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Abstract: Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces
a non-wetting phase within a pore network. It is an off-equilibrium stationary process—in the sense
that it is maintained in dynamic equilibrium at the expense of energy supplied to the system.
The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy
production. The latter has been proposed to comprise two components: the rate of mechanical energy
dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics
scale) and the configurational entropy (a Boltzmann–Gibbs entropy component, klnW), due to the
existence of a canonical ensemble of flow configurations, physically admissible to the externally
imposed macrostate conditions. Here, we propose an analytical model to account the number of
microstates, lnW, in two-phase flows in pore networks. Combinatorial analysis is implemented to
evaluate the number of identified microstates per physically admissible internal flow arrangement,
compatible with the imposed steady-state flow conditions. Then, Stirling’s approximation is applied
to downscale the large factorial numbers. Finally, the number of microstates is estimated by
contriving an appropriate mixing scheme over the canonical ensemble of the physically admissible
flow configurations. Indicative computations are furnished.

Keywords: two-phase flow; porous media; configurational entropy; microstates; Boltzmann–Gibbs
entropy; maximum entropy production principle

1. Introduction and Scope of Work

Two-phase flow in porous media is a physical process whereby two phases simultaneously flow
within a porous medium. When the flow is immiscible (i.e., the two phases do not mix), one of
the phases is wetting the interstitial surface of the porous medium against the other, non-wetting
phase. The wetting phase is conventionally referred to as “water” and the non-wetting phase as
“oil”. The combined effect of wetting and interfacial tension is the disconnection of the non-wetting
phase into fluidic elements of smaller or larger size—compared to the average pore size. Two-phase
flow in porous media occupies a central position in physically important processes with practical
applications of industrial and environmental interest, such as: enhanced oil recovery [1,2], carbon
dioxide sequestration [3], groundwater and soil contamination and subsurface remediation [4], the
operation of multiphase trickle-bed reactors [5], the operation of proton exchange membrane fuel
cells [6], etc. The majority of those applications are based on inherently transient processes whereby
one phase displaces the other. Drainage is said to occur when a non-wetting phase (oil) enters the
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pore network to displace a wetting phase (water), whereas imbibition occurs if the latter displaces the
former. Drainage and imbibition are predominantly transient processes: the pattern structure of the
two fluids, as to their distribution within the network and to the disconnectedness of the non-wetting
phase (oil), change during the process. In addition, averages of physical quantities—taken over any
volume larger than the representative elementary volume (REV)—change with position and time. For
example, the average saturation of the wetting phase over any region of the pore network increases
with time as a wetting fluid (water) is replacing a non-wetting fluid (oil) during the imbibition process.

The process itself is a hierarchical system [7–9], with many inherent degrees of freedom. It is
strongly affected by factors residing at several different length and/or occurring over widely different
time–scales. Ergodicity is nested within the physics of multi-phase flows and reflected on its stationary
character under steady-state flow conditions.

To understand the physics of such processes in a deeper context, we need first to understand the
steady-state flow, whereby the two immiscible fluids, oil (the non-wetting) and water (the wetting), are
forced to flow at pre-selected, constant flowrates. In this second class of processes, physical quantities
also change with time, but in a different way: averages remain practically constant or their time
variance is small. The flow structure—comprising a mixture of connected and disconnected fluidic
elements moving at different velocities—incessantly rearranges itself within a phase space of physically
admissible flow configurations [10,11]. Considering the flow to be ergodic, its time average is equal to
its phase space average over all physically admissible configurations [12].

Two-phase flow in porous media is ubiquitous in industrial applications. Particular attention
is given on tuning the design parameters and process interventions so as to increase the “sweeping
efficiency”, i.e., the extraction of one phase (residing in-situ) and its replacement by another
phase—wetting or non-wetting depending on the particular application. In this context, the decrease of
saturation has become the main objective in process optimization (e.g., recovery, substitution, removal,
etc.). Nevertheless, at present, pragmatic sustainability issues on energy production/management
(hydrocarbons, fuel cells, catalytic or trickle-bed reactors) shifts “recovery optimization” trends into
“energy/cost efficiency optimization” scopes and targets [13] whereby the cost of recovery is also
considered to be a critical variable. As a consequence, new challenges emerge within a wide spectrum of
technological problems, extending from laboratory to industrial scale, e.g., unconventional/enhanced
oil recovery/carbon capture and sequestration processes, soil and aquifer pollution and remediation,
operation of trickle-bed reactors [14].

To address these issues we need first to examine if any energy efficiency characteristics are inherent
in the sought process, starting from its simpler form, immiscible steady-state.

One important characteristic is the existence of optimum operating conditions, i.e., conditions for
which the energy efficiency of the process (considered as the “amount of oil extracted per kW of power
dissipated in the pumps”) attains maximum values. This feature was first revealed after extensive
simulations of steady-state two-phase flows in model pore networks using the DeProF mechanistic
model, developed by Valavanides and Payatakes [12,15]. DeProF implements hierarchical mechanistic
modelling, spanning pore- to core- to field scales, to predict the pressure gradient given the flowrate of
each fluid [12]. Many strands of evidence support the DeProF model specificity. Its predictions are
proven through consistent physical interpretation and empirical/experimental verification. Recently, a
major re-examination of available laboratory studies has confirmed that conditions for which process
efficiency attains locally maximum values can always be detected [16]. The DeProF mechanistic model
is built around the basic mass and momentum balances, appropriately applied across the observation
scales (pore to network to core to field scales). In essence, it implements true-to-mechanism modelling
provisions to interpret and account physical, multi-scale observations (on flowrates and pressure
drop) over mass and momentum balances. Experiments have not yet falsified the model predictions;
instead they have confirmed the existence of optimum operating conditions, at least for the examined
systems and flow conditions [16]. Theoretical justification, based on universal physical principles,
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established in thermodynamics, statistical mechanics etc., would further support the validity of the
DeProFmodel predictions.

Detection of optimum operating conditions could eventually (a posteriori) improve the efficiency in
this type of processes. Better, the design of the process, so as to operate a priori at maximum efficiency
conditions, could provide potentially large marginal benefits in industrial applications. It is therefore
imperative to understand in-depth the physical mechanisms that regulate its efficiency.

To this end, a conceptual justification of the existence of optimum operating conditions in
steady-state two-phase flows in pore networks has been recently proposed [17]. It is based on the
implementation of the Maximum Entropy Production (MEP) principle to justify the existence of the
optimum process efficiency conditions, predicted by mass and momentum balances. The idea is the
following: Sought process is an off-equilibrium process, maintained at a certain state on the expense
of externally provided mechanical energy. Implementation of the MEP principle would eventually
indicate (or confirm) the conditions for which the total entropy of the process takes maximum values,
leading to maximum efficiency values. To do so, we need to account the entropy of the process.
The sources of entropy have been identified to reside in two scales, the continuum scale at molecular
level and the configurational scale of the canonical ensemble of physically admissible internal flow
arrangements, consistent to the macrostate flow conditions. The first source of entropy can be evaluated
as a thermodynamic quantity (thermal entropy) accounting the heat dumped at a certain temperature.
The second source of entropy can be accounted by means of statistical mechanics, implementing a
methodology similar to Boltzmann’s principle in counting the microstates of ideal gas molecules.

The objective of the present work is to identify, detect and count the process microstates at the
configurational scale domain. To this end, we furnish an analytical model to estimate the number of
microstates, applicable on some universal, modeling provisions; namely: a pore network of countable
size, disconnection of the non-wetting phase to fluidic elements of measurable size and canonical
ensemble of physically admissible internal flow arrangements compatible with the external flow
conditions. Counting of microstates is a prerequisite step for implementing the Maximum Entropy
Production (MEP) principle exclusively into the modeling framework of the actual process. The idea is
to evaluate the total entropy production by accounting the constituent entropies over two different
scales: the continuum scale and the configurational scale. The former is easy to estimate as thermal
entropy; the latter we will have to account by estimating the number of microstates the system may
take in compliance to the externally imposed flow conditions. Essentially, both methodologies have a
common root (accounting of microstates) albeit they are implemented over different length scales. To
estimate thermal entropy we need to account microstates on the molecular level (continuum) scale,
hence the term thermodynamic entropy, on the low-end of the length scales. In contrast, accounting
of configurational microstates takes place at length scales depending on the structure of the pore
network and the discerning capability of the theoretical model—here the DeProF modeling provisions.
Here, the constituent “micro” in “microstates” refers to the scale size of the pore network and the
fluidic elements, extending over orders of a few tens to hundred microns. In that context the approach
is hierarchical.

In Section 2, we will describe the essential features of the DeProF model. We will only adhere to
those features that are universal in their applicability in true-to-mechanism modeling of steady-state
two-phase flows in pore networks, namely, decomposition of the macroscopic flow into a canonical
ensemble of interstitial prototype, connected and disconnected oil flows, depending on the externally
imposed flow conditions. We will also highlight the implementation of the Maximum Entropy
Production principle according to the modeling provisions of the sought process. In Section 3, we will
describe the basic modeling features of the physical domain (pore network) where the process takes
place and of its constituents (fluidic elements). In Section 4, we will define the process microstates and
furnish the methodology and analytical framework for estimating their number. In Section 5, we will
suggest an integration scheme to estimate the configurational entropy, using the analytical expressions
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derived in Section 4. Indicative computations for typical flow conditions are provided in Section 6.
Finally, conclusions and suggestions for future work are provided in Section 7.

