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Abstract: A perturbed multi-agent system is a scheme self-possessed of multiple networking agents
within a location. This scheme can be used to discuss problems that are impossible or difficult for a
specific agent to solve. Intelligence cloud entropy management systems involve functions, methods,
procedural approaches, and algorithms. In this study, we introduce a new perturbed algorithm based
on the fractional Poisson process. The discrete dynamics are suggested by using fractional entropy
and fractional type Tsallis entropy. Moreover, we study the algorithm stability.
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1. Introduction

Cloud entropy systems are currently increasing in number and developing. The increasing
occurrence of clouds has led to a large number of unresolved tasks. Cloud computing recognizes the
internet services delivered by generalized data centers in the form of hardware and software systems;
it is also a distributed computing system that consists of a group of organized virtual machines [1].
The original technology in a cloud entropy system consists of long-established values of routing,
visualization, code duplication, and so on. Overall, the system uses known computational methods.
Recent network structure schemes involve the improvement of new leader lines for the future of
computing procedures. Such networks present understandable improvements, such as applying
feedback. This usage leads to the perturbation of cloud systems.

Another problem of cloud entropy systems is how to divide information without performance
degradation. The effectiveness of standing transmission systems and databases in clouds should
be analyzed. Developing measures for the system transmission efficiency is necessary to achieve
improvements. A drawback system functioning in clouds is devoted to communication channels. The
utility of perturbation offers the possibility of transfering to the dynamic control of a model, principles
established for them, and conforming optimization methods. Control systems are applied to assess
structural complexity because they have the ability to oversee all functioning units, the counting
frequency through networks, and the present form of resources.

Multi-agent systems fundamentally appear in integer calculus by using ordinary differential
equations. Various multi-agent systems cannot be repeated with the integer cases in a complex
physical situation, but they are refined with fractional order (non-integer) differential equations [2].
Fractional multi-agent systems are considered and suggested by a collection of fractional differential
operators, such as Riemann–Liouville, Caputo, and Jumarie [3–5]. Multi-agent systems have substantial
documented research in the fields of military studies, economic systems, and control systems. An
enormous number of these systems has been examined, such as distributed sensor networks, cloud
computing systems composed of multiple servers, altitude control of satellites, and so on [6–10].
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A perturbed multi-agent system is a scheme self-possessed of multiple networking agents within a
location. This scheme can be utilized to address problems that are impossible or difficult for a specific
agent to solve. Intelligent cloud-entropy management systems involve various functions, methods,
procedural approaches, and algorithms. Overall, a dynamic system is necessary to improve a stable
structure and its reliability. The decomposition of functional cloud components is conducted through
certain methods for the system analysis of structural complexity. The dynamic explanations in the
formal approximations of differential equations with control are employed in many works [11–13].

In this study, we establish a new perturbed multi-agent system for cloud entropy services based
on the fractional Poisson process (see Figure 1). The discrete dynamics are proposed by using fractional
entropy and fractional Tsallis entropy. Moreover, we examine the algorithm stability.

Figure 1. Structure of a perturbation cloud entropy system.

2. Setting

In this section, we consider the basic positions in which incidence establishes grounds for the
control system theory and dynamic models of cloud service. We reflect a distributed database in
clouds. Cloud databases comprise software or hardware routing. They supply data on the practical
machine on which sections of data are deposited, the private cloud that determines the level of
security in public, and other service information. A similar type of entering query is transformed in
each incident to different situations and route maps and is influenced by the model structure and
communication frequencies.

