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Abstract: Mixture models are in high demand for machine-learning analysis due to their
computational tractability, and because they serve as a good approximation for continuous densities.
Predominantly, entropy applications have been developed in the context of a mixture of normal
densities. In this paper, we consider a novel class of skew-normal mixture models, whose components
capture skewness due to their flexibility. We find upper and lower bounds for Shannon and Rényi
entropies for this model. Using such a pair of bounds, a confidence interval for the approximate
entropy value can be calculated. Simulation studies are then applied to a swordfish (Xiphias gladius
Linnaeus) length dataset.
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1. Introduction

Mixture models are in high demand for machine-learning analysis, due to their computational
tractability and for offering a good approximation for continuous densities [1]. In addition, mixture
models are an important statistical tool for many applications in clustering [2,3], discriminant
analysis [4], image processing and satellite imaging [5,6]. Celeux and Soromenho [2] consider a
Maximum Likelihood (ML)–based entropy criterion to estimate the number of clusters arising from
a mixture model, and compare it with the classical Akaike (AIC) and Bayesian (BIC) information
criteria. Carreira-Perpiñán [6] deal with the problem of finding all modes of multi-dimensional data,
assuming a mixture of normal densities. Specifically, he uses the gradient as a mode locator and
for controlling the significance modes thus obtained, by measuring the sparseness of the densities
mixture via the entropy. However, so far, no analytical expressions, which consider bounds of Shannon
entropy for the normal mixture entropy, exist. Similarly, in the case of Kullback–Leibler divergence,
an analytic evaluation of the differential entropy is also impossible. Thus, approximate calculations
become inevitable [7–9]. Jenssen et al. [3] use the Rényi entropy [10] as a similarity measure between
clusters. They consider the Parzen window density estimation for differential Rényi entropy clustering
to identify the worst cluster and subsequently reduce the overall number of clusters by one.

Predominantly, the entropy applications mentioned above have been developed in the normal
context, but several results of both Shannon and Rényi entropies for various multivariate distributions
(see, e.g., [11,12]) actually exist. Here, we consider the novel class of finite mixture of multivariate
skew-normal mixture (FMSN) models [13]. This class provides some advantages over the normal
mixtures. For instance, the normal components allow an arbitrarily close modeling of any distribution
by increasing the number of components, and, in the context of supervised learning, groups of
observations represented by asymmetrically distributed data can lead to wrong classification [14].
The components of skew-normal mixture models, however, capture skewness due to their flexibility.
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Several examples, including references of this fact, can be found in [14–17]. Frühwirth-Schnatter
and Pyne [14] studied high-dimensional flow cytometric data for Alzheimer’s disease treatment.
A trivariate diffuse large B-cell lymphoma dataset is studied by [15] to cluster the cells into three
groups. Lee and McLachlan [16] consider several applications, among them: (i) the clustering of a
flow cytometric dataset derived from a hematopoietic stem cell transplant (HSCT) experiment, where
each sample was stained with four fluorescent markers; (ii) the variables body mass index, lean body
mass, and body fat percentage of a real dataset, concerning biomedical measurements for Australian
athletes; (iii) a portfolio of three shares listed on the Australian Stock exchange in a value-at-risk (VaR)
analysis; (iv) geometric measurements taken from X-ray images of wheat kernels in a discriminant
analysis application; and (v) an image segmentation analysis. In addition, Lin et al. [17] studied the
distribution of peripheral blood samples in transplanted organs.

In this paper, we calculate the bounds for Shannon and Rényi entropies for the skew-normal
mixture model. The maximum entropy theorem and Jensen’s inequality are considered for the Shannon
entropy case. Using such a pair of bounds, a confidence interval for the approximate entropy value
can be calculated. Simulation studies are then applied to a swordfish length dataset.

The paper is organized as follows. Section 2 presents definitions of multivariate skew-normal
(SN) and FMSN distributions, as well as previous results of Shannon and Rényi entropies for SN
distributions. Section 3 presents the main results: the computation of upper and lower bounds of
these information measures for FMSN distributions. Section 4 reports numerical results of some
simulated examples and a real-world application of swordfish data. This paper ends with a discussion
in Section 5. Some proofs are presented in Appendix A.

2. Preliminary Material

2.1. Skew-Normal Distribution

The multivariate skew-normal distribution has been introduced in [18]. This class of flexible
distributions regulates the skewness, allowing for a continuous variation from normality to
skew-normality. Below, we use a slight variant of the original definition. Consider a random vector
Z ∈ Rd with skew-normal distribution, location vector ξ ∈ Rd, dispersion matrix Ω ∈ Rd×d and
shape/skewness parameter η ∈ Rd, denoted by Z ∼ SNd(θ), θ = (ξ, Ω, η), if its probability density
function (pdf) is

f (z; θ) = 2φd(z; ξ, Ω)Φ1(η
>(z− ξ); 0, 1), (1)

where φd(z; ξ, Ω) is the pdf of the d-variate Nd(ξ, Ω) distribution, and Φ1(η
>(z− ξ); 0, 1) the univariate

N1(0, 1) cumulative distribution function. where |Ω| (|Ω| > 0) represents the determinant of Ω.
The stochastic representation of Z is given by

Z d
= ξ + δ|U0|+ U, (2)

where U0 ∼ N(0, 1) and U ∼ Nd(0, Ω− δδ>), δ = Ωη/
√

1 + η>Ωη, |δ| < 1, which are independent.
|U0| represents the absolute value of U0, i.e., it is half-normal distributed. From Equation (2), Azzalini
and Capitanio [19] derived the mean vector and covariance matrix of Z:

E[Z] = ξ +

√
2
π

δ, (3)

Var[Z] = Ω− 2
π

δδ>. (4)
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2.2. Finite Mixtures of Skew-Normal Distributions

Let us consider the definition of [14] for finite mixtures of skew-normal distributions. The pdf of
an m-component mixture model with parameter vector set θ̃ = (ξ̃, Ω̃, η̃): ξ̃ = (ξ1, . . . , ξm) a set of m
location vector parameters, Ω̃ = (Ω1, . . . , Ωm) a set of m dispersion matrices, η̃ = (η1, . . . , ηm) a set of
shape vector parameters; and with m mixing weights, π = (π1, . . . , πm) is

p(y; θ̃, π) =
m

∑
i=1

πi f (y; θi), (5)

where πi ≥ 0, ∑m
i=1 πi = 1, and f (y; θi) are defined as in Equation (1) for a known θi = (ξi, Ωi, ηi),

i = 1, . . . , m. Additional details about the log-likelihood function of an FMSN model are described
in [13]. Let S = (S1, . . . , Sn) be a set of n latent allocations for the distribution of observations y,
p(y; θ̃, π) = ∏n

j=1 p(y; θ̃, Sj), where Pr(Sj = i|π) = πi. Then, an equivalent stochastic representation
to each j-th component density as in (2) is obtained:

Yj|(Sj = i) d
= ξi + δi|U0j|+

√
Ωi − δiδ

>
i Uj, j = 1, . . . , n, (6)

where U0j and Uj are mutually independent and standardized one- and d-dimensional normal

distributed, respectively; and δi = Ωiηi/
√

1 + η>i Ωiηi, i = 1, . . . , m. Considering the stochastic
representation (6), and the first and second moments of the i-th component of Y, Equations (3) and (4),
respectively; we obtain the first two moments of Y:

E[Y] =
m

∑
i=1

πi

(
ξi +

√
2
π

δi

)
, (7)

Var[Y] =
m

∑
i=1

πi

[
Ωi −

2
π

δiδ
>
i + µiµ

>
i

]
, (8)

with µi = ξi +
√

2
π δi − E[Y], i = 1, . . . , m (see, e.g., [6]).

2.3. Entropies

Let X be a random vector defined in Rd and for all values of parameter θ ∈ Θ, where Θ is an open
subset of the real line and f (x; θ) is the pdf of x. Let us consider the αth-order Rényi entropy [10] on
variable x:

Rα[X; θ] =
1

1− α
ln
∫
Rd

f (x; θ)αdx, 0 < α < ∞, α 6= 1, (9)

and the Shannon entropy is obtained by the limit

H[X; θ] = lim
α→1
Rα[X; θ]

= −E[ln f (x; θ)]

= −
∫
Rd

f (x; θ) ln f (x; θ)dx, (10)

by applying l’Hôpital’s rule toRα[X; θ] with respect to α. Hereafter, we will refer to Equation (10) as
the expected information of f (x; θ) (for additional properties of the Shannon entropy, see [20]) and,
E[g(X)] denotes the expected information in X of the random function g(x) = ln f (x; θ). An important
property of Rényi entropy is Rα1 [X; θ] ≤ Rα2 [X; θ], given that α1 > α2 (see, e.g., [11]). In addition,
the Rényi entropy represents a generalization of the Shannon entropy and could be used to derive a
continuous family of information measures.
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According to [21], the negentropy of a living system is the entropy it exports to keep its own
entropy low, and thus it lies at the intersection of entropy and life. In our case, the negentropy
component of the Rényi and Shannon entropies measures the dispersion of the distribution of Z from
normal distribution [11]. The following Proposition of [11] presents these differences in terms of the
deviation matrix and shape/skewness parameter.

Proposition 1. Let Z ∼ SNd(θ), ZN ∼ Nd(ξ, Ω), and ‖η‖ = η>Ωη. Then,

(i) the Shannon entropy of Z is

H[Z; θ] = H[ZN ; θN ]−N [Z; θ],

where

H[ZN ; θN ] =
1
2

ln[(2πe)d|Ω|] (normal Shannon entropy),

N [Z; θ] = E [ln{2Φ1(‖η‖W)}] (Shannon negentropy),

with W ∼ SN1(‖η‖).
(ii) the αth-Rényi entropy of Z, α = 2, 3, ..., is

Rα[Z; θ] = Rα[ZN ; θN ]−Nα[Z; θ],

where

Rα[ZN ; θN ] =
1
2

ln[(2π)d|Ω|] + d ln α

2(α− 1)
(normal Rényi entropy),

Nα[Z; θ] =
1

α− 1
ln
[

2α Φα+1(0; 0, Ω)

Φ1(0; 0, ω)

]
(Rényi negentropy),

with θN = (ξ, Ω), Ω = Iα+1 + ‖η‖2D>D, D = (1α, ‖η‖)>, 1α is the α-dimensional vector of
ones, and ω = 1 + ‖η‖4.

From Proposition 1, we observe that the Shannon negentropies do not depend on the dispersion
matrix Ω, but only on the shape parameter vector η. However, Rényi entropy depends on Ω and η

parameters. Contreras-Reyes [11] show in Proposition 1 (ii) that the skew-normal Rényi entropy is the
normal Rényi entropy [12], as η→ 0.