2. Hierarchical Mechanistic Modeling for Steady-State Two-Phase Flow in Pore Networks

The conditions of steady-state two-phase flow in pore networks are defined by the values of the
flowrate of oil and water, qo and qw, or, in reduced form, the set of capillary number, Ca = µwUw/γow,
and oil/water flowrate ratio, r = q0/qw. Here, µw is the viscosity of water, Uw is the superficial velocity
of water, and γow is the oil/water interfacial tension.

The oil-water-porous medium system is characterized by a set of physical parameters comprising:
the absolute permeability of the porous medium, k, the oil/water viscosity ratio, κ = µ0/µw, the
advancing and receding contact angle of the oil/water interface on the pore walls, θA and θR, and a
parameter vector, xpm, composed of all the dimensionless geometrical and topological parameters of
the porous medium affecting the flow (e.g., porosity, genus, coordination number, normalized chamber
and throat size distributions, chamber-to-throat size correlation factors, etc.).

The mechanistic model DeProF developed by Valavanides and Payatakes [12,18,19], can be used
to obtain the solution to the problem of steady-state two-phase flow in porous media, by predicting
the reduced macroscopic pressure gradient, x, in terms of the independent variables, Ca and r, given
the values of appropriately reduced, physical parameters defining the physicochemical and structural
characteristics of the oil-water-porous medium system, as

x “ x
`

Ca, r; κ, θA, θR, xpm
˘

(1)

The model is based on the concept of decomposition into prototype flows (hence the acronym—see next
subsection); it accounts for the pore-scale mechanisms and the network wide cooperative effects, and
is sufficiently simple and fast for practical purposes. The sources of non-linearity (which are caused by
the motion of interfaces) and other complex effects are modeled satisfactorily. The quantitative and
qualitative agreement between existing sets of data and the corresponding theoretical predictions of
the DeProF model is excellent (Figure 5 in [12], Figure 3 in [19]).

Simulations implementing the DeProF model, suggest that conditions of optimum operation
(read: improved energy efficiency) exist for steady-state two-phase flows in pore networks. The
term “optimum operating conditions” is introduced to interpret those values of Ca and r (the flow or
process operating parameters) for which the process efficiency, expressed in terms of “oil transport
per kW of mechanical power supplied to the process” (or “oil produced per kW of mechanical power
dissipated in pumps” or “oil flowrate per unit energy cost”), takes (many) locally maximum values.
Such conditions, define a locus of optimum operating conditions, r*(Ca), for each oil-water-porous
medium system [12,15,16].

2.1. The Concept of Decomposition into Prototype Flows

In the general case of steady-state two-phase flow in pore networks, depicted by the left sketch of
Figure 1a, oil and water are continuously supplied in the porous medium along the macroscopic flow
direction, z, with constant flowrates qo and qw, so that the operational (dimensionless) parameters, i.e.,
the capillary number, Ca, and the oil/water flowrate ratio, r, have constant values.

Water is the wetting phase and always retains its connectivity, while oil (as the non-wetting phase)
gets disconnected to form fluidic elements of various sizes; from infinite-long and slim connected-oil
pathways, to short ganglia, to tiny oil droplets. The average water saturation is Sw. Here, a remark
must be made with reference to the conventional use of saturation as the independent variable of the
process. It is based on the perception that disconnected oil blobs and other fluidic elements (ganglia
and/or droplets) do not move with the average flow but remain stranded in the pore medium matrix.
This situation arises when flow conditions of relatively “small values” of the capillary number are
maintained. Nevertheless, there is ample experimental evidence that disconnected flow is a substantial



Entropy 2016, 18, 54 5 of 28

and sometimes prevailing flow pattern. A particular value in saturation does not necessarily imply that
a unique disconnected structure (arrangement) of the non-wetting phase will settle in. In this context,
saturation represents macroscopic static information and cannot adequately (or uniquely) describe
the flow conditions (it brings no definite input to the momentum balance). The issue is discussed by
Valavanides et al. (Section 2 in [16]).

Steady-state immiscible two-phase flow is manifested by the incessant exchange of positions
and momenta between discrete disconnected fluidic elements of the non-wetting phase, as they
move downstream within a pore network at macroscopically constant flowrates. In this context, the
macroscopic flow can be decomposed into two prototype flows:

‚ Connected-oil Pathway Flow (CPF)
‚ Disconnected Oil Flow (DOF).

The latter (DOF) can be further decomposed into:

‚ Ganglion Dynamics (GD) flow
‚ Drop Traffic Flow (DTF).

Figure 1. (a) Schematic representation of the actual flow (left sketch) and its theoretical decomposition
into prototype flows: Connected-oil Pathway Flow (CPF) and Disconnected-Oil Flow (DOF) (right
sketch). (b) A microscopic scale representation (snapshot) of a DOF region. An oil ganglion of size
class 5 is shown. For simplicity, all cells are shown identical and the lattice constant is shown expanded
(chambers and throats have prescribed size distributions). The dashed, light grid lines define the
network unit-cells. The thick dashed line separates the Ganglion Dynamics (GD) cells domain and the
Drop-Traffic Flow (DTF) cells domain.

All types of flow have been observed experimentally in model porous media [10,20,21] as well as
in real porous media [22,23]. Each prototype flow has the essential characteristics of the corresponding
flow pattern in suitably idealized form and so, the pore scale mechanisms are incorporated in the
prototype flows.

In the Connected Pathway Flow (CPF) region the oil retains its connectivity and flows with
virtually one-phase flow. The porous medium volume fraction occupied by the connected oil is
denoted by β. The Disconnected-Oil Flow (DOF) regime is defined as the region composed of the
rest of the unit-cells, so the associated volume fraction equals (1´β). This modeling decomposition
is represented schematically by the right sketch in Figure 1a, where the volumetric fractions of the
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prototype flows have been isolated and re-accounted over separate parts of the pore network reference
volume, V. A microscopic scale representation (a snapshot) of a typical DOF region is shown in
Figure 1b. An oil ganglion having a typical “cruising” configuration [18] is shown at the center. All
the cells that accommodate parts of this (or any other) oil ganglion are called ganglion cells and are
demarcated with a thick dashed line. The rest of the cells in the DOF regions are cells containing water
and oil drops. These cells comprise the regions of the Ganglion Dynamics (GD) and Drop Traffic Flow
(DTF) domains respectively.

The fraction of all the ganglion cells over all the DOF region cells is denoted byω, and is called
the GD domain fraction. The DTF domain fraction in the DOF region equals (1´ω).

Sw, β andω are called flow arrangement variables (FAV) because they provide a coarse indication
of the structure (or “immiscible mixing”) of the flow pattern. One of the objectives of the DeProF
model algorithm is to determine the values of Sw, β and ω that conform to the externally imposed
flow conditions (Ca, r).

The flow analysis is carried out at two length scales, a macroscopic scale (1012 pores, or more) and
a microscopic scale, and produces a system of equations that includes macroscopic water and oil mass
balances, flow arrangement relations at the macroscopic scale, equations expressing the consistency
between the microscopic and macroscopic scale representations of these balances in the DOF region
and an equation that is obtained by applying effective medium theory [24] to the “equivalent one-phase
flow” in the DOF (GD and DTF) region—implicitly representing the transfer function for this
region [18,19]. The system is closed by imposing an appropriate type of (sharply decreasing)
distribution function for the ganglion volumes, which is dictated by the physics of ganglion dynamics,
in compliance with experimental observations [20,21] and numerical/pore network simulations [25,26].
In reality, large ganglia cannot survive because, as they migrate downstream the tortuous paths of the
pore network, they break-up into smaller ones.

2.2. Physically Admissible Flow Configurations

A core feature of the DeProF model is the detection of all flow configurations that are physically
admissible under the imposed macroscopic flow conditions. On a mesoscopic scale (say 104–109 pores),
the actual flow at any given region of the porous medium “wanders” over the domain of physically
admissible flow configurations “visiting” any one with equal probability or frequency (ergodicity).

To detect these flow configurations the domain {Sw, β, ω} of all possible flow arrangement
parameter values is partitioned using sufficiently fine steps to obtain a 3D grid (Figure 2). Then, for
each grid set of the flow arrangement parameters values (Sw, β,ω), the DeProF algorithm is asked to
detect (if) a solution of the DeProF equations (exists). In such case the selected set of (Sw, β,ω) values,
is allowed as a physically admissible solution (PAS) and is denoted as (Sw', β’, ω’). Otherwise, the set
is rejected. In the end, the subdomain of the {Sw, β,ω} space, denoted ΩPAS, is detected as the set of
physically admissible solutions.

The measure (“volume”) of ΩPAS is given by:

VΩPAS pCa, rq “
y

ΩPASpCa,rq

dSwdβdω (2)

where ΩPAS(Ca,r) stands for integration carried over the physically admissible ranges in (Sw, β, ω) for
the imposed Ca, r values. The volume of ΩPAS is a measure of the degrees of freedom of the process
at the mesoscopic scale; it is also related to the rate of entropy production at the mesoscopic scale
(configurational entropy).

By assuming that each physically admissible solution is visited with the same probability, or
frequency (assumption of ergodicity), and averaging over their domain, ΩPAS, a unique solution for
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the macroscopic flow is obtained. For any quantity, Φ’, the corresponding expected mean macroscopic
flow quantity, Φ, is defined as:

Φ pCa, rq “ xΦ1y “

t

ΩPASpCa,rq
Φ1 pCa, rqdSwdβdω

t

ΩPASpCa,rq
dSwdβdω

“
1

VΩPAS pCa, rq

y

ΩPASpCa,rq

Φ1 pCa, rqdSwdβdω (3)

Note, in Equation (3), a prime is used to denote physically admissible values of any quantity, Φ.
Unprimed variables denote the expected, time-average value of that quantity.