In such a setting, a continuum of agents that have nonhomogenous preferences pay a cost to move
from one point to another in the state space. We suppose that n agents exist, whose communication
network is a directed graph. Agent i has cost function Φi pt, χ, uq, which represents what an agent pays
to have characteristics χi ptq (i.e., the level of cloud computing at time t) under controller input ui ptq .
Thus, we may present the following fractional system:

Dp℘qχi ptq “ Φi pt, χ, uq , i “ 1, ..., n

pyi ptq “ χi ptqq ,

where yi ptq is the outcome at time t, Dp℘qχi ptq indicates the Riemann–Liouville calculus given by:

Dp℘qχi ptq “
d
dt

ż t

a

pt´ τq´℘

Γ p1´ ℘q
χ pτq dτ,

which corresponds to the integral operator:

I℘a χ ptq “
ż t

a

pt´ τq℘´1

Γ p℘q
χ pτq dτ,

accordingly, ℘ P p0, 1q . Saber et al. [14] presented the dynamics of a cloud through the following
equation:

χi
1 ptq “ Φi pt, χ, uq , i “ 1, ..., n
“

ř

jPN

αij
`

χj ptq ´ χi ptq
˘

,
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where αij ą 0 is the pi, jq (agent i can receive information from agent j; else, αij “ 0) element of the
adjacency matrix χ ptq “ pχ1 ptq , ..., χn ptqqJ, y ptq “ py1 ptq , ..., yn ptqqJ, u ptq “ pu1 ptq , ..., un ptqqJ. If
χi ptq Ñ χj ptq for all t P J “ r0, Ts , T Ñ8, then the system is asymptotically stable (see [14]).

Our discussion is based on the linear perturbation system of the second type [15], that is:

Dp℘q rχi ptq ` φi pt, χ, uqs “ ϕi pt, χ, uq , i “ 1, ..., n (1)

pyi ptq : “ χi ptqq ,

where φi pt, χi, uiq “ ϕi pt, χ, uiq ´Dp℘qφi pt, χ, uq .
Function χi P C rJ, Rs, which is the space of all continuous functions on J, is called a solution

for problem (1) if and only if function χi is continuous for all t P J and χi fulfills Equation (1). Our
objective is to establish the existence of a solution for Equation (1). The main significant benefit of the
construction usage of fractional differential equations (ordinary and partial) in mathematical modeling
is their nonlocal property. The integer order differential operator is a local, linear operator, whereas
the fractional order differential operator is a nonlocal, nonlinear one. Thus, the following state of a
system is influenced by its present and past states (this property is useful in cloud computing). Thus,
fractional calculus has become increasingly popular in technical and industrial fields. In this study, a
perturbation analysis model is studied to solve linear and nonlinear differential and integral equations.
Various types of perturbation techniques and forms are applied depending on the actual situation and
physical problems. A good outcome is obtained in a cloud entropy system by minimizing the time of
utility and the cost of the system (see [16]).

3. Existence Results of A Perturbed System

We define a supremum norm ‖ . ‖P C rJ, Rs by ‖ x ‖: “ sup
tPJ
|x|. Obviously, C rJ, Rs is a Banach

space. We generate the following result, which can be found in [17]:

Lemma 3.1 We let B be a closed convex and bounded subset of the Banach space X and P : X Ñ X and
Q : B Ñ X be two operators, such that (a) P is nonlinear D-contraction, (b) Q is compact and continuous, and
(c) χ “ Pχ` Qy for all χ, y P B. The operator equation Pχ`Qχ “ χ then has a solution in B.

By applying certain properties of fractional operators, we obtain the following result:

Lemma 3.2 We assume that t ÞÝÑ χi ´ φi is injective (or increasing) in R and ϕi is bounded on J ˆRˆR.
Therefore, function χi is a solution of problem (1) if and only if it is a solution of the fractional integral equation:

χi ptq “ χi pt0q ´ φi pt0, χ pt0q , u pt0qq ` φi pt, χ, uq `
ż t

0

pt´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτ.

