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Abstract: A sliding block code π : X → Y between shift spaces is called fiber-mixing if, for every
x and x′ in X with y = π(x) = π(x′), there is z ∈ π−1(y) which is left asymptotic to x and right
asymptotic to x′. A fiber-mixing factor code from a shift of finite type is a code of class degree 1 for
which each point of Y has exactly one transition class. Given an infinite-to-one factor code between
mixing shifts of finite type (of unequal entropies), we show that there is also a fiber-mixing factor
code between them. This result may be regarded as an infinite-to-one (unequal entropies) analogue
of Ashley’s Replacement Theorem, which states that the existence of an equal entropy factor code
between mixing shifts of finite type guarantees the existence of a degree 1 factor code between them.
Properties of fiber-mixing codes and applications to factors of Gibbs measures are presented.

Keywords: shift of finite type; entropy of a shift space; infinite-to-one; fiber-mixing; replacement
theorem; class degree; Gibbs measure

1. Introduction

It is well known that for any factor code π : X → Y from an irreducible shift of finite type onto a
sofic shift with equal topological entropy, there is a uniform upper bound on the number of preimages
of the points in Y. In this case, almost all points (including the doubly transitive points) have the
same number of preimages. This number is called the degree of π. If the degree of π is 1, π may be
considered as a weaker version of a conjugacy (usually called almost invertible), in the sense that π is
a measure theoretic isomorphism between any fully supported ergodic invariant measure on X and
its push-forward to Y by π. As finding a conjugacy between two shifts of finite type is one of the
very difficult problems in the field, finding a factor code of degree 1 has been investigated in many
classification problems [1–3]. In the early 1990s, Ashley showed that if there is a factor code between
equal entropy mixing shifts of finite type, then there also exists a factor code of degree 1 [4]. This was
referred to as Replacement Theorem in [5]. Ashley’s result simplified many previous proofs on the
existence of degree 1 factor codes.

For a general factor code where the topological entropies of X and Y may differ, there may exist a
point of Y with an infinite number of preimages. However, one can define an equivalence relation on
each fiber π−1(y) and consider the number of equivalence classes. It turned out that there is a uniform
upper bound on the number of equivalence classes (called transition classes), and almost all points
(including the right transitive points) have the same number of classes in their fiber [6]. This number is
called the class degree of π. Properties of class degree and the structure of fibers and transition classes
show that class degree may be regarded as a natural generalization of the degree to not necessarily
finite-to-one factor codes [6–8].

As the degree gives an upper bound on the number of ergodic measures on X over a fully
supported ergodic measure on Y, the class degree gives an upper bound on the number of ergodic
measures on X of relative maximal entropy over a fully supported ergodic measure on Y. Hence,
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if a factor code is of class degree 1, then for each fully supported ergodic measure on Y, there is a unique
relative maximal measure over it [6]. A special kind of class degree 1 code, called a fiber-mixing factor
code, was first defined in [9]. A fiber-mixing factor code from a shift of finite type is a code of class
degree 1 for which each point of Y has exactly one transition class; that is, it is a constant-class-to-one
code of class degree 1 [7]. In [9], Yoo proved that a fiber-mixing code sends every fully supported
Markov measure on X to a Gibbs measure on Y. Kempton [10] also used factor codes with a similar
property for the study of factors of Gibbs measures. It turned out that such code is indeed a 1-block
fiber-mixing code defined on a one-sided mixing 1-step shift of finite type (see Proposition 2).

Factor codes of class degree 1 are useful in the study of push-forwards or lifts of invariant
measures, and the existence of a finite-to-one factor code guarantees the existence of a factor code
of degree 1. Hence, it is natural to ask whether there also exists a kind of Replacement Theorem for
infinite-to-one factor codes, which is the motivation of this paper. We state our main results as follows.
Denote by h(X) the topological entropy of X.

Theorem 1. Suppose that there is a factor code π : X → Y between mixing shifts of finite type with
h(X) > h(Y). Then, there is a fiber-mixing (hence class degree 1) factor code from X onto Y.

In fact, as the proof shows, any code π̃ : X̃ → Y from a proper subshift X̃ of X can be extended
to a fiber-mixing factor code from X onto Y. By using a reduction to the mixing case, we can state
an infinite-to-one analogue of the Replacement Theorem. Denote by per(X) the period of X.

Theorem 2. Suppose that there is a factor code π : X → Y between irreducible shifts of finite type with
h(X) > h(Y). Then there is a constant-class-to-one factor code of class degree per(X)/per(Y) from X onto Y.