As with any macroscopic physical quantity, unique set of values for (Sw, β,ω) can be obtained by
averaging over the domain of physically admissible solutions, using Equation (3), with Φ replaced by
Sw, β andω. These values define the flow configuration of the mean macroscopic flow (ergodicity).

Figure 2. Typical domains of physically admissible flow configurations, as predicted by DeProF model
simulations. For any fixed, externally imposed, flow conditions, (Ca, r), the two-phase flow visits a
canonical ensemble of physically admissible flow configurations (Sw ', β’, ω’) depicted by the cloud
of small, red balls. Here, Ca = 1.19 ˆ 10´6, κ = 1.45 and flowrate ratio values, r, span 2 orders of
magnitude. A unique set of values for (Sw, β,ω), the large, black ball, is obtained by averaging over
the ensemble and defines the mass center of the red cloud. The shape and position of the red cloud
changes with flow conditions.

In computational practice, the size of the domain of physically admissible solutions, VΩPAS, as
well as any expected mean macroscopic flow quantity, Φ, can be determined by any coarse graining
(discretization) procedure used to detect the ensemble of physically admissible solutions and delineate
its envelope. The phase space {Sw ˆ β ˆω} pertaining to the FAVs, is partitioned in corresponding
NS ˆ Nβ ˆ Nω phase space voxels. The finer the graining, the smaller is the size of these voxels.
Nevertheless, the smallest discretization size of voxels has a limit; it cannot become smaller than a
minimum, critical size in each prototype flow. Suppose that we detect two solutions (Sw', β’,ω’)i and
(Sw', β’, ω’)i`1 associated with two adjacent voxels, i and i+1. These solutions are virtual, in the sense
that they have been detected by a numerical algorithm implementing a particular discretization. In
essence they have been picked-up from the complete ensemble of the physically admissible solutions.
So, there is a great chance that other flow configurations exist as well—other than those detected
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(as solutions) by the discretization scheme. This possibility could be verified by re-discretizing the
phase space into a finer grid implementing smaller voxels. The new virtual ensemble of physically
admissible solutions would eventually contain more solutions. Nevertheless, it would not occupy a
volume in the FAV phase space larger than the previous ensemble (associated to the coarse grid). The
only difference between the two virtual ensembles would be on the “texture” of their envelopes. The
latter would have a finer surface than the former. We would be able to repeat the re-discretization with
finer and finer grids, resulting in smaller and smaller voxels. But we would eventually reach a critical
size whereby solutions would not have discernible characteristics. This limiting critical size (threshold)
depends on the structure of the pore network (its fractal characteristics) and on the modeling of the
prototype flows (the characteristic sizes of the disconnected fluidic elements). We will address this
issue in Section 4.

2.3. Discussion on Assumption of the Process Ergodicity

Assumption of ergodicity could be accounted for as “a best possible guess”. Nevertheless, there
are strands of evidence supporting that the sought process could actually be treated as ergodic. Let us
start by the empirical knowledge, acquired from laboratory studies. One may refer to the laboratory
work of Avraam and Payatakes [10], whereby immiscible steady-state flow configurations in glass pore
network models have been studied. Snapshots as well as videos, capturing the phenomenon at the pore
network model scale, show that interstitial flow arrangements and states of dynamic equilibrium are
maintained. The system constantly and incessantly rearranges itself within a well defined phase space
of configurations so long as the externally imposed flow conditions (flowrates of oil and water) are
kept constant. If the externally imposed flow conditions change (to any other constant configuration),
the system reorganizes itself into another steady-state, rearranging itself within another well defined
configuration. This can be attested—to the level of available laboratory data—by observing the videos
capturing different externally imposed flow conditions.

Moving into mechanistic modeling, the clouds of red balls in the diagrams of Figure 2 is also
an expression of self-organization. The driven system “reorganizes itself”, as expressed by the
different shapes/positions of the cloud, to “fit” (or, to “survive” over) the externally imposed flow
conditions. In essence, the red cloud is a manifestation of the self-organization of the virtual system,
stemming from the DeProF algorithm—implementing the DeProF mechanistic model equations as
well as the strategy in detecting the physically admissible flow configurations that satisfy the DeProF
equations. In the DeProF mechanistic model, ergodicity comes into play when the cloud of physically
admissible flow configurations (Sw', β’,ω’), is replaced by the average macroscopic flow configuration
(Sw, β, ω), Equation (3). To test the specificity of the DeProF model predictions, that are based on
the underlying assumption of ergodicity, the average mechanical power dissipation, W, estimated
through Equation (3), was benchmarked against the available laboratory data. In these simulations,
the DeProF algorithm was implemented to account for the particular geometry of the pore network
model. The comparison is depicted in the diagrams of Figure 5 in [12] (originally of Figure 3 in [19]). It
is obvious that there is an excellent agreement between the DeProF model predicted values and the
values measured in the laboratory study.

A last point in considering the process as ergodic, and especially in considering that effective
(or average or measurable) macroscopic physical quantities stem (with equal probability) from the
entire set of all physically admissible interstitial flow arrangements, is the following argument: if
it was the other way round, that is, if the case was that there are preferable flow arrangements
(visited more frequently than others), then we would have to allow less degrees of freedom in the
DeProF model, risking to bias the theoretical analysis and drive the solution towards an erroneous
(unphysical or biased) direction. To avert such a risk, Valavanides and Payatakes [18,19] decided to
use a uniform distribution of probabilities as the given prior, for the process in taking all physically
admissible configurations.
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Moreover, from a probabilistic point of view, the ergodicity of a system is based on the term
“equal probability”, a term which goes back to the very foundations of probability (classical definition).
The classical definition of probability is essentially based on two assumptions, which seem to be its
disadvantage. One of them is, that each one of the possible results of a random experiment has the same
possibility or probability of happening. In practice it is difficult to determine equally likely results/events,
the ability comes after long observation, experience and experimentation. That is why we say that this
definition is a consequence of the principle of insufficient reason (first enunciated by J. Bernoulli) [27]: “If
we don’t have enough knowledge (evidence) to decide otherwise, the results of a random experiment are assumed
to be equally likely.” Still, the concept of “the equal possibility/probability” (equally likely events), used
in the classical definition of probability is intuitive and cannot be based/strictly defined on/by pure
mathematics. It is based somewhat on the very concept of probability that we are trying to define.

2.4. Statistical Thermodynamics Aspects of Two-Phase Flow in Pore Networks

Steady-state two-phase flow in porous media is an off-equilibrium process. One needs to provide
energy to the process to keep it at fixed operating conditions, i.e., to maintain its operation at fixed
values of Ca and r (and at fixed temperature, say T0). A justification of the existence of optimum
operating conditions was recently proposed [17] along the lines of the postulate stating that the
efficiency of a stationary process in dynamic equilibrium is proportional to its spontaneity [28].
Spontaneity, the notional inverse for irreversibility, may be quantitatively assessed by the amount
of entropy produced globally. To evaluate the entropy, we need first to define the physical domains
in which the process of steady-state two-phase flow in pore networks is maintained at dynamic
equilibrium under fixed Ca and r.

With reference to Figure 3, the System comprises the porous medium and the two fluids. The
Surroundings are the heat reservoir in which the System resides and with which it exchanges heat at
constant temperature, say T0. The infinite heat reservoir can absorb all the heat released by the System.
The Universe comprises the System and the Surroundings.

The entropy produced globally (within the Universe), SUNIV , is the sum of two terms: a term
representing the entropy released from the System to the Surroundings, SSUR, and a term representing
the entropy produced within the System, SSYS:

SUNIV pCa, rq “ SSUR pCa, rq ` SSYS pCa, rq (4)

Each term denotes a source of entropy. The rate of entropy production in the Surroundings
(maintained at constant temperature T0), SSUR, is due to the rate with which mechanical energy is
dissipated within the System, W = (q0 + qw) ∆p, irreversibly transformed into heat, Q = W, a source of
microscopic chaos, and then released to the Surroundings:

SSUR pCa, rq “
Q pCa, rq

T0
“

W pCa, rq
T0

(5)

The second source of entropy, SSYS, may be directly related to the multitude of the physically
admissible flow configurations (the ensemble of physically admissible solutions) that are maintained
for so long as the (steady-state) process is kept at conditions of dynamic equilibrium. It can be
interpreted as the production of chaos over mesoscopic scales (configurational entropy). It can be
expressed, similar to the Boltzmann entropy formulation in statistical mechanics, as:

SSYS pCa, rq “ kss2 f pmln rNPAS pCa, rqs (6)

where kss2 f pm is a constant quantity, similar to Boltzmann’s constant in the statistical thermodynamics
definition of entropy, that would have to be appropriately defined for the sought process, (index
“ss2fpm” stands for “steady-state 2-phase flow in porous media”), and NPAS is the actual number
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of different mesoscopic flow arrangements (or microstates) consistent with the macroscopic flow at
(Ca, r) conditions.

Figure 3. The physical domains of steady-state two-phase flow in pore networks.

In order to maximize the efficiency of the process one should increase or even maximize the left
side of Equation (4). Of the sum components, the first term represents the cost of energy irreversibly
transformed into heat and released to the surroundings. Any increase of this term should be avoided;
even better, this term should be decreased as much as possible. To do so, and, in parallel, increase
as much as possible the total entropy in the Universe—in order to increase the efficiency of the
process—one may arrange or even “force” the process to operate in such conditions for which the flow
is optimally rich (but not necessarily richest) in different physically admissible flow arrangements.

Of the two entropy production terms the first, SSUR, is considered to be known (or given); it can
be measured or it can be estimated if the DeProF, or any other model algorithm is implemented in the
process analysis and the detection of the physically admissible flow configurations. The second term,
SSYS, is not readily available. In the following, we will present the methodology for estimating, the
number of microstates of the process for fixed macroscopic flow conditions, given the ensemble of
physically admissible flow arrangements.

