
entropy

Article

Entropy Production in the Theory of Heat Conduction
in Solids
Federico Zullo 1,2

1 Department of Mathematics and Physics, Roma Tre University, Via della Vasca Navale 84, 00146 Roma, Italy;
zullo@fis.uniroma3.it; Tel.: +39-06-5733-7339

2 INFN Section of Roma Tre, Department of Mathematics and Physics, Via della Vasca Navale 84,
00146 Roma, Italy

Academic Editors: Umberto Lucia, Giuseppe Grazzini and Kevin H. Knuth
Received: 11 January 2016; Accepted: 26 February 2016; Published: 8 March 2016

Abstract: The evolution of the entropy production in solids due to heat transfer is usually associated
with the Prigogine’s minimum entropy production principle. In this paper, we propose a critical
review of the results of Prigogine and some comments on the succeeding literature. We suggest a
characterization of the evolution of the entropy production of the system through the generalized
Fourier modes, showing that they are the only states with a time independent entropy production.
The variational approach and a Lyapunov functional of the temperature, monotonically decreasing
with time, are discussed. We describe the analytic properties of the entropy production as a function
of time in terms of the generalized Fourier coefficients of the system. Analytical tools are used
throughout the paper and numerical examples will support the statements.
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1. Introduction

The minimum entropy production principle states that in the regime of linear irreversible
thermodynamics, the steady state of an irreversible process is characterized by a minimum value
of the rate of entropy production. It was formulated by Prigogine in 1947 [1] and successively
different authors, including Prigogine himself and his coworkers, tried to generalize it and to put forth
new examples and new areas of application for the principle: for example it has been employed in
chemistry, biology, ecology and, obviously, in engineering sciences (see, e.g., [2] and references therein).
In addition, due to these large number of applications, different statements about the principle, its
validity and applicability have been given in the literature. Prigogine returned different times in the
course of his life on the principle, approaching the problem from different points of view: maybe
this is one of the causes of different misconceptions about the principle. Indeed one of the most
frequent applications of the principle that we can find in the works of Prigogine is on the theory of heat
conduction in solids. However, as it has been recently noticed [2–4], in this case the principle cannot
be applied (we return on this point in the next sections). The question arising is then to characterize
the evolution of the rate of entropy production due to heat transfer in solids.

The aim of this paper is twofold: on the one hand, we would like to clarify, once more the limits
of applicability of the Prigogine minimum entropy production principle (for a critical review of this
aspect of the work of Prigogine, see [2]); and, on the other hand, we wish to answer to the following
questions: Does the rate of entropy production due to heat conduction in solids follows a minimum
principle? If not, are there “preferred” (in a sense to be specified) thermodynamic states with respect
to the production of entropy? If the linear Fourier law holds, how can we characterize the entropy
production of the solid?
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According to the previous plan, the paper is organized as follows: in Section 2, we analyze the
minimum entropy production principle applied to the case of heat transfer in solids, starting from
the considerations made by Prigogine and coworkers and after commenting on more recent papers
and critical reviews. The analysis of the principle according to variational methods and a Lyapunov
functional of the temperature monotonically decreasing with the evolution of the system will be
discussed too. In Section 3, we illustrate the fundamental role played by the generalized Fourier
modes (the eigenvectors of the Helmholtz operator times an exponential of the time) to characterize the
long-time behavior of the entropy production. Further, we show that there are preferred time-dependent
states having a constant entropy production: these are precisely the generalized Fourier modes. We
show that these are the only states having this property. In Section 4, we consider the behavior of the
entropy production as a function of time, showing, in general and in concrete cases, that the stationary
state of the system does not necessarily correspond to a minimum of the entropy production. The
leading term in the generalized Fourier expansion plays a major role. Numerical and analytic examples
are given. Finally, in the conclusions, we comment on our findings, acknowledge the conditions of
applicability and validity of the minimum entropy production, emphasize those situations giving
misleading or erroneous results and provide a systematic view of our results.