As constant-class-to-one codes are bi-continuing [7], Theorems 1 and 2 also strengthen the
main results of [11], in which the existence of an infinite-to-one factor code implies the existence
of a bi-continuing factor code.

The paper is organized as follows. In the next section, we present several properties of
fiber-mixing codes in view of class degree 1 codes. In Section 3, we complete the proofs of
Theorems 1 and 2, and present an equivalent condition for the existence of a fiber-mixing factor
code between irreducible shifts of finite type (see Theorem 3). In Section 4 we present a relation
between fiber-mixing codes and factor codes defined by Kempton in [10], and an application to factors
of Gibbs measures.

2. Preliminaries and Fiber-Mixing Codes

We introduce basic terminology and known results on symbolic dynamics. For further details on
symbolic dynamics, see [5]. Properties of class degree and transition classes can be found in [6–8].

For a shift space (or subshift) X with the shift map σ, denote by Bn(X) the set of all words of
length n appearing in the points of X and B(X) =

⋃
n≥0 Bn(X); also let AX = B1(X). For a, b ∈ A,

denote by Bn(X, a, b) the set of all words u ∈ Bn(X) with u1 = a and un = b.
A point x ∈ X is right transitive if the forward orbit of x is dense in X. Two points x and x′ are

said to be right asymptotic if x[n,∞) = x′[n,∞) for some n ∈ Z. Left transitive points and left asymptotic
points are defined analogously. X is called irreducible if there is a right transitive point, or equivalently,
for all u, v ∈ B(X) there is a word w with uwv ∈ B(X). It is called mixing if for all u, v ∈ B(X), there
is an integer N ∈ N such that whenever n ≥ N, we can find w ∈ Bn(X) with uwv ∈ B(X). If there is
such an N which works for all u, v ∈ B(X), then we call N a transition length for X. A word v ∈ B(X)

is synchronizing if whenever uv and vw are in B(X), we have uvw ∈ B(X). If each w ∈ Bk(X) is
synchronizing for some k ∈ N, then X is called a (k-step) shift of finite type. Every shift of finite type is
conjugate to an edge shift; i.e., a one-step shift space which consists of all bi-infinite trips on a directed
graph. A sofic shift is a factor of a shift of finite type. A mixing sofic shift has a transition length.

The period of a shift space X (denoted by per(X)) is the greatest common divisor of the
periods of all periodic points of X. If X is an irreducible shift of finite type of period p, then X
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has the periodic decomposition: there are disjoint clopen subsets Di of X so that X =
⋃p−1

i=0 Di,
σ(Di) = Di+1 (mod p), and σp|Di is mixing for each i. The entropy of a shift space is defined by
h(X) = limn→∞(1/n) log |Bn(X)|, which equals the topological entropy of (X, σ) as a dynamical
system. If X is a mixing shift of finite type, then h(X) = limn

1
n log pn(X) = limn

1
n log qn(X) =

limn
1
n logBn(X, a, b) for each a, b ∈ A, where pn(X) (resp. qn(X)) denotes the number of periodic

points of period n (resp. least period n).
A (sliding block) code π : X → Y is a continuous σ-commuting map between shift spaces. A factor

code is a surjective code. Each code can be recoded to a one-block code; i.e., a code for which x0 determines
π(x)0. For simplicity, we will also use π for the induced map from B(X) to B(Y). We call π finite-to-one
if |π−1(y)| is finite for all y in Y. Otherwise, π is called infinite-to-one. If π : X → Y is a factor code from
an irreducible shift of finite type, then it is well known that h(X) = h(Y) if and only if π is finite-to-one
(e.g., Section 8 in [5]). If this condition holds, then every doubly transitive point in Y has the same number
of preimages (the degree of π), which equals the minimal number of preimages over all points in Y.

Class degree is a generalization of a degree to (possibly infinite-to-one) factor codes, where the
entropies of X and Y may differ. We recall the properties of transition classes and class degrees. Details
can be found in [6–8].

Let π : X → Y be a factor code from a shift of finite type onto an irreducible sofic shift. Given
two points x, x̄ ∈ X, we say x → x̄ if for each integer n there exists a point z in X such that
π(z) = π(x) = π(x̄), z(−∞,n] = x(−∞,n] and z[i,∞) = x̄[i,∞) for some i ≥ n. Say x ∼ x̄ if x → x̄
and x̄→ x. Then ∼ is an equivalence relation on each fiber π−1(y), y ∈ Y. Each equivalence class is
called a transition class over y. Denote by C(y) the set of transition classes over y. The class degree of π

is the minimal number of transition classes over the points of Y. Then, as for the equal entropy case,
|C(y)| equals the class degree of π for each right transitive point y in Y [6].