The objective of the aforementioned analysis is to examine if the maximum entropy production
principle could be applied to the sought process (two-phase flow in porous media) and/or if it
could provide a sound theoretical background for explaining (and understanding) why, in these
processes, there exists a locus of optimum operating conditions and what are the critical characteristics
of this locus. In particular, what makes some steady-states more “efficient” than others (in terms
of specific cost of oil flowrate) and what are the critical characteristics that set-up the optimum
operating conditions? The theoretical study presented by Niven [29], on the convergence of dissipative
flow-controlled systems towards steady-state positions and, in particular, the discussion therein, can
provide the theoretical framework for establishing the MEP principle(s) for the sought process and
address the aforementioned questions.

3. Pore Network Geometry and Topology—Discrete Fluidic Elements

The definition and counting of microstates are directly related to the structure of the pore network
and the modeling provisions pertaining to the prototype flows (connected and disconnected fluidic
elements). In the following paragraphs, we will describe the essential characteristics of a typical model
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pore network and of the fluidic elements. Then, in Section 4, we will elaborate the concept of flow
microstates and derive a methodology for their counting.

3.1. Pore Network Geometry and Topology

We will focus our analysis on three-dimensional (3D) cubic pore network models of the
chamber-and-throat type. This is a general type of model pore network like the one used in the DeProF
model simulations. A schematic representation of the network is shown in Figure 4a. Chambers
and throats are cited at the nodes and branches of the network. The mean coordination number is
σ3D= 6. In general, chambers and throats are classified according to their shape, size, etc. into an
appropriate number of classes. The latter is a modeling parameter and depends on the form of the
pore size distribution of the real network or the structure of the porous medium. We consider there
is no correlation between classes of chambers and throats therefore the network is isotropic on the
macroscopic scale. Let ` denote the lattice constant. Each unit-cell occupies an equilateral octahedron
of pore network space with diagonal lengths equal to `, edge lengths equal to `

?
2{2 and volume `3{6.

The pore network volume density of unit-cells is M “ 6{`3. The geometry of the pore space within
every unit-cell is defined by the shape of the chambers and throats. For this particular type of cubic
lattice networks, each unit-cell comprises one eighth of each one of the two adjacent chambers that are
interconnected with the throat (see Appendix). There are many variations on the shapes and forms
of chambers and throats; the only universal characteristic is that—on average—the cross-sections
of throats are significantly smaller than those of chambers. The exact shape of the cross-sections is
appropriately described by a set of geometric parameters. The geometry of the pore unit-cell and of
the chambers and throats, as well as their size distributions, in a typical network—like the one used in
the DeProF simulations—are provided in the Appendix. The analysis carried out in the present work
can be implemented in all types of cubic lattice networks.

Figure 4. (a) A typical 3D cubic pore network. The lattice constant, `, compared to the size of the throats
and chambers, is shown expanded. The thick arrow indicates the direction of the macroscopic flow;
(b) The pore network cubic lattice with one main diagonal parallel to the macroscopic flow direction.
The two parallel equilateral triangles are perpendicular to the macroscopic flow; (c) Equilateral
triangles align to form a checker-board pattern and exactly fill any frontal area perpendicular to
the macroscopic flow.

An essential modeling consideration is that all fluidic elements move along the shortest of the
pathways that are aligned to the macroscopic flow direction. That means that fluidic elements cannot



Entropy 2016, 18, 54 12 of 28

occupy two parallel branches (throats) in the same lattice element (cube). For example, in Figure 4a a
ganglion of size 6 is depicted as it is aligned to the macroscopic flow. The dotted line extending the
ganglion ends outlines its trajectory. Any cross-sectional plane, perpendicular to the macroscopic flow
direction, would intersect any fluidic element or any fluid trajectory only once—within a single throat
or a single chamber.

We also need to consider appropriate unit surface elements that would completely fill-up any
cross-section perpendicular to the macroscopic flow (frontal area). This is necessary in estimating the
specific number of microstates, i.e., the number of microstates per unit volume—or per unit surface—of
pore network. Focusing on the macroscopic flow direction in Figure 4, in every unit-lattice there exist
two parallel equilateral triangles, oriented perpendicular to the main diagonal and to the macroscopic
flow. These are depicted in Figure 4b, one in plain light green color in front and the other, behind
it, depicted with a shingled pattern. The triangles have side lengths equal to `

?
2 and surface area

equal to
?

3`2{4. When lattice elements are stacked, these equilateral triangles stick side-by-side and
exactly fill the frontal area. An impression of a 3 ˆ 2 ˆ 1 stacking of unit-lattice elements (cubes) is
depicted in Figure 4c; cubes are aligned so that the main diagonal is parallel to the macroscopic flow
direction and perpendicular to the figure. Five parallel layers, of stacked lattice surface elements, each
comprising 1/3/4/3/1 equilateral triangles, are drawn one behind the other. Each layer exactly covers
the respective frontal area. Along the main diagonal of the pore network, the zigzag corridors (or
pathways), formed by concatenations of empty unit-cells aligned to the macroscopic flow, are virtually
confined within a normal equilateral twisting prism. The prism sides are equal to `

?
2 and its frontal

area is equal to
?

3`2{4. Therefore, the frontal area density of pathway corridors is K “ 4{
`

`2
?

3
˘

.
Consider now a network reference volume (orthogonal parallelepiped) made-up of

Mz ˆ (M xˆMy) unit-cells, with z indicating the direction of macroscopic flow and x, y the other two
directions perpendicular to z. This reference volume includes M = Mx ˆMy ˆMz pore unit-cells in
total. If the reference volume is a cube, parameters K and M are related as K{M “ 2`{

`

3
?

3
˘

.
Considering the actual dimension of the reference pore network lattice to be ` “1.221 mm the

K-M relation for a cubic reference volume is K = 4.699631 ˆ 10´3M. To secure a macroscopic scale
description of the process, a sufficiently large reference volume would be 1 liter (1000 cm3). There
are M = 3.296129 ˆ 106 unit-cells per liter of network space and K = 1.540592631 ˆ 104 pathways per
square decimeter (dm2) of network frontal area. These figures are increased to 3.296129ˆ 109 unit-cells
and 1.540592631 ˆ 106 pathways if the reference volume and frontal area are extended to 1m3 and 1m2,
respectively. We provide these figures here because, in Section 4, we will consider two contributions in
accounting the microstates, an extensive contribution (depending on the area of the reference surface
and the size of the reference volume) and an intensive contribution (depending on the structure of
physically admissible flow arrangements).

3.2. Process and Discrete Fluidic Elements

Discrete fluidic elements are formed by the disconnection and immiscible dispersion of the
non-wetting phase (oil) within the wetting phase (water), as a result of the combined acting of
hydrodynamic and capillary forces during the tortuous flow within the pore network conduits. The
extent of disconnection (or fragmentation) of the non-wetting phase depends on the imposed flow
conditions and the physicochemical properties of the two phases (fluids) in the pore network. The
disconnected fluidic elements comprise oil blobs—of different sizes—separated by continuous water.
Their size extends from one to infinite-many pore unit-cells.

In general, three classes of discrete fluidic elements are considered, depending on their size:
connected-oil pathways comprising the connected pathway prototype flow (CPF), oil ganglia, occupying
one-to-many unit-cells, comprising the ganglion dynamics (GD) prototype flow, and tiny oil drops
dispersed within water saturated unit-cells, comprising the drop traffic prototype flow (DTF). In the
context of the DeProF model, the three prototype flows occupy the pore network space in corresponding
volume fractions.
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The Connected Pathway Flow (COP) comprises thin, indistinguishable Connected-Oil Pathways
(COP), i.e., connected-oil unit-cells with infinite length. COPs may occupy or arrange themselves
within any β’ region of the pore network and remain aligned to the macroscopic flow (we recall
here that a prime denotes a physically admissible macroscopic variable). Of the total number of the
M unit-cells in a reference volume, β’M unit-cells are occupied by connected oil (the ensemble of
Connected-Oil Pathways) and allow the rest (1´β’)M of the unit-cells to host the Disconnected-Oil
Flow (DOF) unit-cells (Figure 1a). During the flow, Connected-Oil Pathways rearrange their tracks
between parallel connected pathways and, in that context, the flow may take a number of different
(micro)states. The number of possible microstates can be evaluated by considering an equivalent
“balls-in-boxes” problem in combinatorial analysis (see Section 4.2).

Disconnected-Oil Flow (DOF) occupies the remaining unit-cells within any (1´β’) region of
the pore network. The DOF cells are partitioned into two subpopulations. They are occupied by a
mixture of ganglia of particular size distribution and of oil-droplets and water. Oil ganglia unit-cells
take up a volume fraction of (1´β’)ω’ of the pore network, leaving to the Drop Traffic Flow (DTF)
cells a complementary volume fraction of (1´β’)(1´ω’). The DTF unit-cells are all considered to be
indistinguishable. Ganglion unit-cells (Figure 1b) are not indistinguishable in the sense that each
ganglion unit-cell is part of a certain ganglion size class. Oil ganglia have a sharply decreasing volume
size distribution. Let ni denote the ratio of the total number of i-class ganglion cells over the total
number of all ganglion cells in the DOF region. The distribution of the population of ganglia of size i,
per reference volume, is given by:

ni “

$

’

&

’

%

ni , i “ 1, 2
n2ζpi´2q , 3 ď i ď Imax

0 , i ą Imax

(7)

where n1, n2, Imax and ζ are parameters that define the particular physically admissible flow
configuration (as in [18]). Their values can be estimated either numerically, implementing the DeProF
model algorithm [18,19] or in the laboratory, implementing any of the modern imaging/scanning
technologies [21–23]. Imax is the maximum attainable size of a ganglion (Imax << Mz) and
0 < ζ < 1 provides a measure of the sharpness of the ganglion size distribution. Indicative ganglion
size distributions are presented in the top row diagrams of Figures 7 and 8. The number of different
microstates in the DOF region can be evaluated by considering an equivalent “chains-in-barbs” problem
in combinatorial analysis (see Section 4.3).