2. The Minimum Entropy Production Principle and the Heat Conduction in Solids

In this section, we review the minimum entropy production principle in the theory of heat
conduction in solids as formulated by Glansdorff and Prigogine [5]. It is not our intention to dispute
the minimum entropy production principle from a general point of view: it is well known that,
provided certain specific assumptions are satisfied, the principle is undoubtedly valid (see, e.g., [2] and
references therein). However, Prigogine himself considered the case of thermal conduction in solids
one of the simplest application of the general principle (see, e.g., [5–7]) and used different approaches
(see [5–8]) to conclude that the entropy production in diffusive processes, if the temperature is fixed at
the system boundary, tends to decrease with time and reaches a minimum in a final steady state. Thus,
it is this statement, or the application of the general principle to the case of heat conduction in solids,
that we discuss. Let us look at the proof given by Glansdorff and Prigogine in [5] (see also [9]). The
postulates of the authors are:

(a) The relations between the generalized forces
Ñ

X and fluxes
Ñ

J are linear. In this case it means that

the heat flux
Ñ

J is proportional to the gradient of the inverse of temperature, i.e.,
Ñ

J “ L∇
`

T´1˘,
where L is the phenomenological coefficient.

(b) The phenomenological coefficients are constants.
(c) The Onsager reciprocity relation holds (trivial in this case, since we have just one

phenomenological coefficient).
(d) The temperature on the boundaries of the solid is constant in time.

The heat flux
Ñ

J is given by (postulate a):

Ñ

J “ L∇
ˆ

1
T

˙

(1)

where L is a constant (postulate b). The entropy production can be written as [1–7]

σ “

ż

Ñ

J ¨
Ñ

XdV “

ż

L
ˆ

∇
ˆ

1
T

˙˙2
dV (2)

and the time derivative of the entropy production, using the fact that L is a constant from postulate (b), is

.
σ “ 2

ż

L∇
ˆ

1
T

˙

¨∇
ˆˆ

1
T

˙

t

˙

dV (3)
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By integrating by parts one gets:

.
σ “ 2

ż

L∇ ¨
ˆˆ

1
T

˙

t
∇
ˆ

1
T

˙˙

dV ´ 2
ż

L
ˆ

1
T

˙

t
∇2

ˆ

1
T

˙

dV (4)

The first integral, using the divergence theorem, becomes:

2
ż

L∇ ¨
ˆˆ

1
T

˙

t
∇
ˆ

1
T

˙˙

dV “ 2
ż

L
ˆ

1
T

˙

t
n̂ ¨∇

ˆ

1
T

˙

dS “ ´2
ż

L
Tt

T2 n̂ ¨∇
ˆ

1
T

˙

dS (5)

and it is zero (postulate d). The other integral gives:

.
σ “ ´2

ż

L
ˆ

1
T

˙

t
∇2

ˆ

1
T

˙

dV “ 2
ż

L
Tt

T2 ∇
2
ˆ

1
T

˙

dV (6)

At this point, the author’s uses the energy conservation; that is, ρc
BT
Bt
`∇ ¨

Ñ

J “ 0 (ρ is the density

of the homogeneous material and c its specific heat, assumed to be constant.). Since
Ñ

J is given by
Equation (1), one gets:

.
σ “ ´2ρc

ż
ˆ

Tt

T

˙2
dV (7)

which is negative. This means that
.
σ is always negative; that is, the entropy production σ is a decreasing

function of time and will reach a minimum in the final steady state.
The problem in this derivation is the energy conservation law. Indeed, according to Equation (1),

it reads:

ρc
BT
Bt
`∇2

ˆ

L
T

˙

“ 0 (8)

Thus, to arrive at the result (Equation (7)), it has been assumed that the evolution of the
temperature is described by Equation (8) instead of the usual Fourier linear equation (λ is the thermal
conductivity of the solid):

ρc
BT
Bt
´ λ∇2T “ 0 (9)