The following properties of factor codes were defined in [7,9], respectively. The definition of a
fiber-mixing code is rather simple and can be stated without transition classes (see Figure 1).

x

x̄

∃z

π

y = π(z) = π(x) = π(x̄)

Figure 1. A fiber-mixing code.

Definition 1. Let π : X→ Y be a factor code between shift spaces.

1. Suppose that X is of finite type and Y is irreducible and sofic. π is called constant-class-to-one if
|C(y)| is independent of y ∈ Y.

2. π is called fiber-mixing if, for every x, x̄ ∈ X with π(x) = π(x̄), there is z ∈ X such that z is left
asymptotic to x, right asymptotic to x̄ and π(z) = π(x).

These conditions are clearly invariant under conjugacy. A simple example of a fiber-mixing factor
code is a projection map: if π : X× Z→ X is a projection, and Z is a mixing sofic shift (more generally
if Z has the specification property), then π is fiber-mixing.

The following notion introduces a local condition for codes to be fiber-mixing.

Definition 2. Let π : X→ Y be a 1-block factor code from a 1-step shift of finite type. Let u, v ∈ Bl(X)

for some l ∈ N and π(u) = π(v). A path w ∈ Bl(X) is called a bridge from u to v if w1 = u1, wl = vl,
and π(w) = π(u) = π(v).



Entropy 2016, 18, 428 4 of 10

If the domain of a fiber-mixing code is of finite type, there is a uniform bound condition on the
code, which appears in Lemma 3.2 in [9] and in Theorem 5.3 in [7] in a very general form. For the
completeness of the exposition, we include a proof.

Lemma 1. Let π : X→ Y be a 1-block fiber-mixing factor code from a 1-step shift of finite type. Then, there is
k ∈ N such that—for every u, v ∈ Bk(X) with π(u) = π(v)—there is a bridge from u to v.

Proof. Suppose that the assertion of the lemma does not hold. Then, for each k ∈ N, there are x(k), x̄(k) ∈ X
such that π(x(k))[−k,k] = π(x̄(k))[−k,k] and there is no bridge from x(k)

[−k,k] to x̄(k)
[−k,k]. By choosing a

subsequence, we can assume that there are x, x̄ ∈ X with x(k) → x and x̄(k) → x̄. Then, π(x) = π(x̄).
Since π is fiber-mixing, there exist z ∈ X and m ∈ N with π(z) = π(x) such that z(−∞,−m] = x(−∞,−m]

and z[m,∞) = x̄[m,∞). Take l ∈ N large so that l > m, x(l)
[−m,m]

= x[−m,m] and x̄(l)
[−m,m]

= x̄[−m,m]. Define

a point z̄ ∈ X by z̄ = x(l)
(−∞,−m]

z(−m,m)x̄
(l)
[m,∞)

. Then, z̄[−l,l] is a bridge from x(l)
[−l,l] to x̄(l)

[−l,l], which is a
contradiction.

Note that if k satisfies the condition in the above lemma, then every k′ ≥ k also satisfies
the condition.

Corollary 1. Let π : X→ Y be a fiber-mixing factor code from a shift of finite type. Then Y is also of finite type.

Proof. By recoding, we may assume that X is 1-step and π is 1-block. Let k ∈ N be as in Lemma 1.
For each v ∈ Bk(Y), if uv, vw ∈ B(Y), then take αβ ∈ π−1(uv) and β̄γ ∈ π−1(vw). Then there is a
bridge β̃ from β to β̄ so that π(αβ̃γ) = uvw ∈ B(Y). So, each word v ∈ Bk(Y) is synchronizing, and Y
is a k-step shift of finite type.

By Lemma 1, the following corollary is immediate.

Corollary 2. [7] Let π : X→ Y be a factor code from a shift of finite type onto an irreducible sofic shift. Then π

is fiber-mixing if and only if it is constant-class-to-one and the class degree of π is 1.

Lemma 2. Let π : X → Y be a fiber-mixing factor code between irreducible shifts of finite type.
Then per(X) = per(Y).