Theorem 3.1 We suppose that the assumptions of Lemma 3.2 hold. If constant ` ą 0 exists, such that:

|φi pt, χ, uq ´ φi pt, x, vq |ď `p
|χ´ x| ` |u´ v|

5 ` |χ´ x| ` |u´ v|
q, ` ď 5, |ϕi| ď 5 (2)

then problem (1) has a solution on J.
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Proof of Theorem 3.1 In view of Lemma 3.2, we have:

|χi| “

ˇ

ˇ

ˇ

ˇ

ˇ

χi pt0q ´ φi pt0, χ pt0q , u pt0qq ` φi pt, χ, uq `
şt

0
pt´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ď |χ0| ` `

ˆ

|χ´ χ0| ` |u´ u0|

5 ` |χ´ χ0| ` |u´ u0|

˙

`
şt

0
pt´ τq℘´1

Γ p℘q
|ϕi pτ, χ pτq , u pτqq| dτ

ď |χ0| ` `p
|χ´ χ0 |`| u´ u0|

5 ` |χ´ χ0 |`| u´ u0|
q ` 5

şt
0
pt´ τq℘´1

Γ p℘q
dτ

“ |χ0| ` `p
|χ´ χ0 |`| u´ u0|

5 ` |χ´ χ0 |`| u´ u0|
q `

5T℘

Γ p℘` 1q
: “ B.

B is clearly a closed, convex, and bounded subset of X. We define the two operators P : X Ñ X

and Q : B Ñ X as follows:

pPq pχq : “ φi pt, χ, uq , pQq pχq : “ χ0 ´ φi pt, χ0, u0q `

ż t

0

pt´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτ.

Thus, we have the following operator equation:

pχq ptq “ pPq pχq ptq ` pQq pχq ptq (3)

We aim to achieve the conditions of Lemma 3.1. First, we show that P is a nonlinear D-contraction
on X. Using (2), we obtain:

|pPq pχ, uq ptq ´ pPq px, vq ptq| “ |φi pt, χ, uq ´ φi pt, x, vq|

ď `p
|χ´ x| ` |u´ v|

5 ` |χ´ x| ` |u´ v|
q,

By taking a supremum norm over J, we have:

‖ pPq pχq ´ pPq pxq ‖ď `p
‖ χ´ x ‖ ` ‖ u´ v ‖
5` ‖ χ´ x ‖ ` ‖ u´ v ‖ q.

Thus, P is a D-contraction mapping defined by:

D pρq : “
`ρ

5 ` ρ
, ρ “ ‖ χ´ x ‖ ` ‖ u´ v ‖ .

Second, we aim to show that Q is a compact and continuous operator on B into X. To prove
that Q is continuous on B, we let tχmu , tumu be two sequences in B converging to point χ, u P B,
respectively. By utilizing the dominated convergence theorem for integration, we have:

lim
mÑ8

Q pχmq ptq “ lim
mÑ8

rχ0 ´ φi pt, χ0, u0q `
şt

0
pt´ τq℘´1

Γ p℘q
ϕi pτ, χm pτq , um pτqq dτs

“ χ0 ´ φi pt, χ0, u0q ` lim
mÑ8

r
şt

0
pt´ τq℘´1

Γ p℘q
ϕi pτ, χm pτq , um pτqq dτs

“ χ0 ´ φi pt, χ0, u0q ` lim
mÑ8

r
şt

0
pt´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτs

“ pQq pχq ptq .
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Q is accordingly continuous on B into X. We proceed to show that Q is uniformly bounded:

|Q pχq ptq| ď |χ0 ´ φi pt, χ0, u0q| ` r
şt

0
pt´ τq℘´1

Γ p℘q
|ϕi pτ, χ pτq , u pτqq| dτs

ď |χ0 ´ φi pt, χ0, u0q| `
5T℘

Γ p℘` 1q
.