Glansdorff and Prigogine were aware of this difficulty, or at least were unsatisfied with their
derivation, since in successive works they tried to circumvent the problem by looking at some different
approaches. For example in [8], they start from the linear Fourier Equation (9) by assuming that
the phenomenological coefficient L depends on the temperature as L “ λT2. But then they find the
steady state by minimizing a new quantity, not having the dimensionality of an entropy production
(see also [2]), obtained by introducing a weighted expression for the thermodynamic forces; that
is, assuming that the thermodynamic force, in this case, is given by ∇ T instead of ∇

`

T´1˘ (more
precisely the quantity in question is λ

ş

p∇Tq2 dV where λ is the thermal conductivity (Equation 3.30
in [6]), which has physical dimensions of WK in the SI; for more comments, see Equation (14) and the
following discussion). The introduction of a new quantity instead of the entropy production is quite
dissatisfying and indeed in a more recent work [6] Prigogine abandoned completely this approach.
Instead, he used a variational approach and made an approximation. We discuss some lines below
the variational approach, let us firstly comment on the approximation: it consists of the so-called
“near-equilibrium linear regime”. Again, as in [8], he started by giving to the phenomenological
coefficient L a dependence on the temperature; that is, L “ λT2. Notice that this is in contrast with
the postulate 3) and one must take into account also the derivative of L (i.e., of λT2) with respect
to t when passing from Equation (2) to Equation (3): again this fact invalidates the proof. Thus, he
made the following approximation: if the temperature is small compared with the mean value of the
temperature, then the derivative of L (i.e., of λT2) with respect to time is small and can be ignored
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when passing from Equation (2) to Equation (3). Thus, under this assumption, one must approximate
Equation (2) with (see, e.g., [2], Equation 3.5)

σ «
λ

T2

ż

p∇Tq2 dV (10)

where T is the average temperature of the solid. Notice that T is constant with respect to the space
variables but it does depend on the time t if the solid is not isolated. However, in proving that σ is a
decreasing function of t by analytical methods, it is crucial to consider T as a constant in time. Indeed,
if T is constant, the derivative with respect to t of (10) is

.
σ «

2λ

T2

ż

∇T ¨∇TtdV (11)

and, integrating by parts and using the divergence theorem one obtains

.
σ «

2λ

T2

ż

∇ ¨ pTt∇Tq dV ´
2λ

T2

ż

Tt∇2 pTq dV “
2λ

T2

ż

Ttn̂ ¨∇TdS´
2ρc

T2

ż

pTtq
2 dV (12)

where we used the evolution equation in the last passage. Because the temperature on the boundaries of
the solid is constant in time (Postulate d)), the surface integral in (12) is zero and in this approximation
.
σ is always negative. But, if the system is not isolated, T is not constant in time and one has to
make the further assumption that the derivative of T with respect to time can be neglected too. This
further assumption has been ignored in [2,6]. Actually, to treat his approximation, Prigogine used the
variational approach, rather than the analytical one. Clearly, in this case, the time variation in time of T
must also play a role. Let us suppose indeed that T is constant (i.e., the solid is isolated) or that its time
derivative is small and can be neglected. In this case, from the calculus of variation, one finds that the
solution of the heat equation minimizing the integral (10) solves ∇2T “ 0, or, that is the same, Tt “ 0
(see, e.g., [2,6]): the steady state minimizes, in this approximation, the entropy production. If however
one takes into account also the time variation of T, the statement is false. A simple counter-example is
given by the following distribution of the temperature:

Tpx, tq “ T0 ` pT1 ´ T0q
x
L
`wsin

´πx
L

¯

e
´

λ

ρc
p
π

L
q

2

t
(13)

It is a solution of the linear heat Equation (9) on a rod of length L. It corresponds to the boundary

conditions T|x“0 “ T0, T|x“0 “ T1 and the initial condition Tpx, 0q “ T0 ` pT1 ´ T0q
x
L
`wsin