3. Results

In this section, we present practical results of upper and lower bounds of Shannon and Rényi
entropies for FMSN distributions in Sections 3.1 and 3.2, respectively, which ought to be considered in
numerical simulations and real-world application (Section 4).

3.1. Shannon Entropy Bounds

As in the normal case, the Shannon entropy of mixture of skew-normal distributions does not
have a closed form. However, the following proposition presents some lower and upper bounds as an
approximation of the entropy of finite mixture of skew-normal densities.

Proposition 2. Consider the FMSN density of (Y; θ̃, π) defined in Equation (5). Then, the following
inequalities are accomplished:

(i) Alower ≤ H[Y; θ̃] ≤ Aupper,
(ii) Blower ≤ H[Y; θ̃] ≤ Bupper,
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where

Aupper =
1
2

ln{(2πe)d|Σ|},

Alower = Aupper −
m

∑
i=1

πiN [Y; θi],

Bupper = Alower −
m

∑
i=1

πi ln πi,

Blower = −
m

∑
i=1

πi ln

(
m

∑
s=1

πs

∫ ∞

−∞
f (t; ηi) f (t; ηs)dt

)
,

with N [Y; θi] = E [ln{2Φ1(‖η̃i‖Wi)}] =
∫ ∞
−∞ f (wi; ‖η̃i‖)ln{2Φ1(‖η̃i‖wi)}dwi, Wi ∼ SN1(‖η̃i‖),

‖η̃i‖ = η>i Ωiηi, and Σ = Var[Y] is defined by Equation (8).

For the case m = 1, Contreras-Reyes and Arellano-Valle [22] consider the upper bound of the
property (i) of Proposition 2 to approximate the Shannon entropy of an SN distribution using the
property (ii) of Proposition 2. In this Proposition 2(ii), the left side includes an integral related to a
product of two skew-normal densities. When i = s, these integrals correspond to an L2-norm and are
represented by the quadratic Rényi entropy [11]. For the case i 6= s, the integral does not have explicit
form and requires numerical methods to be computed. Moreover, the right side corresponds to the
sum of the entropy of a multinomial density with parameters π1, . . . , πm and a second term based on
the weights and shape parameters of the skew-normal density. Other refinements can be found in [9].
These are suitable for cases of several components (for example, m� 5), i.e., a skew-normal density
consisting of several and well separated clusters.

A lower bound can be found for H[Y; θ̃] using the L2-norm of an FMSN density and Jensen’s
inequality [20]:

H[Y; θ̃] ≥ −2 ln ‖p(y; θ̃, π)‖2 = − ln
∫
Rd

p(y; θ̃, π)2dy. (11)

Considering Equation (9), Equation (11) and Proposition 2(i)–(ii), we obtain the additional inequality
R2[Y; θ̃] ≤ H[Y; θ̃] and

Blower < Alower < Bupper < Aupper. (12)

The next section provides upper and lower bounds for Rényi entropy of FMSN random vectors.

3.2. Rényi Entropy Bounds

For the sake of simplicity, we define the following function in terms of Rényi entropy and α as

Pα[Y; θ̃] = e(1−α)Rα [Y;θ̃], 0 < α < ∞, α 6= 1,

for the calculus of the bounds of
∫
Rd p(y; θ̃, π)αdy. By applying the function ln(·)/(1− α) to these

integrals, we have the Rényi entropy of FMSN density.
As in the Shannon entropy case, the Rényi entropy can be upper bounded in terms of the

dispersion matrix of the finite mixture random variable. Sánchez-Moreno et al. [23] derived a
multidimensional upper bound using a variational approach,

Rα[Y; θ̃] ≤ d
2

ln
(
|Σ|
d

)
+Fd(α), (13)
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with Σ = Var[Y] defined in Equation (8),

Fd(α) =



d
2 ln

(
πb

α−1

)
+ 1

α−1 ln
(

b
2α

)
+ ln Γ

(
α

α−1
)
− ln Γ

(
b

2(α−1)

)
, if α > 1,

d
2 ln

(
πb

1−α

)
+ α

α−1 ln
(

b
2α

)
− ln Γ

(
α

1−α

)
+ ln Γ

(
b

2(1−α)

)
, if α ∈

(
d

d+2 , 1
)

,

H[W0; θ0], if α = 1,

b = (2 + d)α− d, θ0 = (0, Id), and W0 ∼ Nd(0, Id) (Id denotes the d-dimensional identity matrix).
H[W0; θ0] is obtained using property (i) of Proposition 1.

The right side of the inequality (13) is equivalent to the maximum Shannon entropy of
Proposition 2. The first term depends on the dispersion matrix and the shape parameters, and the
second only depends on the αth order and dimension d.

The next Lemma presents a useful result to compute the lower bound for Rényi entropy of an
FMSN random vector Y in terms of each component.

Lemma 1. Consider the FMSN density of (Y; θ, π) defined in Equation (5). Then,

∫
Rd

p(y; θ̃, π)αdy ≥ Pα[Y; θm] +
m−1

∑
i=1

{(
i

∑
k=1

πk

)α (
Pα[Y; θi]−Pα[Y; θi+1]

)}
,

with 0 < α < ∞, α 6= 1, and m > 1.