Q is then proven to be uniformly bounded on B. For t2 ě t1, t1, t2 P J, we obtain:

|Q pχq pt1q ´Q pχq pt2q | “ |
şt1

0
pt1 ´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτs´

şt2
0
pt2 ´ τq℘´1

Γ p℘q
ϕi pτ, χ pτq , u pτqq dτs|

ď |
şt2

0
pt2 ´ τq℘´1

Γ p℘q
|ϕi pτ, χ pτq , u pτqq |dτ|

ď
pt2 ´ t1q

℘
5

Γ p℘` 1q
: “ ε,

where |t2 ´ t1| : “ δ. Q pBq then becomes an equi-continuous set in X. Thus, by virtue of the
Arzelá–Ascoli theorem, we conclude that Q is compact. To achieve condition (c), we have:

|χ| “ |P pχq `Q pχq|

ď |χ0| ` `p
|χ´ χ0 |`| u´ u0|

5 ` |χ´ χ0 |`| u´ u0|
q `

şt
0
pt´ τq℘´1

Γ p℘q
|ϕi pτ, χ pτq , u pτqq| dτ

ď |χ0| ` `p
|χ´ χ0 |`| u´ u0|

5 ` |χ´ χ0 |`| u´ u0|
q ` 5

şt
0
pt´ τq℘´1

Γ p℘q
dτ

“ |χ0| ` `p
|χ´ χ0 |`| u´ u0|

5 ` |χ´ χ0 |`| u´ u0|
q `

5T℘

Γ p℘` 1q

Therefore, χ P B. All the hypotheses of Lemma 3.1 are then demostrated; thus, the operator
equation P`Q “ χ has a solution in B. As a result, system (1) has a solution defined on J. This
outcome completes the proof. ˝

Remark 3.1 For the special case in different forms, the equation:

χ pt` 1q “ Pχ ptq `Qu ptq

was considered by Pluzhnik et al. [18]. They requested control u under constraint u P B Ď X. Theorem 3.1
shows that the constraint in [18] is valid. In the following section, we illustrate an algorithm to minimize the
cost function by utilizing the fractional Poisson process incorporating the fractional Tsallis entropy.

4. The Proposed Algorithm

To solve Equation (1), we need the following facts:
Objective function. Our primary objective is to investigate the optimal flat rate at which a

company uses cloud computing. With the cost proposed in Section 2, all rational companies decide on
the flat rate of switching to the cloud-computing pattern to minimize the estimated discount cost with
respect to the effort cost. For this purpose, we define a suitable objective function as follows:

Θ̂ pχq “ Θ pχq `
m
ÿ

i “ 1

ρ pai, φi pχqq `
n
ÿ

i “ 1

rρ pbi, ϕi pχqq ` ρ pbi,´ϕi pχqqs (4)

Such a function satisfies the inequality constraints of the following equation:

pφi pχq ě ε, |ϕi pχq| ď 5, 5 Ñ 0, ε ě 5, @ iq ,
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which is a model of an optimization problem, where ai and bi are the positive constants; ρ is the penalty
function, which modifies the original objective function; φi and ϕi are the constraints. The penalty
strategy uses finite difference techniques as a fitness function (FF) in a cloud (see Figure 2).

Figure 2. The proposed algorithm.

Fitness function (FF). The fitness function of a cloud between agents χi and χj is employed to
control the process during the system evolution. Equation (1) can be reduced to minimize the problem
as follows:

Ξ̂Ω pχ̂q “
ÿ

χiPΩ

pD pχiq ´ ϕi pχiqq, (5)

where D pχiq :“ Dp℘q rχi ptq ` φi pt, χ, uqs, which satisfies the conditions:

Ξ̂BΩ pχq “
ÿ

χiPBΩ

pD pχiq ´ ϕ pχiqq “ 0, (6)

where χ̂ is the estimated value of χ. Problems (5) and (6) can be solved by letting the FF:

F pχq “ Ξ̂Ω pχ̂q ` ςΞ̂BΩ pχq , (7)

where ς is the penalty parameter.
Fractional entropy. In this study, we deal with a measure of entropy imposed by Tsallis [19] with

the form:

Tγ pφq “

ş

x rφ pxqs
γ dx´ 1

1´ γ
, γ ‰ 1

or in the discrete form:

Tγ pφq “
1

γ´ 1
p1´

m
ÿ

k “ 1

φ
γ
i q, γ ‰ 1

Several types of fractional entropy were recommended in [20–25]. At this stage, the appropriate
amount of information based on observing the appearance of an event has probability P. The method
is subject to the probability of extinction, which is described by the fractional Poisson process as
follows [26]:

P℘ pN, uq “
pσuqN

N!

