, j) ∈ E , which means node i has access to the information
of j. The element αij in A is decided by the edge between i and j, i.e., eij ∈ E ⇔ αij > 0; otherwise
αij = 0. The set of neighbors of node i is denoted by Ni = {j ∈ V|(i, j) ∈ E}. The Laplacian matrix L of
graph G is defined by L = D−A, where D = diag{d1, d2, . . . , dn}, and di = ∑n

j∈Ni
αij is the in-degree

of node i. A sequence of edges (i1, i2), (i2, i3), . . . , (is−1, is) is called a directed path from node is to
node i1. If there exists at least one node (called the root) having directed path to any other nodes, the
digraph is said to have a spanning tree.

To depict the varying topologies, let Ḡ = {Gm = (V , Em,Am)|m ∈ M} denote the collection of
all possible digraphs on the same node set V = {1, . . . , n}, and M = {1, . . . , M} be the index set
of possible topologies, where M is the number of possible topologies. Then, the underlying graph
at time t can be denoted by Gσ(t), where σ(t) is a piecewise constant switching function defined as
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σ(t) : [0,+∞) → M. It is assumed that σ(t) switches finite times in any bounded time interval.
For a collection Ḡ of digraphs, its union digraph is defined as Gu = (V ,∪M

m=1Em, ∑M
m=1Am). Moreover,

we say that the collection Ḡ jointly contains a spanning tree if its union digraph Gu has a spanning tree.
Consider a multi-agent system consisting of n agents. The dynamics of each agent is

ẋi = f (xi, t) + ui, i = 1, 2, . . . , n, (1)

where xi ∈ R is the state of agent i, f (xi, t) is a nonlinear function describing the self-dynamics of
agent i, and ui is the control input.

Assumption 1. The nonlinear function f (x, t) satisfies the Lipschitz condition with the Lipschitz
constant ρ, i.e.,

| f (x2, t)− f (x1, t)| ≤ √ρ|x2 − x1|, ∀x1, x2 ∈ R, t ≥ 0.

Assumption 2. The switching topologies Gσ(t) jointly contain a spanning tree.

For system Equation (1), we consider the following control input for the ith agent:

ui(t) = −k ∑
j∈Ni

α
σ(t)
ij (xi − xj). (2)

Hence, the closed-loop system can be rewritten in compact form as

ẋ(t) = −kLσ(t)x(t) + f (x, t), (3)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T and f (x, t) = [ f (x1, t), f (x2, t), . . . , f (xn, t)]T .
Here, we introduce a state transformation for system Equation (3)

ξ = Ex,

where E = [−1n−1 In−1] so that system Equation (3) can be rewritten in the following reduced-order
form with respect to ξ

ξ̇(t) = −kL̄σ(t)ξ(t) + f̄ (4)

where L̄σ(t) = ELσ(t)F, F = [0n−1 In−1] and f̄ = [ f (x2, t)− f (x1, t), f (x3, t)− f (x1, t), . . . , f (xN , t)− f (x1, t)]T .

Definition 1. The consensus error ξ(t) ∈ Rn−1 is uniformly ultimately bounded (UUB) if there exists a bound
B and a time t f (B, ξ(t0)), which are independent of t0 ≥ 0, such that ||ξ(t)|| ≤ B for ∀t ≥ t0 + t f .

Remark 1. From the structure of transformation matrix E, we know that ξ is the indicator of the consensus
performance of multi-agent system Equation (1). That is, the system Equation (1) achieves consensus if and
only if ξ(t) = 0 of Equation (4) is asymptotically stable. In what follows, ξ is called the consensus error of the
system. When ξ(t) is UUB, xi(t) is bounded within a bounded neighborhood of x1(t) for i = 2, 3, . . . , n and
t ≥ t0 + t f . Thus, this depicts an intuitive notion of “close enough" consensus.

Lemma 1. [22] Let L1, L2, . . . , LM be the Laplacian matrices associated with the digraphs G1,G2, . . . ,GM,
respectively, then −∑M

m=1 L̄m is Hurwitz stable if and only if the union of digraph Gu of these graphs contains
a spanning tree.