Proof. By usual reduction, we may assume that per(Y) = 1, i.e., Y is mixing. Let {D0, · · · , Dp−1} be
the periodic decomposition of X. If p > 1, since σp acts transitively on each Di, π|Di is onto for each
i. Take any y ∈ Y, x ∈ π−1(y) ∩ D0 and x̄ ∈ π−1(y) ∩ D1. As π is fiber-mixing, there is z ∈ π−1(y),
which is left asymptotic to x and right asymptotic to x̄. As z is left (resp. right) asymptotic to x (resp. x̄),
we have z ∈ D0 (resp. z ∈ D1). This is a contradiction. Hence, p = 1 and per(Y) = per(X) = 1.

A π-diamond is a pair of distinct blocks u, v ∈ Bl(X) with u1 = v1, ul = vl (l ∈ N). Recall that a
1-block factor code π : X→ Y from an irreducible shift of finite type is finite-to-one if and only if there
is no π-diamond (e.g., see Section 8 in [5]).

Corollary 3. Let π : X→ Y be a finite-to-one fiber-mixing factor code from an irreducible shift of finite type.
Then π is a conjugacy.

Proof. We may assume that X is 1-step and π is 1-block. Let k ∈ N be as in Lemma 1. If π is not
a conjugacy, then there are distinct points x, x̄ ∈ X with π(x) = π(x̄) = y. As π is finite-to-one,
there are infinitely many n ∈ Z with xn 6= x̄n. Hence, there are indices i1 < i2 < i3 < i4 such that
i2 − i1 = i4 − i3 = k, x[i1,i2] 6= x̄[i1,i2] and x[i3,i4] 6= x̄[i3,i4]. By Lemma 1, there are a bridge u from x[i1,i2]
to x̄[i1,i2] and a bridge v from x̄[i3,i4] to x[i3,i4]. Then, two blocks x[i1,i4] and ux̄(i2,i3)v form a π-diamond,
a contradiction.

Given a set of words W ⊂ A∗ = ⋃
n∈NAn, denote by XW the coded system generated by W; that is,

the smallest shift space containing the sequences obtained by concatenating words in W. We present
two simple fiber-mixing factor codes from shift spaces which are not of finite type.
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Example 1. (1) Let X = XW1 and Y = XW2 , where W1 = {bb, abkck : k ≥ 0} and W2 = {102k : k ≥ 0}.
Note that Y is the even shift (sofic), while X is a non-sofic (mixing) coded system. Let π : X→ Y be a
code sending a to 1 and b, c to 0.

Then, π is fiber-mixing. Suppose that π(x) = π(x̄) = y. If 1 occurs in y, then we can assume
that y0 = 1. Then x0 = x̄0 = a so that z = x(−∞,0]x̄(0,∞) is a desired point. Otherwise, y = 0∞. In this
case, we have π−1(y) = {b∞, c∞, σk(b∞.c∞), σk(c∞.b∞) : k ∈ Z}. By examining each case, for each
x, x̄ ∈ π−1(y), one can check that there is z ∈ π−1(y) with z left asymptotic to x and right asymptotic to x̄.

(2) Let X = XW1 and Y = XW2 , where W1 = {bb, a1bb, a2b} and W2 = {b, ab}. Let π : X → Y be
the subscript dropping code. Let y ∈ Y. If a occurs in y infinitely to the right, then π−1(y) contains
only one point. Otherwise, π−1(y) consists of two points x and x̄ such that x and x̄ differ in only one
coordinate. Hence π is an example of a finite-to-one fiber-mixing factor code which is not a conjugacy.
Note that X is strictly sofic, while Y is a mixing shift of finite type (Fibonacci).

3. Existence of Fiber-Mixing Codes

In this section, we prove Theorems 1 and 2, and present a characterization of the existence of a
fiber-mixing factor code between irreducible shifts of finite type with unequal entropies (Theorem 3).

The following lemma is referred to as the Blowing up Lemma.

Lemma 3. [12] Let X be a mixing shift of finite type with h(X) > 0 and qn(X) > 0. Let M > 1. Then there is
a mixing shift of finite type X̃ such that

(1) qn(X̃) = qn(X)− n,
(2) qnM(X̃) = qnM(X) + nM, and
(3) qi(X̃) = qi(X) for all other i.

Lemma 4. Let c, ε > 0 and l ∈ N. Then there is a mixing shift of finite type W such that 0 < h(W) < ε,
pn(W) ≤ c · exp(nε) for all n ∈ N, and pn(W) = 0 for each 1 ≤ n < l.

Proof. Let W1 be a mixing shift of finite type with 0 < h(W1) < ε/2 (such W1 exists as the set of Perron
numbers is dense in [1, ∞). One may construct W1 directly by considering a graph consisting of two
long cycles of relatively prime lengths meeting only at a single vertex).