4. Numerical Results

4.1. Simulations

To study the behavior of the Shannon entropy bounds of Proposition 2 and the Rényi entropy
bounds of Equation (13) and Lemma 1, some examples are simulated for the cases d = 1, 2 and 3:

Example 1: d = 1, m = 2, π = (0.3, 0.7), ξ̃ = (0.5, 5), Ω̃ = (3.5, 6), and η̃ = (0.5, 3.5);

Example 2: [24] d = 1, m = 3, π = (0.5, 0.2, 0.3), ξ̃ = (2, 20, 35), Ω̃ = (9, 16, 9), and

η̃ = (5, 3, 6);

Example 3: [24] d = 2, m = 2, π = (0.65, 0.35),

ξ̃ =

((
5
7

)
,

(
2
5

))
, Ω̃ =

((
0.18 0.6
0.6 4

)
,

(
0.15 1.15
1.15 4

))
, and

η̃ =

((
0.69
0.64

)
,

(
4.3
2.7

))
;

Example 4: [24] d = 2, m = 3, π = (0.25, 0.5, 0.25),

ξ̃ =

((
0
0

)
,

(
5
5

)
,

(
2
8

))
, Ω̃ =

((
3 1
1 3

)
,

(
2 1
1 2

)
,

(
0.15 1.15
1.15 40

))
, and

η̃ =

((
4
4

)
,

(
2
2

)
,

(
4.3
2.7

))
;
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Example 5: [2] d = 3, m = 3, π = (0.22, 0.36, 0.42),

ξ̃ =

( 10
12
10

 ,

 8.5
10.5
8.5

 ,

 12
14
12

), Ω̃ =

( 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

),

and η̃ =

( 4
0
1

 ,

 2
1
3

 ,

 4
2
2

);

Example 6: [25] d = 3, m = 4, π = (0.125, 0.19, 0.135, 0.55),

ξ̃ =

( 420
360
425

 ,

 160
570
200

 ,

 320
540
260

 ,

 530
80

450

),

Ω̃ =

( 9160 5580 7000
5580 12105 7160
7000 7160 7250

 ,

 3870 1810 1770
1810 2900 1270
1770 1270 1320

 ,

 1695 1190 2280
1190 2780 2010
2280 2010 3720

 ,

 1590 590 15
590 2425 415
15 415 1870

), and η̃ =

( 4.8
17
50

 ,

 4
80
60

 ,

 40
8

10

 ,

 60
90
6

).

Figure 1 presents the examples mentioned in the settings above. Examples 1 and 2 are represented
in histogram plots and examples 3 and 4 in contour plots, according to [24]. Examples 5 and 6 are
represented in 3D plots, according to [25]. For all simulations, a sample of n = 500 generations is
considered, and then fixed using the function smsn.mix from mixsmsn package, developed by [24] and
implemented in an R environment [26]. Prates et al. [24] implemented routines for ML estimation via
the Expectation Maximization (EM)-type algorithm in FMSN models (among several others).

For each example, Table 1 summarizes the four Shannon, as well as the Rényi entropy bounds
for α = 2, . . . , 5 and m = 2, . . . , 6. Shannon and Rényi entropies are compared with AIC and BIC
criteria (see e.g. [27]), misclassification (MC) rates and consistency scores: normal skill score (NSS),
Heidke skill score (HSS), and Hanssen–Kuipers (HK) (see e.g., [28]). All these indicators show an
optimal performance of model fit if they are near 1; except MC, which ideally should be close to 0
(i.e., 100(1−MC) ≈ 100%). For all examples, it is worth pointing out that these criteria are optimal
for minimum AIC and BIC values (marked in gray). For examples 1–3, the misclassification rates are
close to 0, and, for examples, 4–6 less than 0.46. This is because of the complexity of systems with high
dimensions and parsimonious models fit (excess of parameters).

The information measures illustrated a similar effect. It can be seen that inequalities given in (12)
are accomplished in the Shannon entropy case and the information increase for more parsimonious
systems, where these 3D systems are characterized by a bigger set of components and dispersion
matrices with large elements. With respect to Rényi entropies, the lower and upper bounds rather
slowly increase with more components in examples 1–3, but rise faster with more components in
examples 4–6. However, in examples 4–6, the lower and upper bounds are maximum for large α.
Therefore, the Rényi information criterion is suitable for model fits with accurate classification
of observations, i.e., incorrect performance of Rényi entropy is related to inadequate selection of
components in complex systems. Additionally, the Rényi entropy of FMSN is localized between the
upper and lower bounds, and an approximation should be given by the mean of these bounds.
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Figure 1. Finite mixtures of skew-normal (FMSN) density simulations using samples of 500 generations
and the settings given by the examples (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 of Section 4.1.



Entropy 2016, 11, 382 9 of 17

Table 1. Simulated Shannon and Rényi entropy bounds. Rényi entropy bounds are computed for α = 2, . . . , 5. For each model and number of clusters m, the Akaike
(AIC) and Bayesian (BIC) information criteria, misclassification (MC), normal skill (NSS), Heidke skill (HSS), and Hanssen–Kuipers (HK) scores appear. The shaded
regions highlight the smallest AIC and BIC values.