4. Definition and Counting of Microstates

The global (total) entropy production (pertaining to the System and its Surroundings—Section 2)
is considered to comprise two constituents, each evaluated over different size scales: thermal entropy
is estimated over the continuum mechanics scale (thermodynamics), whereas configurational entropy
is considered over a discrete (and countably finite) scale, whereby the microstates have been grouped
together to obtain a countable set (statistical mechanics).

4.1. Countability of Process Microstates

In the system examined here, the pore network (the medium) comprises discrete classes of
unit-cells, within which, discrete fluidic elements exchange momentum. A microstate is specified
by the positions and momenta of all the fluidic elements—connected-oil pathways, ganglia and
drop-traffic flow cells. Ganglia can only occupy countably-many unit-cells and their mass is considered
as integer multiple of a conceptual elemental void space (CEVS, [18]). Ganglion velocity is a function
of its size and of the average flow conditions. It is classified on a one-to-one correspondence to the
ganglion size. Only those ganglia belonging in the same size-class are considered to be mutually
indistinguishable. Drop-traffic flow cells are identical (momentum-wise) since they contain water and
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uniformly dispersed oil droplets. Consider now a “virtual snapshot” of any physically admissible flow
configuration, containing the positions and momenta of the fluidic elements. We count two microstates
as different if the respective snapshots are different, i.e., if the fluidic elements are arranged in different
layouts. In essence, only their positions will be different. Since their velocity/momentum depend on
their size and macroscopic flow conditions (uniform across all physically admissible arrangements),
the velocity/momentum will be identical in all ganglia of the same class. Therefore, all ganglia are
distinguishable by reference only to their size class. The aforementioned coarse-graining (pertaining to
the size classes of network unit-cells and the size and velocity classes of fluidic elements) is inherent in
the DeProF model algorithm. Therefore, any counting of microstates in the present work will be fully
consistent with the DeProF model provisions.

For every set of externally imposed conditions (Ca, r) there corresponds a set of physically
admissible arrangements of prototype flows, comprising a canonical ensemble. The ensemble is
determined by values of the flow arrangement variables {Sw’, β’,ω’}, namely, the water saturation, Sw’,
the volume fraction of connected pathway flow cells, β’, and the volume fraction of ganglion unit-cells
within the disconnected oil flow unit-cells, ω’. Each one of these flow arrangements, described by any
unique triple value {Sw’, β’,ω’} has a countable set of microstates (or degrees of freedom) that may be
evaluated by combinatorial analysis.

In the following, we will focus on the estimation of the configurational (discrete scale) microstates
stemming from the different arrangements of the fluidic elements for every physically admissible flow
configuration. In particular, the number of microstates of the connected-oil pathways will be evaluated
by considering an equivalent “balls-in-boxes” problem in combinatorial analysis (see Section 4.2).
The number of different microstates in the disconnected-oil flow will be evaluated by considering an
equivalent “chains-in-barbs” problem in combinatorial analysis (see Section 4.3). Then, considering
that each problem is independent, the basic counting principle accounts the total number of microstates
as the product of the individual numbers of microstates. Still, this would only account the microstates
of any-one physically admissible flow configuration. Passing to the next scale of hierarchic modeling,
the canonical ensemble of physically admissible flow configurations, the number of microstates will have
to be enriched by the number of microstates corresponding to each one of the physically admissible
solutions (see Section 5).

4.2. Counting of the Connected Pathway Flow Microstates

Consider the reference volume comprising a total of MxMyMz = M unit-cells (Section 3.1).
Connected-Oil Pathways (COPs) occupy any β’ region of the pore network and remain aligned
to the macroscopic flow. Of all the unit-cells in the reference volume, β’MxMyMz = β’M unit-cells are
occupied by connected oil. Now, since Connected-Oil Pathways are aligned to the macroscopic flow,
and they have an infinite length, or at least, long enough to be laid across the reference volume, volume
fractions and area fractions are equal. COPs occupy β’MxMy part of the frontal area (perpendicular to
the macroscopic flow), see Figure 5a,b. At any instance, each one of the COPs occupies a connected
pathway of unit-cells but not necessarily the same. As time evolves, COPs may rearrange their tracks
between parallel pathways. Since the process is considered to be ergodic, during a large time frame,
COPs may occupy any of the available connected pathways with equal probability. In that context the
flow may take a number of different and equi-probable microstates. The problem of counting the CPF
microstates is equivalent to the problem of counting the number of different ways in placing a number
of indistinguishable balls (the COPs) in a larger number of distinguishable boxes (the pathways)
with exclusion. The pathways are distinguishable because they provide the reference framework
for comparing two instants (snapshots) of COP arrangements. Exclusion means that no identical
snapshots of COP arrangements can be counted more than once.
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Figure 5. (a) Side view of the macroscopic flow comprising a mixture of connected and disconnected
prototype flows; (b) Frontal, microstate snapshot of the connected-oil pathway flow (CPF); (c) Side,
microstate snapshot of the Disconnected-Oil Flow (DOF); Focus is on the middle-row, colored ganglia.
(c1) & (c2) Separation into two complementary problems in combinatorial analysis. Microstate snapshot
of repositioning of ganglia (c1) for a possible permutation (c2) (a 1-2-1-3-2-1-2-3-2 snapshot).

Considering that the frontal area of the reference volume comprise K = MxMy unit-cells or
pathways, then, for any physically admissible flow arrangement, NCOP = β’K of the pathways are
occupied by indistinguishable connected-oil pathways that may take any possible arrangement parallel
to the macroscopic flow (recall that K is the number of the pore network virtual pathways), Figure 5b.
Combinatorial analysis provides the solution to this particular “balls-in-boxes” problem. The number,
PCPF, of different ways (excluding double counting of two identical arrangements) in placing NCOP
indistinguishable balls (the connected-oil pathways) into K distinguishable boxes (the pore network
virtual pathways), is given by:

P1CPF “

˜

K
NCOP

¸

“
K!

NCOP! pK´ NCOPq !
(8)

4.3. Counting of the Disconnected Oil Flow Microstates

We must also count the number of different ways that a population of ganglia of various sizes
(i.e., of a given size distribution) may be arranged to occupy the available pore network unit-cells. The
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question is equivalent to how many different ways a variety of short-length chains (ganglia), each
one of size ranging from 1 to Imax links (the ganglia), may engage onto an available number of barbs
(the ganglia fitting into the available unit-cells).

Every physically admissible flow arrangement, comprises a reduced ganglion size distribution,
{n1i; i=1, 2, . . . , Imax}, i.e., a population density distribution of an integer multiple of i-linked ganglion
unit-cells (oil saturated unit-cells). Ganglia of different size classes may arrange themselves anywhere
within the (1´β’) volume fraction of the pore network unit-cells comprising the Disconnected-Oil
Flow (DOF) domain.

The ganglion unit-cells may be considered as “links” being used to construct “chains” of different
sizes, i.e., ganglia of different sizes, with their size ranging from 1 to a certain number Imax. Given
the ganglion size distribution, the distribution of the population of i-size ganglia within the reference
volume, is directly derived from Equation (7) as:

Ni “ M
`

1´β1
˘

ω1n1i (9)

with n1, n2, Imax and ζ given (better, determined as a physically admissible solution, e.g., implementing
the DeProF model algorithm) and 0 < ζ < 1, e.g., ζ P {0.3, 0.5, 0.7} and (Imax << Mz).

The total number of chains (of all sizes), NC, the total number of links in these chains (ganglion
unit-cells), NGUC, and the total number of Drop Traffic Flow (DTF) unit-cells, NDTF, are given
respectively by the following expressions:

NC “

Imax
ÿ

i“1

Ni “ M
`

1´β1
˘

ω1
Imax
ÿ

i“1

n1i (10)

NGUC “

Imax
ÿ

i“1

iNi “ M
`

1´β1
˘

ω1
Imax
ÿ

i“1

ini “ Mx My Mz
`

1´β1
˘

ω1 “ M
`

1´β1
˘

ω1 (11)

NDTF “ M
`

1´β1
˘

´ NGUC “ M
`

1´β1
˘

´M
`

1´β1
˘

ω1 “ M
`

1´β1
˘ `

1´ω1
˘

(12)

In this context, there are M(1´β’) unit-cells available for hosting the Disconnected-Oil Flow (DOF)
cells. These comprise NGUC unit-cells saturated with oil (ganglia cells) and NDTF unit-cells containing
water and oil droplets. Obviously, NGUC + NDTF = M(1´β’).

Ganglia of the same size class are indistinguishable, whereas ganglion classes are—by
definition—distinguishable (based on their size, i). Network unit-cells are distinguishable because, as
previously stated, they provide the reference framework for comparing two instances (snapshots) of
ganglion arrangements in DOF. There is no restriction in ordering the ganglia. The only requirement
is that all ganglia are parallel to the z-direction (of the macroscopic flow). Therefore, the network
unit-cells available for DOF (= GD + DTF) can be virtually (re-)ordered (aligned) in just a single row of
size M(1´β) = NGUC + NDTF.