Note that for large enough n ∈ N, we have exp(nε/2) < c · exp(nε). Hence, from the definition
of the entropy, we have pn(W1) < exp(nε/2) for n large enough. Thus pn(W1) < c · exp(nε) for large
enough n. By applying the Blowing up Lemma repeatedly to points in W1 having low periods, we can
obtain a mixing shift of finite type W satisfying all the conditions.

Lemma 5. Let X and Y be mixing shifts of finite type with h(X) > h(Y). Then there exist a mixing shift of
finite type Z ⊂ X and a fiber-mixing factor code π : Z→ Y.

Proof. Let ε = (h(X)− h(Y))/3. Also let l = 0 if qm(X) > 0 for all m ∈ N and l = max{m ∈ N :
qm(X) = 0} otherwise. Then there is α > 0 such that qn(X) > α · exp(n(h(X)− ε)) for all n > l. There is
also β > 0 such that pn(Y) < β · exp(n(h(Y) + ε)) for all n ≥ 1. Let c = α/β. By Lemma 4, we can find
a mixing shift of finite type W such that h(W) < ε, pn(W) ≤ c · exp(nε) for each n ∈ N and pn(W) = 0
for all 1 ≤ n ≤ l. Then we have

qn(Y×W) ≤ pn(Y×W) = pn(Y) · pn(W)

< cβ · exp(n(h(Y) + 2ε))

= α · exp(n(h(X)− ε))

< qn(X)

for n > l, and qn(Y×W) ≤ pn(Y) · pn(W) = 0 for 1 ≤ n ≤ l. Thus, qn(Y×W) ≤ qn(X) for all n ∈ N.
Since h(Y×W) < h(Y) + ε < h(X), there is an embedding ψ : Y×W → X by Krieger’s Embedding
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Theorem [13]. The result follows by letting Z = ψ(Y×W) and π : Z → Y be the composite of ψ−1,
followed by the projection code from Y×W onto Y.

Lemma 6. (Theorem 26.17 in [14]) Let X be a mixing shift of finite type and X̃ a proper subshift of X. For given
h < h(X), there is a mixing shift of finite type Z ⊂ X such that h(Z) > h and Z ∩ X̃ = ∅.

Lemma 7. (Extension Lemma) [12] Let X be a shift space and Y a mixing shift of finite type. If there is a code
from X into Y, then any code from a subshift of X to Y can be extended to a code from X to Y.

Now we are ready to prove Theorem 1. The first part of the proof of Theorem 1 follows the
line in [11].

Proof of Theorem 1. Suppose that X̃ is a proper subshift of X and π̃ : X̃→ Y is any code. As we have
stated in Section 1, we will construct a fiber-mixing factor code π : X→ Y so that π|X̃ = π̃.

By Lemma 6, there is a mixing shift of finite type Z1 ⊂ X disjoint from X̃ with h(Z1) > h(Y); also
by Lemma 5, there exist a mixing shift of finite type Z ⊂ Z1 and a fiber-mixing factor code π1 : Z→ Y.
By Lemma 7 used for a subshift Z ∪ X̃, we can find a code ψ : X→ Y such that ψ|Z = π1 and ψ|X̃ = π̃.
This ψ is a factor code, since π1 is onto. Finally, by Lemma 6 there is a mixing shift of finite type V ⊂ Z1

which is disjoint from Z and h(V) > h(Y).
By passing to higher block shifts, we may assume that (a) Z, V, and Y are 1-step, (b)AZ ∩AX̃ = ∅

and AZ ∩AV = ∅, (c) ψ is a 1-block code, and (d) if a, b ∈ AZ and ab ∈ B2(X), then ab ∈ B2(Z).
Let k ∈ N be as in Lemma 1 for π1. Choose N large so that N is a transition length for X, Y, V, and Z.

For each i > 3N + 3, a ∈ AX and b ∈ AZ, define

HLi(a, b) = {u ∈ Bi(X, a, b) : u[N+2,i−2N) ∈ B(V), ui−N /∈ AZ,

and u(i−N,i] ∈ B(Z)};

LHi(b, a) = {u ∈ Bi(X, b, a) : u[1,N] ∈ B(Z), uN+1 /∈ AZ,

and u(2N+1,i−N−1] ∈ B(V)}.