´πx
L

¯

,
where w is a given parameter. The mean temperature at a generic instant t is given by

T “
T0 ` T1

2
`

2w
π

e
´

λ

ρc
p
π

L
q

2

t
and does depend on time. In this case, the entropy production

(approximated by Equation (10)) is not minimum in the steady state T0`pT1´ T0q
x
L

: indeed by a direct
calculation with Equation (10), it is possible to show that the steady state has an entropy production

equal to
4λpT1 ´ T0q

2

LpT1 ` T0q
2 , whether, under suitably conditions (i.e., the values of the constants T0, T1 and w

are such that t˚ is positive.), the minimum of the entropy production for the Solution (13) is reached at

the time t˚ “
ρcL2

π2λ
ln

˜

π3wpT1 ` T0q

8pT1 ´ T0q
2

¸

and is explicitly given by
4λpT1 ´ T0q

2

LpT1 ` T0q
2
`

32L
π4 pT1 ´ T0q

2
, also in

the given approximation, in general the entropy production is not a decreasing function of time.
Due to the previous discussion, some questions arise: the first one is about the minimization of

the entropy production according to a variational approach that should be revised. The second one
is about the existence of a functional of the temperature (possibly positive), always decreasing and
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having a stable minimum in correspondence of the steady state; the third one is about the form of this
functional. Let us give first an answer to the last two questions; in the last part of the section we go
through the first one. In the case the temperature on the boundaries of the solid is constant in time, we
define the functional (see also [10–12]):

s “
ż

p∇Tq2 dV (14)

This functional is a decreasing function of time reaching a minimum when the temperature is in
the steady state. Indeed, from the calculus of variation, one finds that the solution of the linear Fourier
equation minimizing the integral (14) solves ∇2T “ 0, or, that is the same, Tt “ 0. This state is stable:
if we take the derivative of s with respect to t we get

.
s “ 2

ż

∇T ¨∇Tt “ 2
ż

∇ ¨ pTt∇Tq dV ´ 2
ż

Tt∇2 pTq dV “ 2
ż

Tt pn̂ ¨∇Tq dS´2
ρc
λ

ż

pTtq
2 dV (15)

where we have integrated by parts and then we used the divergence theorem and the Fourier
Equation (9). If the temperature on the boundaries of the solid is constant in time then the first
integral of the right member of Equation (15) is zero, so one gets

.
s “ ´2

ρc
λ

ż

pTtq
2 dV ď 0 (16)

showing that indeed the steady state is stable under perturbation of the temperature: if the system
was in a steady state and has been perturbed, then it goes back to the steady state along a trajectory
decreasing the value of s. Essentially, the quantity s is a Lyapunov function for the Fourier heat
equation (see [10,11]): it is different from the entropy production, explicitly given by [1–8]

σ “ λ

ż
ˆ

∇T
T

˙2
dV (17)

Now let us analyze the variational approach to minimization of Equation (17). Let us emphasize
that the temperature inside the integral is a function of both space and time and it is supposed to solve
the heat Equation (9). Thus, the problem is about to find, among the solutions of the Equation (9) and
under suitably boundary conditions, the function or the class of functions extremizing the right hand
side of Equation (17). This means that the temperature Tp

Ñ
x , tq has to solve the system of equations

#

T∇2T´ p∇Tq2 “ 0
ρcTt ´ λ∇2T “ 0

(18)

together with the corresponding boundary conditions. In general, this problem has no solutions: let us
take for example the simple case of dimension one. The solution of the system of Equations (18) can be
written in the form

Tpx, tq “ aeb2k2t`bx (19)

where a and b are arbitrary constants and k2 “
λ

ρc
. Not every boundary condition can fit into the

Function (19): in general the problem has no solution. Further, to avoid an exponential increase of
the solution in time, one should take an imaginary value for b, but in this case the solution would be
complex, not real. As a last remark, we notice that the entropy production associated to the temperature
described by Equation (19) is constant and, from Equation (17), equal to

σ “ λ

ż L

0

ˆ

Tx

T

˙2
dx “λLb2 (20)
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Thus, the state (19) possesses an entropy production as small as wanted since it depends on the
arbitrary parameter b: this cannot be taken however as a counter-example to the Glansdorff–Prigogine
statement since the postulate d is not satisfied (and, moreover, the state is unphysical).