The problem of counting the different number of ways that ganglia unit-cells may be arranged
within the DOF unit-cells is separated in two parts. In the 1st part, we find the number of ways we can
choose NC empty cells from a total of NDTF+NC cells. This is a problem of repositioning NC balls in
(NDTF + NC) cells. In the 2nd part, we find the number of permutations (ordering) of the NC ganglia.
Then, by applying the so called “basic counting principle” [30], we derive the result by multiplying
these two numbers.

1st part: The problem of placing a chain of size i, in empty unit-cells, each one containing one
link, is equivalent to replacing the i empty unit-cells with one single cell (“i-cell”) and then place these
i links (the "i-chain") in this “i-cell”, (Figure 5c,c1). In the reference volume, we have NDTF empty
unit-cells plus NC empty i-cells (of various i sizes) and we have to place, in these cells, NC chains
(of various i-chain sizes) in such a way that each i-cell can contain at most one i-chain (Figure 5c1) .
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Since the NC i-cells are identical, the number of ways we can place NC i-cells in a total of NDTF + NC
cells (order does not matter) is equal to:

P1D1 “

˜

NDTF ` NC

NC

¸

“
pNDTF ` NCq!

NC! pNDTF ` NC ´ NCq!
“
pNDTF ` NCq!

NC! NDTF!
(13)

2nd part: There are N1 chains of size 1, N2 chains of size 2 and so on, NImax chains of size Imax.
In other words, there are NC objects, grouped in N1 indistinguishable objects, N2 indistinguishable
objects and so on, up to NImax indistinguishable objects. These needs to be placed in corresponding
NC receptors, considering no receptor is to contain more than one object. We seek the number of
different permutations in allocating the NC objects in the NC receptors, Figure 5c2. This problem can
be tackled as the classical problem of estimating the number of different permutations, PD2’ of NC
objects (ganglia), of which N1 are alike, N2 are alike, . . . , NImax are alike [30]. This is equal to:

P1D2 “

˜

NC

N1N2 ¨ ¨ ¨NImax

¸

“
NC!

N1! N2! ¨ ¨ ¨NImax!
“

NC!
Imax
ś

i“1
Ni!

(14)

Combination of 1st & 2nd part: By implementing the basic counting principle [30], the number of
ways of placing the NC chains in the NDTF+NC empty hooks (barbs) or, equivalently, the number of
different ways that the given population of ganglia may be arranged to occupy the available empty
network unit-cells, PDOF’, is equal to the multiplication of PD1’ by PD2’:

P1DOF “ P1D1P1D2 “
pNDTF ` NCq !

NDTF!
Imax
ś

i“1
Ni!

(15)

Example: Focusing on the paradigm of Figure 5, and specifically on the array delineated with
the dashed-line box, we count NC = 9 ganglia (chains) of different size (i-cells), with NGUC = 1 + 2 +
1 + 3 + 2 + 3 + 2 + 1 + 2 = 17 links. There are NEUC = NDTF + NGUC = 40 empty unit-cells available
for hosting these links (receptor cells), Figure 5c. Of the NEUC cells, NGUC will be occupied whereas
NDTF = 23 unit-cells will be available for repositioning the chains. Therefore the number of different
positioning of the particular array of nine chains (i-cells) within a total of 32 receptors (nine i-cells and
23 unit-cells), Figure 5c1, is equal to PD1’ = (23+9)!/(9! ˆ 23!) = 32!/(9! ˆ 23!) = 28,048,800.

Next we have to count how many times we may reorder the array of the NC = 9chains (chains
of the same size are indistinguishable). This problem is equivalent to the problem of estimating
the number of times we can reorder a group of NC = 9 balls comprising N1 = 3 red balls, N2 = 4
green balls and N3 = 2 blue balls (Figure 5c2). This number is equal to PD2’ = 9!/(3! ˆ 4! ˆ 2!) = 1,260.
Therefore, the number of different microstates of the array in Figure 5c is estimated at
PDOF’ = PD1’PD2’ = 28,048,800 ˆ 1260 = 35,341,488,000.

4.4. Counting of Microstates per Physically Admissible Solution

Implementing once more the basic counting principle [30], the number of different microstates, P’,
pertaining to a physically admissible prototype flow arrangement determined by the triplet of flow
arrangement variables (Sw', β’,ω’) is given by:

P1 “ P1CPFP1DOF “
K!

NCOP! pK´ NCOPq !
pNDTF ` NCq !

NDTF!
Imax
ś

i“1
pNi!q

(16)

Now, considering the structure of expression Equation (16), its computation would require
excessive computational resources even for a small pore network. Recall the 109 microstates that we
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computed in the disconnected oil flow taking place within just a small strip of 40 cells. Nevertheless,
we do not have to actually compute such large figures. We only need to estimate the natural logarithm
of expression Equation (16) and use it in the Boltzmann type expression, Equation (6). Therefore
instead of direct computation of P’, it is possible to tackle its natural logarithm, lnP’.

lnP1 “ ln pK!q ´ ln pNCOP!q ´ ln ppK´ NCOPq !q`

`ln rpNDTF ` NCq !s ´ ln pNDTF!q ´
Imax
ř

j“1
ln
`

Nj!
˘ (17)

Then, implementing the “Stirling approximation limiting procedure” formula:

ln pn !q – nlnn´ n (18)

The equality being true in the sense that ln pn !q and pnlnn´ nq are almost identical, results:

lnP1 “ KlnK´ NCOPlnNCOP ´ pK´ NCOPq ln pK´ NCOPq`

` pNDTF ` NCq ln pNDTF ` NCq ´ NDTFlnNDTF ´
Imax
ř

i“1
Niln pNiq

(19)

Now, replacing NCOP = β’K, and using expressions Equations (9)–(12) yields (by straightforward
algebra) a form similar to the Boltzmann–Gibbs entropy [31] expression:

lnP1 “ K
“

´β1lnβ1 ´
`

1´β1
˘

ln
`

1´β1
˘‰

`

`M
`

1´β1
˘

„

´
`

1´ω1
˘

ln
`

1´ω1
˘

´

ˆ

ω1lnω1 ´ω1
Imax
ř

i“1
n1ilnn1i

˙

(20)

Note that in Equation (20) there are two contributions in the number of microstates:

(a) The extensive contribution of the size of the reference frame (volume and frontal area), expressed
by the values of “user-selected” parameters M and K respectively. Their value depend on the
aspect ratio of the reference volume and the type of the pore network. For the sought network,
considering a cube as reference volume, parameters K and M are related as K{M “ 2`{

`

3
?

3
˘

.
For a lattice constant, ` “1.221 mm, K = 4.699631 ˆ 10´3.

(b) The non-extensive contribution of the actual flow configuration, expressed by reduced variables,
namely the flow arrangement variables β’, ω’ and the reduced ganglion size distribution, n’i,
i = 1, . . . , Imax.

Recalling Equation (16), Equation (20) can be recast as:

lnP1 “ ln
`

P1CPFP1DOF
˘

“ lnP1CPF ` lnP1DOF (21)

where, by using once more Equation (18) and straightforward algebra, it is easy to verify that:

lnP1CPF “ K
“

´β1lnβ1 ´
`

1´β1
˘

ln
`

1´β1
˘‰

(22)

represents the number of microstates of the connected-oil pathway flow (CPF), see Equation (8), and

lnP1DOF “ lnP1D1 ` lnP1D2 (23)

represents the number of microstates of the Disconnected-Oil Flow (DOF), see Equation (15), which,
on its merit, is expressed as the sum of two terms,

lnP1D1 “ ´M
`

1´β1
˘ `

1´ω1
˘

ln
`

1´ω1
˘

(24)
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lnP1D2 “ ´M
`

1´β1
˘

˜

ω1lnω1 ´ω1
Imax
ÿ

i“1

n1ilnn1i

¸

(25)

pertaining to the repositions (D1) and the permutations (D2) of ganglia in the DOF domain.
Expressions (20) and (21) comprise two terms and each can be interpreted as follows: there are

two domains within the pore network where microstates “live”: the reference area perpendicular to
the flow (frontal area) and the reference volume. The reference area is occupied by two complementary
entities, connected-oil pathways that may arrange over any β’ fraction of it and DOF pathways that
may arrange over the complementary fraction, (1´β’). The corresponding microstates are given by the
first term in Equation (20), or in Equation (22), as two separate Boltzmann–Gibbs (B-G) expressions,
(´β’lnβ’) and (´(1´β’)ln(1´β’)). It is similar to the expression describing the microstates of an
(immiscible) mixture of molecules of two (chemically inert) gases, sharing complementary volume
fractions within a container [31,32].

The other microstate domain comprises the (1´β’) volume fraction of the pore network that is
shared by two entities: the Drop Traffic Flow (DTF) unit-cells, having identical size, and the ganglia
unit-cells, having a size distribution. The corresponding microstates are given by the second term in
Equation (20) (or in Equation (23)) again as a sum of two separate Boltzmann–Gibbs (B-G) expressions.
The DTF unit-cells are free to take any placement within the (1´ω’)(1´β’)fraction of the reference
volume, hence the expression (1´β’)(´(1´ω’)ln(1´ω’)). The ganglia unit-cells “live” within the
complementary domain,ω'(1´β'). If they would have been all singlets, i.e., of size 1, they would be
occupying the complementary domainω’(1´β’) described by the B-G term, (´ω’lnω’). Nevertheless,
this case—ganglia singlets—is very particular. In general, ganglia comprise an (immiscible) mixture of
groups (classes) of different size, each represented by its own B-G expression, (´ni’ lnni’), mutually
excluding each other from fully occupying the availableω’(1´β’) domain. In other words, if all ganglia
were exclusively and equally partitioned into singlets, then the number of microstates would equal
(´ω'lnω'); nevertheless this number is actually reduced by the accumulated number of microstates of
ganglia of size i, (´ni’ lnni’), for i=1 to Imax. This complementarity is expressed by the B-G expression,
´

ω1lnω1 ´ω1
řImax

1 n1ilnn1i
¯

, in the second term of Equations (20) and (25).