Since N is a transition length for X, V, and Z, these sets are nonempty. Now, since h(V) > h(Y), there is
I ∈ N such that

|HLI+N(a, b)| ≥ |BI+N(Y, ψa, ψb)| and

|LHI+N(b, a)| ≥ |BI+N(Y, ψb, ψa)|

for all a ∈ AX and b ∈ AZ. For each a ∈ AX and b ∈ AZ, define surjections Ψa,b
HL from HLI+N(a, b)

onto BI+N(Y, ψa, ψb). Similarly, define surjections Ψb,a
LH from LHI+N(b, a) onto BI+N(Y, ψb, ψa). Finally,

for each 2N ≤ j ≤ 2N + 2I, define a map Φj : A2
X → Bj(Y) such that Φj(c, d) ∈ Bj(Y, ψc, ψd). This is

possible because N is a transition length for Y.
Given x ∈ X, we divide x ∈ X into low and high-stretches, as in [11]. Call a segment of x a

low-stretch if it is a maximal Z-word of length > 2N + k. Remaining stretches of maximal length are
called high-stretches (of x). By the condition (d), low-stretches of x cannot overlap, and hence x is
uniquely decomposed as low and high-stretches. Additionally, if a high-stretch of x is of length greater
than 2I, then it is called a long high-stretch. Otherwise, we call it a short high-stretch.

Now, we define a code π : X→ Y. Let x ∈ X.

(i) Low-stretches. If x[i−N,i+N] is in a low-stretch, then let π(x)i = ψ(xi).
(ii) Long high-stretches. If x[i−I,i+I] is in a long high-stretch, let π(x)i = ψ(xi).
(iii) Short high-stretches. If x[i,j] is a short high-stretch, then j − i + 1 ≤ 2I. Let π(x)[i−N,j+N] =

Φ2N+j−i+1(xi−N, xj+N).
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(iv) High–low transition. If x[i,i+I) is the end of some long high-stretch and x[i+I,i+N+I) is the beginning
of some low-stretch, then let

π(x)[i,i+N+I) = Ψxi,xi+N+I−1
HL (x[i,i+N+I)).

(v) Low–high transition. Similarly as in (iv), using ΨLH.

These cases cover all parts of x, and π is a well-defined code from X to Y. Note that π has memory
and anticipation 2N + 2I + k. Since x ∈ Z consists of a single low-stretch and x ∈ X̃ consists of a single
high-stretch, we have π|Z = π1 and π|X̃ = π̃, so π is a factor code which is an extension of π̃.

To show that π is fiber-mixing, let n = 2I + 6N + 3k. We first prove the following claim.

Claim 1. Let x ∈ X, x̄ ∈ Z, and y ∈ Y satisfy π(x) = π(x̄) = y. Then, we can find z ∈ X such that
z(−∞,−n] = x(−∞,−n], z[0,∞) = x̄[0,∞) and π(z) = y.

Proof. First, suppose that there exists an i ∈ [−n,−2N− k] such that x[i,i+2N+k] is part of a low-stretch.
Then, x[i+N,i+N+k] ∈ B(Z). Let a = xi+N and b = x̄i+N+k. Since π1(x[i+N,i+N+k]) = π1(x̄[i+N,i+N+k]),
by Lemma 1, there exists w ∈ Bk+1(Z, a, b) with π1(w) = y[i+N,i+N+k]. Define a point z by letting

z = x(−∞,i+N)wx̄(i+N+k,∞) ∈ X.

Note that z[i,∞) is part of a low-stretch of z, and therefore rule (i) applies to z[i+N,∞), and we have
π(z) = y.

Next, suppose that the above does not hold. Then, x[−n+2N+k,−2N−k] is part of a long high-stretch
of x (since the length of this interval is 2I + 2N + k). Since there is no Z-word of length greater than
2N + k in this part, by the property (d), there exist a ∈ AX \AZ and −4N− 2k− I ≤ i ≤ −2N− k− I
with xi = a. Let b = x̄i+I+N−1 ∈ AZ.

Since Ψa,b
HL is onto, there exists u[i,i+I+N) ∈ HLI+N(a, b) with Ψa,b

HL(u) = y[i,i+I+N).
Let z = x(−∞,i)u[i,i+I+N)x̄[i+I+N,∞). Then z ∈ X. Note that z[−n+2N+k,i+I) is part of a long high-stretch
and z[i+I,∞) is a low-stretch (zi = xi = a /∈ AZ guarantees no new occurrence of a Z-block of length
greater than 2N + k in z[−n+2N+k,i+I)). Therefore, rules (ii), (iv), and (i) apply to z[−n+2N+k+I,∞), and we
have π(z) = y, which proves the claim.