Lemma 2. [36] For any two real vectors x, y ∈ Rn and positive definite matrix Φ ∈ Rn×n, we have

2xTy ≤ xTΦx + yTΦ−1y.
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3. Main Results

In this section, we first design a stabilizing switching law for multi-agent system Equation (1).
Then, the main result of this paper will be presented with the help of the above preliminary knowledge.

3.1. Switching Law Design

Define average matrix

L̄0 =
1
M

M

∑
m=1

L̄m,

and −L̄0 is Hurwitz. As a result, the following Lyapunov equation

L̄T
0 Q + QL̄0 = In−1 (5)

has a positive definite solution Q.
Define auxiliary matrices L̄m (m ∈ M) as follows:

L̄m = L̄T
mQ + QL̄m

For initial state ξ(t0) = ξ0, let

σ(t0) = argmax{ξT
0 L̄1ξ0, . . . , ξT

0 L̄Mξ0}, (6)

where argmax stands for the index which reaches the maximum amongM. If there is more than one
index, we choose the minimum index.

Then, we define the switching instant and index sequences recursively by

tc+1 = inf{t > tc : ξT(t)L̄σ(tc)ξ(t) < rσ(tc)ξ
T(t)ξ(t), ||ξ(t)|| > v}

σ(tc+1) = argmax{ξ(tc+1)
TL̄1ξ(tc+1), . . . , ξ(tc+1)

TL̄Mξ(tc+1)}, c = 1, 2, . . . ,
(7)

where rm ∈ (0, 1).

Lemma 3. The switching signal σ(t) is well-defined, i.e., tc+1 − tc > 0.

Proof. Assume tc and tc+1 are two consecutive switching time instants. By the property of the protocol
that we design the switching instants, we have

(1) ξT(tc)L̄σ(tc)ξ(tc) = maxi∈Λ{ξT(tc)L̄iξ(tc)}.
(2) ξT(tc+1)L̄σ(tc)ξ(tc+1) ≤ rσ(tc)ξ

T(tc+1)ξ(tc+1).
(3) ‖ξ(tc+1)‖ ≥ v.

As 1/M ∑M
p L̄p = In−1, item (1) also implies that

(4) ξT(tc)L̄σ(tc)ξ(tc) ≥ ξT(tc)ξ(tc).

Firstly, let us consider the case

‖ξ(t)‖ ≤ ϑ‖ξ(tc+1)‖ ϑ > 1 and ∀t ∈ [tc, tc+1]. (8)

Here, we define an auxiliary function

w(t) = −ξT(t)L̄σ(tc)ξ(t) + ξT(t)ξ(t). (9)
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It follows from (2) and (4) that

w(tc) ≤ 0 and w(tc+1) ≥ (1− rσ(tc))ξ
T(tc+1)ξ(tc+1).

Calculating the derivative of w(t) along time, we get

dw(t)
dt

=− kξT [L̄T
σ(tc)

(−L̄σ(tc) + In) + (−L̄σ(tc) + In)L̄σ(tc)]ξ

+ 2 f̄ T(−L̄σ(tc) + In)ξ.
(10)

Now, we denote

ν1 = ‖LT
σ(tc)

(−L̄σ(tc) + In) + (−L̄σ(tc) + In)Lσ(tc)‖,

and
ν2 = sup

t∈[tc ,tc+1]

‖ f̄ ‖ and ν3 = ‖ − L̄σ(tc) + In‖.

Combining with (3) yields

‖dw(t)
dt
‖ ≤ (kϑ2ν1 +

2ϑ2ν2ν3

v
)‖ξ(tc+1)‖2,

which together with the fact that (kϑ2ν1 +
2ϑ2ν2ν3

v )‖ξ(tc+1)‖2(tc+1 − tc) ≥ ω(tc+1) − ω(tc) ≥ (1−
rσ(tc))‖ξ(tc+1)‖2 implies that

(kϑ2ν1 +
ϑ2ν2ν3

v
)(tc+1 − tc) ≥ 1− rσ(tc),

thus

tc+1 − tc ≥
1− rσ(tc)

kϑ2ν1 +
2ϑ2ν2ν3

v

.