H Rα Lower Rα Upper

Example m MC NSS HSS HK AIC BIC Alower Aupper Blower Bupper 2 3 4 5 2 3 4 5
1 2 0.02 0.98 0.95 0.39 4831.88 4866.23 0.99 2.20 0.888 1.58 0.72 0.96 1.01 1.03 3.54 3.06 2.89 2.80

3 0.03 0.97 0.93 0.42 4840.36 4894.34 1.89 2.79 1.58 2.92 0.58 0.84 0.91 0.94 3.52 3.04 2.87 2.78
4 0.02 0.98 0.96 0.41 4846.62 4920.23 1.85 2.80 1.44 3.03 0.58 0.85 0.93 0.97 3.52 3.04 2.87 2.78
5 0.61 0.39 0.01 0.01 4851.35 4944.59 2.15 2.91 1.93 3.59 0.50 0.63 0.65 0.65 3.50 3.01 2.85 2.76
6 0.77 0.23 0.00 0.00 4858.87 4971.75 2.19 2.92 2.04 3.74 0.59 0.70 0.70 0.70 3.50 3.01 2.85 2.76

2 2 0.01 0.99 0.98 0.40 6581.52 6615.87 2.57 3.92 0.66 3.26 1.18 1.29 1.32 1.33 4.93 4.45 4.28 4.19
3 0.00 1.00 1.00 0.62 6065.25 6119.23 2.96 4.25 0.75 3.99 1.06 1.32 1.38 1.40 4.97 4.49 4.32 4.23
4 0.51 0.49 0.13 0.08 6071.55 6145.16 2.98 4.25 0.78 4.32 0.79 1.06 1.13 1.16 4.95 4.47 4.30 4.21
5 0.60 0.40 0.00 0.00 6080.71 6173.95 3.28 4.26 1.55 4.81 0.83 1.06 1.11 1.12 4.95 4.47 4.30 4.21
6 0.59 0.41 0.00 0.00 6090.82 6203.70 3.62 4.39 2.32 5.33 0.73 0.90 0.94 0.94 4.95 4.47 4.30 4.21

3 2 0.00 1.00 1.00 0.46 5766.82 5840.43 3.44 3.94 2.84 4.09 1.68 1.61 1.55 1.50 5.27 4.67 4.46 4.35
3 1.00 0.00 −0.96 −0.49 5778.71 5891.59 3.66 4.45 1.84 4.72 0.79 0.95 0.98 0.99 6.28 5.69 5.48 5.36
4 1.00 0.00 −0.98 −0.50 5785.43 5937.57 3.78 4.62 1.73 5.13 0.62 0.80 0.84 0.86 6.62 6.03 5.82 5.70
5 1.00 0.00 −0.24 −0.19 5798.10 5989.51 3.89 4.66 1.92 5.31 0.72 0.84 0.85 0.84 6.71 6.11 5.90 5.79
6 0.26 0.74 0.00 0.00 5758.53 5989.20 4.01 4.79 1.88 5.67 0.64 0.79 0.81 0.81 6.97 6.38 6.17 6.05

4 2 0.76 0.24 −0.11 −0.07 8758.63 8832.25 3.35 4.61 0.82 3.92 1.64 1.94 2.02 2.05 6.60 6.00 5.79 5.68
3 0.30 0.70 0.14 0.05 8282.84 8395.72 4.11 4.84 2.06 5.15 1.36 1.53 1.56 1.56 7.24 6.65 6.44 6.32
4 0.36 0.64 0.46 0.31 8295.26 8447.40 4.51 5.24 2.06 5.71 1.73 1.83 1.84 1.83 7.86 7.27 7.06 6.94
5 0.36 0.64 0.47 0.32 8300.94 8492.34 4.41 5.24 1.78 5.79 1.27 1.39 1.40 1.40 7.86 7.27 7.06 6.95
6 0.57 0.43 0.21 0.15 8246.46 8477.12 4.64 5.43 1.88 6.17 1.29 1.42 1.43 1.42 8.23 7.64 7.43 7.32

5 2 0.64 0.36 −0.03 −0.02 9650.23 9772.92 5.57 6.52 1.61 6.25 2.43 2.54 2.52 2.48 10.26 9.56 9.30 9.17
3 0.45 0.55 0.02 0.01 9510.53 9697.02 5.66 6.73 1.28 6.65 1.84 2.07 2.13 2.15 10.53 9.82 9.57 9.43
4 0.53 0.47 0.19 0.13 9513.73 9764.02 5.83 6.78 1.43 7.19 1.68 1.90 1.96 1.98 11.06 10.36 10.10 9.97
5 0.92 0.08 −0.23 −0.17 9539.02 9853.11 5.99 6.90 1.52 7.49 1.60 1.78 1.80 1.79 11.41 10.70 10.45 10.31
6 0.68 0.32 0.05 0.04 9550.44 9928.33 5.93 6.85 1.51 7.63 1.54 1.73 1.76 1.77 11.26 10.56 10.30 10.17

6 2 0.62 0.38 −0.04 −0.02 33479.01 33601.70 15.56 16.93 0.64 16.25 7.53 7.70 7.75 7.77 41.50 40.79 40.54 40.40
3 1.00 0.00 −0.47 −0.32 33019.83 33206.33 16.88 18.18 0.75 17.84 7.45 7.71 7.79 7.82 45.26 44.55 44.30 44.16
4 0.45 0.55 0.29 0.18 32417.80 32668.10 17.31 18.62 0.73 18.65 7.45 7.77 7.87 7.92 45.82 45.11 44.86 44.72
5 0.93 0.07 −0.15 −0.12 32346.29 32660.39 17.31 18.63 0.71 18.78 6.95 7.13 7.15 7.15 46.61 45.91 45.65 45.52
6 0.56 0.44 0.20 0.14 32458.05 32835.95 17.54 18.85 0.73 19.20 7.05 7.27 7.32 7.33 47.26 46.56 46.30 46.17
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4.2. Application

Estimation of age from growth of swordfish (Xiphias gladius Linnaeus) is an important factor in
assessing stock trends [29]. The swordfish belongs to highly migratory pelagic species and has been
observed in tropical to temperate waters (between 5 and 27 ◦C), and in the western and eastern Pacific
and Atlantic [30]. A more detailed description of this species can be found in [30].