5. Configurational Entropy

To proceed with the computation of the configurational entropy of the process for any particular
macrostate flow condition (Ca, r), or macrostate configurational entropy, SSYS(Ca, r), we need first to
estimate the number of microstates of the canonical ensemble of physically admissible solutions,
P(Ca,r).

We implement the basic counting principle for the microstates pertaining to each one of the
physically admissible solutions, Pj’, for jP{1, . . . , NPAS(Ca, r)}:

P pCa, rq “ P11P12P13 ¨ ¨ ¨ P
1
NPAS

“

NPASpCa,rq
ź

j“1

P1j (26)

and reduce the computational burden by tackling its logarithm:

lnP pCa, rq “ ln
´

P11P12P13 ¨ ¨ ¨ P
1
NPAS

¯

“ ln
NPASpCa,rq

ź

j“1

P1j “
NPASpCa,rq

ÿ

j“1

lnP1j (27)
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Then, the macrostate configurational entropy of the process can be expressed as:

SSYS pCa, rq “ kDeProFlnP pCa, rq “ kDe ProF

NPASpCa,rq
ř

j“1
lnP1j “

“ kDeProF

NPASpCa,rq
ř

j“1
K
”

´β1jlnβ
1
j ´

´

1´β1j
¯

ln
´

1´β1j
¯ı

`

`kDeProF

NPASpCa,rq
ř

j“1
M

´

1´β1j
¯

«

´

´

1´ω1j
¯

ln
´

1´ω1j
¯

´

˜

ω1jlnω
1
j ´ω

1
j

ˆ

Imax
ř

i“1
n1ilnn1i

˙

j

¸ff

(28)

Alternatively, the macrostate configurational entropy of the process can be expressed as the sum
of the configurational entropies of the physically admissible solutions, S’SYS,j, for jP{1, . . . ,NPAS}. This
is justified by considering that, essentially, configurational entropy provides an appropriately reduced
measure of the process’ degrees of freedom. The term “appropriately reduced” refers to the Boltzmann
type constant for the particular process, kDeProF. So long as any two flow configurations (members
of the ensemble of physically admissible solutions) are discernibly different, their unified degrees of
freedom add. In addition, since any two different flow configurations have the same physical structure,
they share the same constant, kDeProF. Therefore we may write:

SSYS pCa, rq “
NPASpCa,rq

ÿ

j“1

S1SYS,j “

NPASpCa,rq
ÿ

j“1

´

kDeProFlnP1j
¯

“ kDeProF

NPASpCa,rq
ÿ

j“1

lnP1j (29)

Obviously, the two expressions Equations (28) and (29) are identical.
In this context, the contribution of microstates within each physically admissible flow arrangement,

Pj', as well as the contribution of other microstates stemming from the plurality of all physically
admissible flow arrangements, NPAS(Ca,r), have all been taken into account.

An open problem that still needs to be addressed is the delivery of an expression for the constant
kDeProF appearing in the expressions of Equations (28) and (29). Actually the kDeProF constant must
have an effective character, in the sense that it must blend the contributions of two types of microstates,
Equation (21), extending over different domains. In specific, the connected-oil pathway (CPF)
microstates, Equation (22), extending over a reference surface (frontal area), and the Disconnected-Oil
Flow (DOF) microstates, Equations (23)–(25), extending over a reference volume.

The associated configurational entropies must be expressed using specific, Boltzmann-type
constants, say kCPF and kDOF, because of the different energy density associated with each prototype
flow. Then, taking into account Equation (21), the Boltzmann-Gibbs expression for the configurational
entropy should be expressed as:

SSYS pCa, rq “ kDeProFlnP pCa, rq “ kCPF

NPASpCa,rq
ř

j“1
lnP1CPF,j ` kDOF

NPASpCa,rq
ř

j“1
lnP1DOF,j “

“ kCPF

NPASpCa,rq
ř

j“1

”

´β1jlnβ
1
j ´

´

1´β1j
¯

ln
´

1´β1j
¯ı

`

`kDOF

NPASpCa,rq
ř

j“1

´

1´β1j
¯

«

´

´

1´ω1j
¯

ln
´

1´ω1j
¯

´

˜

ω1jlnω
1
j ´ω

1
j

ˆ

Imax
ř

i“1
n1ilnn1i

˙

j

¸ff

(30)

6. Results and Discussion

To materialize the expressions delivered in Section 4 we have made indicative calculations
of the number of microstates for various flow configurations. The flow configurations have been
chosen from the ensemble of physically admissible solutions obtained from DeProF model simulations
for macroscopic flow conditions, (Ca, r), pertaining to combinations of typical capillary number,
Ca = 1.0ˆ 10´6, and flowrate ratio values, r = 0.1, 1.0 and 10.0, within a 3D model pore network and for
fluid systems with a typical oil/water viscosity ratio, κ = 1.45. The specific geometrical characteristics
of the network as well as the physicochemical characteristics of fluids are presented in the Appendix.
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The ensembles of physically admissible solutions, corresponding to the above flow conditions are
presented in the diagrams of Figure 6. The projections of the cloud of all detected solutions, over the
(Sw ˆ β), (Sw ˆ ω), (β ˆ ω) planes of the FAV phase space are depicted with small markers. The
projections of the average flow configuration (Sw, β,ω) are identified with large markers.

Figure 6. Projections of the domain of physically admissible flow configurations, (Sw ', β’,ω’), and of
the average, macroscopic flow configuration, (Sw, β,ω), for three different macroscopic flow conditions,
pertaining to same capillary number value, Ca = 1.0 ˆ 10´6 and to flowrate values (a) r = 0.1 (b) r = 1.0
and (c) r = 10.0. In every ordered pair of values, (x,y), x is the abcissa and y the ordinate.

We have also designed diagrams (Figures 7 and 8) to indicate the effect of the flow arrangement
variables, (Sw', β’, ω’), and the associated ganglion size distributions parameters, (n1, n2, ζ), on
the number of microstates as well as on the relative and absolute contributions of the CPF and
Disconnected-Oil Flow (DOF) microstates, PCPF’ and PDOF’. For that purpose, we have elected to
show the microstates for two types of physically admissible flow arrangements and different sets
of macroscopic flow conditions, (Ca, r). “Moderate” flow arrangements are characterized by flow
arrangement values (Sw’, β’,ω’)close to the ensemble average, (Sw, β,ω) and are presented in Figure 7.
“Extreme” flow arrangements are characterized by flow arrangement values (Sw’, β’,ω’) pertaining to
the extreme borderline corners of the ensemble envelope, and are presented in Figure 8.

Referring to Figures 7 and 8 the tabulated data at the top indicate values of the flow arrangement
variables (FAV), (Sw’, β’, ω’), and of the critical parameters, (n1, n2, ζ), that define ganglion size
distributions, ni, Equation (7). Each row pertains to one physically admissible configuration. The data
from each row are used as input to corresponding expressions estimating the values of the physical
quantities plotted in the diagrams.

The diagrams on the top row of Figures 7 and 8 present the ganglion size distributions, ni,
corresponding to the examined physically admissible flow arrangements. The distributions have been
determined directly from the associated tabulated data using Equation (7). The diagrams on the middle
row present the non-extensive, reduced entropy contributions of the CPF and DOF prototype flows, as
computed from Equations (22) and (23)–(25). The contributions of repositions (D1), Equation (24), and
permutations (D2), Equation (25), of ganglia in DOF are also presented in the same diagrams. Similarly,
the diagrams at the bottom row present the extensive, reduced entropy contributions of the CPF and
DOF prototype flows (as well as the D1 D2 contributions).
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Figure 7. Diagrams of the ganglion size distributions (2nd row), the non-extensive (3rd row) and
the extensive (4th row) reduced entropy contributions of moderate physically admissible flows for
different macroscopic flow conditions, columns (a), (b), (c). Tabulated data indicate values of the flow
arrangement variables, (Sw’, β’,ω’) and the corresponding parameters, (n1’, n2’, ζ’) of ganglion size
distributions. In the ordinate titles of the 3rd and 4th row diagrams, P’ denotes any of the PCPF’, PD1’,
PD2’, PDOF’ contributions, whereas "A" in denominator denotes either K or M.
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Figure 8. Diagrams of the ganglion size distributions (2nd row), the non-extensive (3rd row) and
the extensive (4th row) reduced entropy contributions of extreme physically admissible flows for
same macroscopic flow conditions. Tabulated data indicate values of the flow arrangement variables,
(Sw’, β’,ω’) and the corresponding parameters, (n1', n2', ζ') of ganglion size distributions. In the ordinate
titles of the 3rd and 4th row diagrams, P’ denotes any of the PCPF ', PD1', PD2', PDOF ' contributions,
whereas "A" in denominator denotes either K or M.

All diagrams in Figures 7 and 8 pertain to flow configurations selected from the ensemble of
physically admissible configurations consistent with 3 different sets of macroscopic flow conditions,
(Ca, r). The examined macroscopic flows share the same capillary number value, Ca = 1.0 ˆ 10´6. The
diagrams in Figure 7 pertain to flowrate ratio values, r = 0.10, r = 1 and r = 10.0, in corresponding
columns (a), (b) and (c). In each column, the flow arrangement values, (Sw’, β’, ω’) are selected in
proximity to the corresponding average, macroscopic flow arrangement, (Sw’, β’,ω’). The diagrams
in Figure 8 share a common value for the flowrate ratio, r = 1 ; diagrams in columns (a), (b) and (c)
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correspond to extreme physically admissible flow configurations, i.e., the flow arrangement variables
(FAV) are as distant as possible from the FAV of the physically admissible ensemble average.