Next, suppose that Equation (8) does not hold, which means that there is a t∗ ∈ [tc, tc+1) satisfying

‖ξ(t∗)‖ > ϑ‖ξ(tc+1)‖. (11)

From the system Equation (5), we have

ξ(tc+1) = ξ(t∗)eLσ(tc)(tc+1−tc) +
∫ tc+1

t∗
eLσ(tc)(tc+1−s) f̄ (s)ds, (12)

which is equivalent to

ξ(t∗) = ξ(tc+1)e
Lσ(tc)(t

∗−tc+1) −
∫ tc+1

t∗
eLσ(tc)(t

∗−s) f̄ (s)ds. (13)

Based on the property of exponential function and norm, there is a positive number ν4 such that

‖eLσ(tc)t‖ ≤ ϑ− 1
2
∀t ∈ [−ν4, 0].

Suppose that

tc+1 − t∗ = min(ν4,
v

(2ϑ− 1)ν2
).
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As a result,

‖ξ(t∗)‖ ≤ (ϑ− 1
2
)‖ξ(tc+1)‖+ (ϑ− 1

2
)(tc+1 − t∗)ν2 ≤ ϑ‖ξ(tc+1)‖,

which contradicts the inequality Equation (11). Hence, we get

‖tc+1 − tc‖ ≥ tc+1 − t∗ > min(ν4,
v

(2ϑ− 1)ν2
).

Combining the above discussions shows that for any consecutive switching time instants tc and
tc+1, we have

tc+1 − tc ≥ min(
1− rσ(tc)

kϑ2ν1 +
2ϑ2ν2ν3

v

, ν4,
v

(2ϑ− 1)ν2
) > 0, (14)

which imposes a lower bound for the dwell time of switching signal. This means the switching signals
are well-defined.

Remark 2. According to [35], a “good” switching signal should guarantee a positive dwell time and avoid fast
switching. In the switching law Equations (6) and (7), we fix a threshold value v for switching, which can
prevent the switching signal σ(t) from chattering. However, there is a trade-off between the precise of consensus
and frequency of switching due to such a threshold value. Specifically, a smaller v may lead to a smaller dwell
time, which implies high frequency switching, while a larger v may bring about a larger consensus error which
is undesirable. Similarly , there is also a trade-off between the control gain and frequency of switching due to
parameters rm in Equations (6) and (7). Specifically, smaller rm may result in larger control gain, which can be
seen in the upcoming Theorem 1, while larger rm may bring about high frequency switching. The existence of
these two trade-offs suggests that the choice of these parameters should achieve a balanced interplay between
consensus performance and feasibility of control protocols.

3.2. Consensus Analysis

Theorem 1. Consider the multi-agent system Equation (1) under Assumptions 1 and 2. Adopt the designed
switching law in Equations (6) and (7). Then, by employing control protocol Equation (2) and selecting control
gain such that

k >
λ̄(Q)ρ + λ̄(Q)

r
(15)

where λ̄(Q) denotes the maximum eigenvalue of Q and r = min{r1, r2, . . . , rM}, the consensus error ξ(t) is
UUB. That is, all agents reach consensus with a bounded error v.

Proof. As the switching topologies jointly contain a spanning tree, −L̄ is Hurwitz stable by Lemma 1,
and the switching law is well-defined in Equations (6) and (7). Here, we consider the Lyapunov
function candidate as V(t) = ξTQξ. In case of ||ξ|| > v, by calculating the derivative of V(t) along
the trajectory of system Equation (4), we have

dV(t)
dt

= ξ̇TQξ + ξTQξ̇

= −kξT(L̄T
σ(t)Q + QL̄σ(t))ξ + 2ξTQ f̄

≤ −krσ(t)ξ
Tξ + ξTQξ + f̄ Q f̄

≤ −krξTξ + ξTQξ + λ̄(Q)ρξTξ

≤ −(kr− λ̄(Q)ρ− λ̄(Q))ξTξ

< 0.

(16)
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Therefore, V(t) is strictly decreasing during each time interval. This, together with the fact
that V(t) is continuous, implies the consensus error satisfies limt→∞ ||ξ(t)|| ≤ v, which means the
consensus error ||ξ(t)|| is UUB. This completes the proof.