Age and growth estimation of swordfish presents several difficulties [29]. For example, Cerna [30]
describes age estimates obtained by cross sections of the second anal fin ray [31], which appears
an expensive procedure for age estimation. Queele et al. [29] recall the inconclusive results obtained
from the indirect validation test.

Roa-Ureta [32] maintain that since age is a latent variable, extracting growth information
objectively is difficult. He estimates growth parameters using a likelihood function approach
underlying a normal mixture model to be applied on the squat lobster length dataset, where age
is unknown. The normal mixture model components are determined by AIC, which depends on the
sample size and the number of parameters of the mixture.

This application is motivated by the determination of age–length relationship by sex group using
information measures. This is presented in a framework format based on the following steps:

(a) The matrix of data includes both length and weight (d = 2) for each observation. Because it is
necessary to avoid colinearity, the length–weight regression is computed to show non-linear
relationship among both columns.

(b) Given that the number of components is unknown (age is unknown), the FMSN parameters are
estimated considering the two-dimensional matrix of the last step for several values m.

(c) The number of components is determined by the bounds of information measures developed in
Section 3 and then compared with AIC and BIC criteria.

(d) The observed (measures obtained from the procedure of [30]) and estimated (by selected mixture
model) ages of all observations are compared using a misclassification analysis.

Section 4.1 describes the dataset used and Sections 4.2.2 and 4.2.3 describe the results for the
steps mentioned.

4.2.1. Data and Software

The dataset used for evaluating the performance of our findings corresponds to a sample of,
respectively, 486 and 507 swordfish male and female length observations. The samples were collected in
the southeastern Pacific off Chile during 2011 and were obtained using the routine sampling program
of the fishery conducted by the Instituto de Fomento Pesquero. All these fish were measured to the
nearest centimeter and the range of observed lengths. The catch included fish between 120–257 cm for
males, and 110–299 cm for females. As is described in Section 4.1, the FMSN parameter estimates were
computed using the mixsmsn package.

4.2.2. Length–Weight Relationship

Following [33] (and references therein), we briefly describe the length–weight function.
This function explains the increments in weight of species in terms of their length by the non-linear
relationship

W(x) = α xβ, (14)

where W(x) represents the observed weight at length x, α is the theoretical weight at length zero and
β is the weight growth rate.

The model (14) is fitted to an empirical dataset, (yi, xi) ∈ R+ × R+, i = 1, ..., n. This can be
described in terms of multiplicative structure the errors, yi = W(xi)εi, where εi are non-negative
random errors and their transformations are given by ε′i = log εi. Here, we consider the residuals ε′i
iid and normal distributed, denoted by N(0, σ2), for a dispersion σ2 parameter.
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Figure 2 illustrates the linear regression fits of (14), for which we have a high value for the R2

coefficient of determination for both sexes (Table 2). There exists a small number of observations of
length classes larger than 210 and 250 cm for males and females, respectively, that tends to be isolated
with respect to lighter weights. Given the good fitting of length–weight model, we can see that a
non-linear relationship could be assumed between length and weight. Therefore, we consider a matrix
with two columns constructed by these variables for the clustering modeling.
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Figure 2. Length–weight log-transformed relationship and regression fit (red solid line) for (a) male
and (b) female swordfish.

Table 2. Summary of estimates α′ = log α and β with their respective standard errors in parenthesis,
for each length–weight log-transformed relationships of Equation (14) and sex.

Sex Parameter Estimate (SE) t-Value p-Value R2(%)

Male α′ −11.619 (0.202) −57.53 < 0.01 92.6
β 3.064 (0.040) 77.58 < 0.01

Female α′ −12.413 (0.176) −70.43 < 0.01 94.7
β 3.218 (0.034) 94.95 < 0.01

4.2.3. Clustering and Model Selection

As in Section 4.1, the length–weight data is evaluated with the FMSN model for several values
m depending on the maximum age by sex. Some authors reported that maximum age in males and
females reaches 9 and 11 years, respectively [29–31]. One of the difficulties that anal-fins readers
observed was that they could find multiple annuli and disappearance of the first annulus in older fish,
and thus careful interpretation is important [29]. In addition, this species were aged as younger at
given body lengths, i.e., it was difficult to find older fish by selectivity [27,30]. We take into account
these facts to discuss the optimal number of clusters for the classification of lengths into age classes.

To reduce the scale of the plots, in Figure 3, the logarithmic of the average between upper and
lower bounds for Shannon and Rényi entropies appears, for m = 1, . . . , 9 in males and m = 1, . . . , 11
in females. It is worth pointing out that the values related to Shannon entropy (panels (a) and (c))
increase when the number of components increases in both sexes. Panels (b) and (d) show that values
related to Rényi entropies increase until m = 7 and then decrease. This means that Rényi entropy
bounds provide information of the models and help us to determine a criterion to choose a possible
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number of components on each sex group. There also exist some differences between α values, where
the quadratic Rényi entropy (α = 2) provides more information.