8
ÿ

n “ 0

pn` Nq!
n!

p´σu℘q
n

Γ p℘ pn` Nq ` 1q

where σ P R is a physical coefficient, ℘ P p0, 1s, and u is the control in system (1). We let N be the
number of agents and I be the average information. The source emits the symbols with probabilities
P1, P2, ..., PN , respectively, such that Pi “ P℘ pi, uq. Thus, we can calculate the total information by the
following equation:

I “
1

γ´ 1
p1´

m
ÿ

i “ 1

Pγ
i q, γ ‰ 1 (8)
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Note that 0 ă
řm

i “ 1Pγ
i ă 1. By applying Equation (8) to Equation (7), we conclude the

following FFs:
F pχiq “ Ξ̂Ω pχ̂q ` ςΞ̂BΩ pχq

«
ř

χiPΩ
Dp℘qχi ptq ` pI ´ 5q ` ςr

ř

χiPBΩ
Dp℘qχi ptq

` pI ´ 5qs

(9)

The constraints of Equation (4) are met.

5. Stability of the Outcomes

In this section, we discuss the UH stability of Equation (1). We let pX, ‖ . ‖q be a Banach space
over Rn

` with a maximum norm. We have the following Hyers–Ulam stability (HUS):

Definition 5.1 We let ε be a nonnegative number. Equation (1) is then called stable in the Hyers-Ulam
sense if δ ą 0 exists, such that for every D pχq P C

`

Rn
`, X

˘

achieving Equtaion (5):

‖ D pχq ´ ϕ pχq ‖ď εβ p‖ χ ‖q , ε ą 0, (10)

where β is a positive function; for all χ P Rn
`, an outcome η P Rn

` exists with the property:

‖ χ ptq ´ η ptq ‖ď δ (11)

Theorem 5.1 We suppose that D pχq P C
`

R n
`, X

˘

, which satisfies Equation (1). If β is a linear function in
‖ χ ‖, then every solution is bounded and in HUS.

Proof of Theorem 5.1 Let the condition (10) be achieved. Clearly, we obtain:

‖ χ ptq ´ η ptq ‖ “ ‖ u pχq ´ η pχq `D pχq ´ ϕ pχq ´D pχq ` ϕ pχq `D pηq ´ ϕ pηq ´D pηq ` ϕ pηq ‖
ď‖ χ ‖ ` ‖ η ‖ `2 ‖ D pηq ´ ϕ pηq ‖ `2 ‖ D pχq ´ ϕ pχq ‖
ď‖ χ ‖ ` ‖ η ‖ `εβ p‖ χ ‖q ` εβ p‖ η ‖q
“ ‖ χ ‖ ` ‖ η ‖ `εβ p‖ χ ‖ ` ‖ η ‖q
ď b p1` εq : “ δ,

where b : “ max t‖ χ ‖ ` ‖ η ‖, β p‖ χ ‖ ` ‖ η ‖qu . Hence, (11) is satisfied and this completes
the proof. ˝

Theorem 5.2 We suppose that D pχq P C
`

Rn
`, X

˘

, which satisfies Equation (1). We also let D pχq and ϕ be
Lipschitz functions with Lipschitz constants λ1 and λ2,respectively. If contact 0 ă λ0 ă 1 exists, such that:

λ : “ λ0 ` λ1 ` λ2 ă 1, 1´ λ0 ď ε,

then every solution is bounded and HUS.
Proof of Theorem 5.2 Equation (10) is achieved and we obtain:

‖ χ ptq ´ η ptq ‖ “ ‖ χ ptq ´ η ptq `D pχq ´ ϕ pχq ´D pχq ` ϕ pχq `D pηq ´ ϕ pηq ´D pηq ` ϕ pηq ‖
ď λ0 ‖ χ´ η ‖ ` ‖ D pχq ´ ϕ pχq ‖ ` ‖ D pηq ´ ϕ pηq ‖ ` ‖ ϕ pχq ´D pχq ‖ ` ‖ ϕ pηq ´D pηq ‖
ď λ0 ‖ χ´ η ‖ `εβ p‖ χ ‖q ` εβ p‖ η ‖q ` λ1 ‖ χ´ η ‖ `λ2 ‖ χ´ η ‖ `p1´ λ0q ‖ χ´ η ‖
ď λ0 ‖ χ´ η ‖ `εβ p‖ χ ‖q ` εβ p‖ η ‖q ` λ1 ‖ χ´ η ‖ `λ2 ‖ χ´ η ‖ `ε ‖ χ´ η ‖
:ď λ ‖ χ´ η ‖ `ε rβ p‖ χ ‖q ` β p‖ η ‖q` ‖ χ ‖ ` ‖ η ‖s
ď λ ‖ χ´ η ‖ `εβ,

where β “ max tβ p‖ χ ‖q , β p‖ η ‖q , ‖ χ ‖ ` ‖ η ‖u . Thus, we conclude that:

‖ χ´ η ‖ď εβ

1´ λ
: “ δ
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Therefore, Eqution (11) is satisfied, and this completes the proof. ˝

6. Applications

Table 1 describes the experimental results for N = 10 agents and the different values of the
fractional order ℘. We suppose the following parameters: γ “ 2 and σ “ ς “ ρ “ 1, where γ

is the dimension of the Tsallis entropy, σ is the physical coefficient of the Poisson process, ς is the
penalty parameter, and ρ is the penalty function that is set as a constant function. The utility of the
cloud entropy is evaluated at different times t P r1–5s . The utility seems to increase with increasing
time and decreasing the fractional Poisson process ( FPP). The highest number appears at t = 5 and
℘ “ 0.75. Increasing the value of γ leads to increasing the utility of the cloud (consequently increasing
the number of agents in the cloud [16]). The maximum utility goes to the fractional powers ℘ “ 0.75
and 0.5 with increasing time.

Table 1. Utility of the fractional cloud entropy system.

℘ Time P℘ p10q Utility

1

1 0.5380 0.48
2 0.5281 0.49
3 0.5139 0.491
4 0.5128 0.492
5 0.5117 0.5000

0.75

1 0.5800 0.5001
2 0.5740 0.5005
3 0.5585 0.5006
4 0.5573 0.5007
5 0.5561 0.5008

0.5

1 0.6113 0.4000
2 0.6001 0.4001
3 0.5839 0.50011
4 0.5827 0.50012
5 0.5814 0.5002

7. Conclusions

We have investigated a method for optimizing incomes and the arrangement originated by
a system in cloud entropy computing. The method was supplementarily capable, surpassed
mathematical software recommendations, and saved the overall cost and the task distribution.
However, the objective function was engaged with the concept of the fractional differential equation.
By utilizing this equation, we obtained an adaptation to the FF. This procedure was accessible to
approximation by employing the fractional Tsallis entropy based on the fractional Poisson process.
The stability illuminated the problems on the finite domain, which was suggested in the sense of the
UH-stability strategy. The method offered two advantages, namely, it transformed the problem of
constrained optimization into an unconstrained one and it had a suitable selection of the fractional
order. The technique was a good approximation. Multiple connection could also be proposed by using
the aforementioned technique. Furthermore, the method could be increased to a higher dimension
when the number of agents in a multi-agent system became large.
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