Remark 3. In [21], first-order nonlinear multi-agent system was investigated, where general algebraic
connectivity needs to be calculated to design the control parameter. However, the general algebraic connectivity of
a graph is not easy to obtain, especially when the network size is large. Here, we provide a novel method to design
the control parameter to realize consensus. In addition, we allow the underlying topology to be disconnected all
the time, which cannot be analyzed by the technique in [21].

Remark 4. In [18,22,23], consensus problems of multi-agent systems with nonlinear dynamics under switching
topologies were considered. However, a common assumption of these works on the switching topologies is all the
topologies are required to be connected or having a spanning tree. In [17], this assumption is relaxed where
consensus of multi-agent systems was achieved without requiring the topology having a spanning tree all the time.
However, these results are quite conservative in the sense that the underlying topology of the system switches
without concerning the current states of the multi-agent systems. In this paper, another perspective to solve the
consensus problem without requiring each possible topology containing a spanning tree is provided. The designed
topology switching law arranges the underlying topology by taking states of agents into consideration, which is efficient.

Remark 5. When the consensus of the systems is achieved, the state of agents in the system is determined
by the nonlinear function. Therefore, denoting the consensus state of the system by s(t) (i.e., the trajectory of
ṡ(t) = f (s(t), t)), which can be any desired state: an equilibrium point, a nontrivial periodic orbit, or even
a chaotic orbit in some applications.

4. Numerical Simulations

In this section, we present numerical simulations to demonstrate the effectiveness of theoretical
results. For simplicity, we only consider the multi-agent systems consisting of ten agents labeled 1
through 10 and assume all weights of edges between agents are 0 or 1.

Consider the consensus of multi-agent system Equation (1) with the communication topology
switching in a collection Ḡ = {G1, G2, G3}, as shown in Figure 1. Note that each digraph in Figure 1
does not contain a spanning tree, but the union digraph of them contains a spanning tree. The inherent
nonlinear dynamics is given as f (xi, t) = 0.1xi cos(t). By Theorem 1, when the feedback gain
k > 20.5456, the consensus of the system is achieved uniformly ultimately bounded under the designed
state-controlled switching topologies. Figure 2 shows the states of the closed-loop system with k = 21
and v = 0.1. We can see that the ten agents achieve convergence with bounded error although none of
digraph Gm contains a spanning tree. Figures 3 and 4 present the switching signal and the consensus
error ||ξ(t)||, respectively.

Figure 1. Possible interaction topologies between agents.
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Figure 2. State xi(t) under the state-controlled switching topologies with a threshold v = 0.1.
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Figure 3. The state-controlled switching signal σ(t) with a threshold v = 0.1.
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Figure 4. Consensus error ||ξ(t)|| under the state-controlled switching topologies with a threshold
v = 0.1.

To demonstrate the merit of fixing a threshold for switching, we also consider the case that v = 0
under the same setting as stated above. The states of agents, switching signal and consensus error are
shown in Figures 5–7, respectively. From this comparison simulation, we can find that the multi-agent
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system reaches consensus precisely, while the interaction topology switches much more times than the
case with v = 0.1.
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Figure 7. Consensus error ||ξ(t)|| under the state-controlled switching topologies without a threshold.
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5. Conclusions

In this paper, we have investigated the leaderless consensus problem with two practical
constraints: (i) The system includes intrinsic nonlinear dynamics; (ii) The switching topology may
not contain a spanning tree at any time. We introduced a variable transformation to facilitate
the consensus analysis, which shows great potential in solving the considered consensus problem.
By designing a state-controlled switching law, the consensus problem has been solved under the
assumption that the switching topologies jointly contain a spanning tree. The choice of parameters
in the switching law allows us to balance the consensus performance with the feasibility of control
protocols. Nevertheless, the nonlinearities in this work are assumed to be Lipschitz-type, which bring
about some conservations. In addition, another drawback of this work is that some global information
is used in the designed switching law. We believe that the results of this paper could be largely
improved if general nonlinearities are considered and the topology switching law depends only on
local information, which is still an open issue and will be the object of our future work.
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