The results mentioned before are compared first with AIC and BIC criteria in Table 3. These criteria
increase when the number of components increases, and minimum AIC and BIC values correspond
to the simplest model m = 2. Table 3 also shows the misclassification (MC) rates and consistency
scores considered in Section 4.1. All these indicators are applied over the assigned observations
for each cluster and the observed age, for each FMSN and Finite Mixture of Normal (FMN) model.
The values corresponding to m = 7 clusters, marked in gray, provide the best results. The model has a
classification rate of 71% and 65% for males and females, respectively; and the highest values of NSS,
HSS and HK scores. The best FMN model corresponded to m = 6 and eight for males and females,
respectively, where its respective classification rates were 57% and 55%.
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Figure 3. Logarithmic of the average between upper and lower bounds for Shannon and Rényi
entropies, for (a,c) males and (b,d) females, respectively.

The FMSN fits for length–weight of males and females are shown if Figure 4. The lengths of
the older species presents high variability compared to younger ones. The group of males has the
parameters π = (0.167, 0.117, 0.159, 0.257, 0.025, 0.084, 0.191),
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ξ̃ =

((
175.77
68.10

)
,

(
192.98
93.99

)
,

(
141.15
34.65

)
,

(
155.55
41.27

)
,

(
211.49
156.93

)
,

(
201.31
105.25

)
,

(
162.76
53.97

))
,

Ω̃ =

((
6.47 2.05
2.05 7.90

)
,

(
8.74 4.18
4.18 10.74

)
,

(
8.45 4.09
4.09 5.28

)
,

(
7.66 1.81
1.81 6.73

)
,

(
21.63 12.29
12.29 14.91

)
,(

14.16 7.83
7.83 18.12

)
,

(
7.20 2.34
2.34 6.94

))
, and

η̃ =

((
0.87
1.06

)
,

(
0.62
−1.35

)
,

(
−1.28
−0.99

)
,

(
−1.12
1.23

)
,

(
0.91
1.19

)
,

(
−0.83
0.87

)
,

(
0.82
0.73

))
;

and for females, π = (0.279, 0.058, 0.109, 0.070, 0.240, 0.015, 0.229),

ξ̃ =

((
193.98
82.98

)
,

(
236.10
205.41

)
,

(
207.07
120.38

)
,

(
221.49
158.33

)
,

(
153.72
43.52

)
,

(
264.01
283.60

)
,

(
161.01
51.52

))
,

Ω̃ =

((
11.23 4.31
4.31 13.57

)
,

(
16.77 6.92
6.92 25.62

)
,

(
9.68 4.03
4.03 15.32

)
,

(
14.88 5.98
5.98 18.20

)
,

(
13.01 6.91
6.91 9.03

)
,(

16.87 13.23
13.23 58.63

)
,

(
8.86 5.29
5.29 10.43

))
, and

η̃ =

((
−0.99
0.67

)
,

(
1.13
1.25

)
,

(
1.09
1.11

)
,

(
1.18
1.33

)
,

(
−1.23
−0.86

)
,

(
−0.20
1.49

)
,

(
0.95
0.96

))
.

Table 3. Summary of Finite Mixture of Skew-Normal (FMSN) and Finite Mixture of Normal (FMN)
clustering. The shaded regions highlight the smallest Akaike (AIC) and Bayesian (BIC) information
criteria values. For each model and number of clusters m the misclassification (MC), normal skill (NSS),
Heidke skill (HSS), and Hanssen–Kuipers (HK) scores appear.

Model m Male Female

MC NSS HSS HK AIC BIC MC NSS HSS HK AIC BIC

FMSN 2 0.70 0.30 0.01 0.01 7742.24 7805.03 0.75 0.25 0.00 0.00 8834.89 8898.32
3 0.77 0.23 −0.05 −0.04 7754.18 7850.46 0.87 0.13 −0.05 −0.04 8844.91 8942.17
4 0.62 0.38 0.14 0.10 7741.22 7871.00 0.89 0.11 −0.09 −0.07 8838.63 8969.71
5 0.42 0.58 0.42 0.30 7751.47 7914.73 0.90 0.10 −0.10 −0.08 8847.75 9012.67
6 0.45 0.55 0.43 0.35 7760.76 7957.51 0.83 0.17 −0.04 −0.03 8864.74 9063.48
7 0.29 0.71 0.61 0.46 7770.85 8001.10 0.35 0.65 0.56 0.46 8865.46 9098.03
8 0.51 0.49 0.37 0.30 7783.31 8047.05 0.69 0.31 0.14 0.11 8879.20 9145.59
9 0.65 0.35 0.22 0.18 7769.48 8066.70 0.49 0.51 0.42 0.35 8885.98 9186.20
10 - - - - - - 0.59 0.41 0.31 0.27 8897.56 9231.61
11 - - - - - - 0.65 0.35 0.26 0.22 8900.87 9268.75

FMN 2 0.70 0.30 0.02 0.01 7818.79 7864.84 0.75 0.25 0.00 0.00 8914.32 8960.83
3 0.78 0.22 −0.04 −0.03 7737.23 7808.40 0.88 0.12 −0.03 −0.03 8848.43 8920.31
4 0.52 0.48 0.28 0.20 7729.77 7826.05 0.87 0.13 −0.08 −0.06 8818.25 8915.51
5 0.43 0.57 0.43 0.32 7733.33 7854.73 0.82 0.18 −0.05 −0.04 8820.12 8942.74
6 0.43 0.57 0.46 0.36 7744.00 7890.52 0.70 0.30 0.11 0.09 8831.16 8979.16
7 0.53 0.47 0.35 0.29 7738.41 7910.04 0.66 0.34 0.17 0.14 8839.63 9013.00
8 0.52 0.48 0.36 0.29 7750.27 7947.02 0.45 0.55 0.47 0.39 8849.82 9048.56
9 0.85 0.15 −0.01 −0.01 7751.24 7973.11 0.50 0.50 0.41 0.35 8855.10 9079.21
10 - - - - - - 0.78 0.22 0.11 0.10 8857.49 9106.97
11 - - - - - - 0.62 0.38 0.29 0.25 8852.37 9127.22
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Figure 4. Selected Finite Mixture of Skew-Normal (FMSN) fits for (a) males and (b) females. Each color
corresponds to each mixture component from a total of m = 7.