By a symmetric argument, if x ∈ X and x̄ ∈ Z satisfy π(x) = π(x̄), then we can find z ∈ X such
that z(−∞,0] = x̄(−∞,0], z[n,∞) = x[n,∞) and π(z) = π(x).

To show that π is fiber-mixing, suppose that x, x′ ∈ X and π(x) = π(x′) = y ∈ Y. Since π is an
extension of a factor code π1, there is x̄ ∈ Z such that π(x̄) = π1(x̄) = y. Then, by the claim above,
there is z(1) ∈ X such that z(1)

(−∞,−n] = x(−∞,−n], z(1)
[0,∞)

= x̄[0,∞) and π(z(1)) = y. There is also z(2) ∈ X

such that z(2)
(−∞,n] = x̄(−∞,n], z(2)

[2n,∞)
= x′[2n,∞) and π(z(2)) = y. Let z = z(1)

(−∞,0]z
(2)
(0,∞)

= z(1)
(−∞,n]z

(2)
(n,∞)

. Then,
z ∈ X is a desired point, which completes the proof.

Remark 1. By combining the proof of the above theorem and the argument in Theorem 4.4 in [11],
one can prove that the result of Theorem 1 still holds if X is a shift space with the specification property.

For two shift spaces X and Y, we denote by P(X)↘ P(Y) if, whenever x is a periodic point of X,
there exists a periodic point of Y whose period divides the period of x. It is well known that given
two irreducible shifts of finite type X and Y with h(X) > h(Y), there is a factor code from X onto Y if
and only if P(X)↘ P(Y) [5,12].

Theorem 3. Let X and Y be irreducible shifts of finite type. Then there is a fiber-mixing factor code π : X→ Y
if and only if one of the following holds.

1. X is conjugate to Y, or
2. h(X) > h(Y), P(X)↘ P(Y), and per(X) = per(Y).
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Proof. Suppose that there is a fiber-mixing factor code π from X onto Y. Then it is clear that
P(X)↘ P(Y). We also have per(X) = per(Y) by Lemma 2. If π is finite-to-one, then by Corollary 3,
it is a conjugacy. Otherwise, π is infinite-to-one and h(X) > h(Y).

Conversely, since a conjugacy is clearly a fiber-mixing factor code, the sufficiency follows from
Theorem 1 and a reduction to the mixing case.

Theorem 2 follows from a standard reduction to the mixing case.

Proof of Theorem 2. By usual reduction, we may assume that per(Y) = 1. Let {D0, · · · , Dp−1} be
the periodic decomposition of X. Then (D0, σp) is an irreducible component of the p-th higher
power shift of X and is mixing. Hence, by Theorem 1, there is a σp-commuting fiber-mixing code
π̄ : (D0, σp) → (Y, σp). For x ∈ Di, let π(x) = σiπ̄σ−i(x). Then π : X → Y is a constant-class-to-one
code of class degree per(X)/per(Y).

Note that per(X)/per(Y) is the smallest possible class degree of a factor code from X onto Y.

4. Application: Factors of Gibbs Measures under Fiber-Mixing Codes

As an application, we present the existence of factor codes mapping fully supported Gibbs
measures to Gibbs measures. We recall some definitions.

Let X be a mixing shift of finite type. An invariant (probability) measure µ on X is called a Gibbs
measure if there are a continuous function f : X→ R, P ∈ R and c > 0, such that

c−1 <
µ[x0 · · · xn−1]

exp(−nP + ∑n−1
i=0 f (σix))

< c

for all x ∈ X and n ∈ N. The function f is called a potential of µ. Denote by G(X) the set of all Gibbs
measures on X.

Denote by X+ the one-sided mixing shift of finite type obtained from X, and by G(X+) the set
of Gibbs measures on X+. There is a natural identification between the set of invariant measures on
X+ and that on X, and this identification maps G(X+) into G(X). Hence, one may also think about
µ ∈ G(X+) as a measure on X (we will call µ a one-sided Gibbs measure). In fact, if µ is a Gibbs measure
on X, then µ ∈ G(X+) if and only if µ has a one-sided potential f : X→ R (that is, a function on X for
which f (x) depends only on x[0,∞)). This is the case when µ has a potential function which is Hölder
continuous [15], of summable variation [16], or more generally, a Bowen function [17].

In [10], Kempton extended an idea of [18] and showed the following theorem. In what follows,
for a set B ⊂ X+ and n ∈ N, denote by An(B) the set {xn : x ∈ B}.