The diagrams in Figures 7 and 8 have been plotted for particular (moderate and extreme) flow
configurations (as predicted by the DeProF model algorithm) and, in that context, they exhibit an
overview of the provisions of Equations (20)–(25) over the domain of physically admissible solutions.
An interesting observation is the following.

The reposition of ganglia (D1), is insensitive to flow conditions (Figure 7) and/or flow
configurations (Figures 7 and 8). Nevertheless, the ganglia permutations (D2) have a strong
impact on the Disconnected-Oil Flow (DOF) microstates. This is mainly attributed on the term
´

řImax
1 nilnni

¯

, appearing in Equation (20), or in Equation (25). As expected, the number of ganglia
permutations increases as ganglion size distributions extend over a broader size domain. On the
contrary, a narrow ganglion size distribution reduces the number of ganglia permutations. This
can be observed by comparing the diagrams in columns (a), (b) and (c), Figure 7. As the ganglion
size distributions—associated with the different flow configurations—become narrower (in the order
(b)-(a)-(c)), the corresponding D2 contributions are progressively reduced. The physical explanation is
the following. D1 is directly related to β’ andω’, see Equation (24), which are macroscopic variables,
in the sense that they contain average information (on volume fractions, extending over the whole
network) and indicate the superficial structure of the flow. In contrast, D2 is directly related to the
interstitial structure of the fluidic elements, i.e., the size distribution of Ganglion Dynamics (GD) cells
and Drop Traffic flow (DTF) cells, Equation (25). Now, the same amount of oil can be allocated over
different ganglia distributions, all of which have equal first moments (equal oil masses). Nevertheless,
distributions with equal first moments may have significant differences over their higher class moments.
In our case this is expressed by the ζ value, regulating the sharpness of each distribution and, because
of mass balance normalization, its breadth, see columns (a), (b) and (c) in Figure 7. And this, on its
merit, has a significant impact on the number of permutations of the ganglia unit-cells (D2).

Could the analysis (presented in Sections 4 and 5) be constructed directly from the independent
variables—without relying on micro-scale modeling? The authors’ perception is that micro-scale
modeling could not/should not be avoided. It could only be made simpler, only if it would not
wipe-out or suppress the essential characteristics of the process. Considering the process to comprise
exclusively the flow of two immiscible fluids (no reactions or mixing between phases), a microstate
is determined as any internal flow configuration of the process, described by the triplet values (Sw',
β’, ω’) that are compatible with the externally imposed flow conditions, determined by the values
of the independent variables, i.e., the superficial velocities of oil and water, Uo, Uw, or, equivalently
expressed in reduced form, by the capillary number, Ca, and the flowrate ratio, r. The triplet values
(Sw’, β’, ω’) describe the partitioning of the total flow into volume fractions of prototype flows. Of
these three variables, Sw' and β', pertain to prototype flow configurations that have no particular
interstitial structure in the sense that no additional/detailed description at the pore scale is required.
In contrast,ω' pertains to the volume fraction of Ganglion Dynamics, a prototype flow configuration
that has a characteristic interstitial structure, stemming from the different ganglion size distributions.
The latter must satisfy the micro- to macro- scale consistency equations for mass and flowrate of
oil. And this is because the flowrate in each flow domain is related to (depends on) the macroscopic
pressure gradient, i.e., the solution. A simplistic approach would be to deprive ganglia velocity of
their actual dependence on the locally induced macroscopic pressure gradient. But this would not
only violate basic modeling principles in fluid mechanics (considering bulk viscosity and capillary
hysteresis phenomena have a significant contribution), it would also not be consistent with the basic
phenomenology of ganglion migration downstream the pore network—whereby migration velocity
depends on the locally induced pressure gradient. Considering that disconnected oil remains stranded
(immobile), provides an—optional—oversimplifying modeling approach, suggesting water saturation,
Sw, is to be considered as the independent variable of the process. Yet, this “conventional wisdom”
fails to provide a rational explanation of the process phenomenology when disconnected-oil flow is
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substantial. And still today, the true/accurate description of the phenomenon relays to the classical
Darcy fractional flow representation of the cause-effect relation (pressure gradient vs. flowrates) only
if laboratory measured values of relative permeability to oil and water are provided, i.e., an entirely
phenomenological approach. The delivery and use of relative permeability diagrams implementing
saturation as the independent variable is only conventional. Another overly simplistic situation
where there is no flow of oil based on Ganglion Dynamics is—according to numerous laboratory
studies—physically impossible if conditions of simultaneous flow of oil and water are to be maintained.

Returning to the question of the previous paragraph, the analysis could be constructed directly
only if all of the oil would be disconnected in singlets (ganglia of uniform size 1)—a quite extraordinary
situation. In that case, the dependence of the ganglion velocity on the solution (the locally induced
macroscopic pressure gradient) would be uniform across all ganglia and there would be no need
for a detailed microscopic representation of the flow (in terms of ganglion size velocity distribution),
and micro- to macro- scale flow consistency equations would be easily satisfied without delving into
microscopic scale dynamics. This case has been already addressed in the last paragraphs of Section 4.

Another issue that needs to be addressed is how the structure of the virtual 3D pore network
lattice relates to the presented methodology. The statistical treatment for any type of network lattice
will be the same. A different type of pore network lattice/geometry (e.g., hexagonal close packed or
face-centered cubic configurations, or lab-on-a-chip configurations) would allow different interstitial
flow arrangements, therefore it would affect the non-extensive part of expressions, Equation (20).
Comparative DeProF simulations between 2D and 3D networks have been carried in the past with only
quantitative differences [33]. Accordingly, differences in the lattice size/structure (topology) would
have a considerable effect on the extensive part, M and K, since the number of unit-cells per pore
network volume (the lattice density of the network) would change.

7. Conclusions

We have derived a model to account the number of microstates in two-phase flow in pore network
processes. An analytical scheme has been furnished—based on combinatorial analysis—to estimate
(count) the population of the complete set of (discrete scale) microstates stemming from the different
arrangements of the fluidic elements for every physically admissible flow configuration. Here the
constituent “micro” in “microstates” refers to the scale size of the fluidic elements, at the order of a
few tens to hundred microns.The scope is to evaluate the global entropy production in this kind of
processes and, in particular, in those maintained at off-equilibrium steady-state. To do so, we have
considered the total entropy in two different scales:

(a) molecular level: entropy is accounted as thermal entropy within the continuum mechanics scale;
(b) configurational level: entropy is accounted within a domain of discrete and, presumably,

countable flow microstates, inherent in every flow configuration that is physically admissible
with the macroscopic, steady-state flow condition.

The purpose is to implement the Maximum Entropy Production (MEP) principle to provide
a theoretical justification on the predictions of the DeProF model on the existence of conditions of
maximum energy efficiency in steady-state two-phase flow in pore network processes.

An open problem that needs to be addressed is the delivery of appropriate expressions for the
physical constants kCPF and kDOF appearing in the B-G expressions for the configurational entropy,
Equation (30), and pertain to the connected- and disconnected-oil flows. To the authors’ confidence,
delivery of an appropriate expression for the effective physical constant, kDeProF, would eventually
provide a sound theoretical justification of the phenomenology of steady-state two-phase flow in
porous media, based on statistical thermodynamics principles.
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Appendix A

Geometrical Characteristics of the Pore Network Unit-Cell

The 3D cubic lattice pore network used in the DeProF simulations is of the “ball-and-stick” type,
whereby spherical chambers, residing at the nodes of the cubic lattice, are interconnected with straight
cylindrical throats, Figure A1. The network is constructed according to some typical distribution of
the chamber and throat size (or size classes). The occurrence probabilities of size classes as well as
the reduced dimensions of chambers and throats, of the 3D cubic lattice pore network used in the
simulations, normalized to the lattice constant, `, are presented in Table A1. For the particular network
dimensions, the volume porosity is ε “ 0.0464 and its absolute permeability is k = 8.965 µm2.

Each jik-class unit cell comprise two chambers of class j and k with diameters DCj and DCk,
interconnected with throat-i, a right circular cylinder of diameter DTi. The thick dashed line rectangle
represents one of the three diagonal planes of the octahedron, while the dashed-dotted lines are the
two of the three octahedron diagonals.

The values of the physicochemical characteristics of the fluids (oil and water) examined
in the simulations are [18,19]: dynamic viscosity of oil, µo = 1.36 ˆ 10´3 Pa s, and water,
µw = 0.94 ˆ 10´3 Pa s, providing an oil/water viscosity ratio κ = µo/µw = 1.45, oil/water interfacial
tension γow = 25 ˆ 10´3 N/m, advancing (A) and receding (R) oil-water/porous medium contact
angles, θ0

A “45 deg and θ0
R “39 deg respectively.

Figure A1. Typical jik-class unit cell of the examined model porous network. The thick inclined arrow
represents the orientation of the lattice skeleton relative to the macroscopic pressure gradient.
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Table A1. Occurrence probabilities, fj, and respective reduced size diameters for the 5 classes of
chambers, DCj, and throats, DTj, of the 3D pore network used in the DeProF simulations. All dimensions
are normalized to the lattice constant, ` “ 1221 µm.

j 1 2 3 4 5

fj (%) 16 21 26 21 16
DCj 0.2703 0.3849 0.4996 0.6143 0.7289
DTj 0.0929 0.1036 0.1127 0.1192 0.1251
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