5. Conclusions

5.1. Methodology

In this paper, lower and upper bounds of the Shannon and Rényi entropies for FMSN distributions
were derived. Using such a pair of bounds, some kind of confidence interval for the approximate
entropy value can be calculated, where the average between these values can be used as an
approximation of the entropy. We presented practical (bounds) and theoretical (bounds and asymptotic
expression) results for Rényi entropy. In the case of practical results, the first upper bound deals only
with the density parameters and the second one with the density and mixing weights parameters.

Inserting the ML estimation (fixed) parameters represents the simplest evaluation of these
bounds [22]. However, between the lower and upper Rényi entropy bounds exists a considerable
distance. For this reason, further research must consider the exact expression and asymptotic
approximation presented in this paper. In addition, the Bayesian approach allows for a direct
estimation of the entropies, depending on the accuracy of prior parameters, where performance
can be substantially improved compared to ML or nonparametric estimators [34].

The results presented are valid for the skew-normal case, taking the shape parameters set
η = (0, . . . , 0), for integer values of α [11]. However, numerical algorithms can be applied for real
values of α (α > 2), but that requires more challenging computational work. In addition, Proposition 2
and Lemma 1 are also valid for other continuous densities where the Rényi entropies of the component
exist. We hope the Rényi entropy developments in finite mixtures of densities can stimulate more
research in the future, for more flexible densities such as Skew-t distribution [27].

5.2. Application

We applied two-dimensional length–weight data for the determination of swordfish age.
We considered a length–weight dataset instead of the usual length (considered by [32]) to determine
the number of clusters, and posteriorly, we compared it with the real observations obtained by the
procedure of [30]. The best results were obtained using the Rényi entropy, as an average between upper
and lower bounds, over Shannon entropy and information criteria. Additionally, the classification
rates and consistency scores of FMSN models showed better results versus the FMN model.

Wrongly classified observations arise with older species because they produce higher variability
in the length–weight relationship. Moreover, the age determination in these age classes is difficult
to obtain for the reasons mentioned in Section 4.2. We encourage anal-fins readers to consider the
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proposed methodology to compare their results with this statistical methodology, especially for the
revision of older species data.

Supplementary Materials: The R codes of the upper and lower bounds of Shannon and Rényi entropies are
available by request to the correspondence author. The swordfish data are available by request to the Instituto de
Fomento Pesquero (IFOP, Valparaíso, Chile), website: http:\www.ifop.cl.
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Appendix A

Proof of Proposition 2.

(i) For any finite mixture f (x; θ̃, π) = ∑m
i=1 πi f (x; θi), where θi is the associated parameter set of each

i-th component f (x; θi), θ̃ = (θ1, . . . , θm), πi ≥ 0, ∑m
i=1 πi = 1, and X ∈ Rd is not necessarily

normal with non-zero location vector and dispersion matrix Λ. Then,

m

∑
i=1

πiH[X; θi] ≤ H[X; θ̃] ≤ 1
2

ln{(2πe)d|Λ|}. (A1)

For a proof of Equation (A1), see pp. 27 and 663 of [20]. Basically, the fact that g(t) = − ln t is
a concave function (−g(t) is convex) allows the use of Jensen’s inequality. Then, considering
the location vector (7) and dispersion matrix (8), we have the inequalities H[Y; θ̃] ≤ Aupper

andH[Y; θ̃] ≥ ∑m
i=1 πiH[Y; θi]. Considering the property (i) of Proposition 1 and the condition

∑m
i=1 πi = 1, we prove the left side of the inequality.

(ii) Left side: by the property of log concavity for skew-normal densities [35] and employing Jensen’s
inequality [20], the proof is analogous to Theorem 2 of [9]. Right side: see Theorem 3 of [9]. �

Proof of Lemma 1. Consider the Proposition 1 (B1) of [36]. Let p ≥ 1, then for a αth-order,
1 < α ≤ p, we have

p(y; θ̃, π)α =

[
m

∑
i=1

πi f (y; θi)

]α

(B1)

≥
(

m

∑
i=1

f (y; θi)
p

) α
p−1 [ m−1

∑
i=1

{
i1−

α
p

(
i

∑
k=1

πk

)α (
f (y; θi)

p − f (y; θi+1)
p
)}

+m1− α
p

(
m

∑
k=1

πk

)α

f (y; θm)
p

]
. (A2)

By choosing p = α related to condition (iii) of Proposition 1 of [36] in Equation (A2), the following
equality holds

p(y; θ̃, π)α ≥ f (y; θm)
α +

m−1

∑
i=1

{(
i

∑
k=1

πk

)α (
f (y; θi)

α − f (y; θi+1)
α
)}

. (A3)

http:\www.ifop.cl
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The conditions (i), (ii) and (iv) of Proposition 1 of [36] can not be accomplished given the Rényi entropy
conditions of Equation (9), and thus the equality in (A3) is not accomplished. Finally, integrating both
sides of (A3) the result is obtained. �
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