Theorem 4. [10] Let π : X+ → Y+ be a 1-block factor code between one-sided 1-step mixing shifts of finite
type. If there is N ∈ N with the following two properties, then for every µ ∈ G(X+), we have π(µ) ∈ G(Y+).

(i) If An ({x : xn+m = j, π(x) = z}) is nonempty for some m > N, with n ∈ N and z ∈ Y+, then

An ({x : xn+m = j, π(x) = z}) = An ({x : π(x) = z}).
(ii) An ({x : π(xn−N · · · xn+N) = zn−N · · · zn+N}) = An ({x : π(x) = z}) for each n ∈ N.

The condition (ii) above is indeed related to continuing properties of factor codes defined in [19].
We will soon see that condition (ii) is implied by (i). A code π : X→ Y between shift spaces is called
right continuing if, whenever x ∈ X, y ∈ Y and π(x) is left asymptotic to y, then there exists x̄ ∈ X
which is left asymptotic to x and π(x̄) = y. A left continuing code is defined similarly. If π is right
and left continuing at the same time, it is called bi-continuing. The following is an easy observation
from Lemma 1.

Lemma 8. [7,9] Let π : X→ Y be a fiber-mixing factor code from a shift of finite type. Then it is bi-continuing.
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In the case where X is not of finite type, then a fiber-mixing factor code need not be continuing,
as the following example shows.

Example 2. Let π : X → Y be a factor map defined in Example 1(1). Then π is not left continuing:
Take x = c∞ ∈ X and y = 1∞.0∞ ∈ Y. If x̄ 6= x is right asymptotic to x, then x̄ is in the orbit of b∞.c∞,
and we have π(x̄) = 0∞ 6= y. One can check that π is right continuing.

The proof of Proposition 2.4 in [11] gives the following uniform property for continuing codes.

Proposition 1. [11] Let π : X → Y be a right continuing code with X of finite type. Then π has a (right
continuing) retract; that is, there is M ∈ N so that given x ∈ X and y ∈ Y with π(x)(−∞,0] = y(−∞,0], we have
x̄ ∈ X with π(x̄) = y and x(−∞,−M] = x̄(−∞,−M].

Remark 2. Let π : X→ Y satisfy the conditions in Proposition 1. Suppose also that X is 1-step and π

is 1-block. Then, given u = u[0,2M] ∈ B2M+1(X) and w = w[0,2M] ∈ B2M+1(Y) with π(u[0,M]) = w[0,M],
there is ū[0,2M] ∈ B2M+1(X) such that ū0 = u0 and π(ū) = w.

A factor code π : X+ → Y+ between one-sided subshifts naturally induces a factor code π :
X→ Y between (two-sided) subshifts by the same block map. Thus, say that a factor code π : X+ → Y+

is fiber-mixing if the corresponding factor code π : X→ Y is fiber-mixing. The fiber-mixing property
for a factor code between one-sided subshifts is a conjugacy invariant.

Proposition 2. Let π : X+ → Y+ be a 1-block fiber-mixing factor code from a 1-step shift of finite type. Then it
satisfies both conditions in Theorem 4.

Proof. The induced map π̄ : X → Y between the two-sided subshifts is fiber-mixing and thus
bi-continuing. So, take N ≥ max(k, 2M + 1), where k is as in Lemma 1 and M yields the right and left
continuing retracts as given in Proposition 1 for π̄. The map π̄, hence also π, satisfies the condition (i)
by Lemma 1 and (ii) by Remark 2.

By Proposition 2, Theorem 4, and Theorem 1, we obtain the following corollaries.

Corollary 4. (1) Let π : X+ → Y+ be a fiber-mixing factor code between one-sided mixing shifts of finite type.
Then for every µ ∈ G(X+), we have π(µ) ∈ G(Y+).

(2) Let π : X→ Y be a fiber-mixing factor code between (two-sided) mixing shifts of finite type. Then for
every µ ∈ G(X+), we have π(µ) ∈ G(Y+). In particular, if µ is a Gibbs measure on X with a potential in
Bowen class, then π(µ) is a Gibbs measure on Y.

In Corollary 4(2), we do not know whether π(µ) ∈ G(Y) for each µ ∈ G(X).

Corollary 5. Let X and Y be one-sided (resp. two-sided) mixing shifts of finite type with h(X) > h(Y). If there
is a factor code from X onto Y, then there is a factor code π : X→ Y sending every Gibbs measure (resp. every
one-sided Gibbs measure) on X to a Gibbs measure (resp. a one-sided Gibbs measure) on Y.
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