In the next section, we study the evolution and the characterization of the entropy production
given by Equation (17) showing that a special role is played by the generalized Fourier states.

3. Entropy Production in Solids According to the Linear Diffusion Equation

Here we consider the general case of heat conduction in solids with a convective heat exchange
between the environment and the boundaries. The system of equation reads

$

’

’

&

’

’

%

BT
Bt
“ k2∇2T

n̂ ¨∇T` αpT´ T0q “ 0 on S
Tp
Ñ
x , 0q “ Tep

Ñ
x q

(21)

where T0 is the environmental temperature, S is the surface of the solid, n̂ is the normal to the
boundaries of the solid (going outward) and α is a measure of the heat transfer by convection between
the boundaries of the solid and the surrounding. The case α “ 0 corresponds to no heat exchange
between the boundaries and the environment (the system is isolated), the limit α Ñ8 (we notice that
α has dimensions of length´1 so with the condition α Ñ8 we actually mean αl ąą 1, where l is the
characteristic length of the system; the product αl is the Biot number of the system [13]) corresponds to
an ideal cooler surrounding (the surrounding is an heat sink) giving boundary conditions agreeing
with those of postulate d) (we assume that T0 may depend on

Ñ
x but not on t). Tep

Ñ
x q is the initial

profile of temperature.
The solution of the system of Equations (21) in general is sought in terms of separation of variables.

In addition, since the steady state is stable under perturbations, we can write

Tp
Ñ
x , tq “ Fp

Ñ
x q `Yp

Ñ
x , tq (22)

where the function Fp
Ñ
x q describes the steady state, satisfying the following Laplace equation and

boundary conditions
#

∇2F “ 0
n̂ ¨∇F` αpF´ T0q “ 0

(23)

The function Yp
Ñ
x , tq solves the problem with homogeneous boundary conditions

$

’

’

&

’

’

%

BY
Bt
“ k2∇2Y

n̂ ¨∇Y` αY “ 0
Yp
Ñ
x , 0q “ Tep

Ñ
x q ´ Fp

Ñ
x q

on S (24)

We notice that in the case T0p
Ñ
x q “ T0 “ const, then the solution of the system of Equations (23) is

Fp
Ñ
x q “ T0 “ const. By separation of variables we can write Yp

Ñ
x , tq “ wp

Ñ
x qe´k2µ2t, where wp

Ñ
x q now

solves the Helmholtz equation
#

∇2w` µ2w “ 0
n̂ ¨∇w` αw “ 0

on S (25)

Under the previous boundary conditions, the Helmholtz operator is self-adjoint. Its eigenvalues
are real and the corresponding eigenvectors are orthogonal. So we have

ż

wnp
Ñ
x qwmp

Ñ
x qdV “ fnδn,m (26)
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We assume also that the set of eigenvectors is complete. The solution of the problem (21) then is
given in general by the infinite sum

Tpx, tq “ Fp
Ñ
x q `

ÿ

n“1

cnwnp
Ñ
x qe´k2µ2

nt (27)

The set
!

wnp
Ñ
x qe´k2µ2

nt
)8

n“1
defines the generalized Fourier eigenfunctions. They are the simplest

(separated) solutions for the heat Equation (9). Since this set is assumed to be complete, every solution
can be expanded as in Equation (27), where the Fourier coefficients cn are given by the formula

cn “
1
fn

ż

´

Tep
Ñ
x q ´ Fp

Ñ
x q

¯

wnp
Ñ
x qdV (28)

It is easy to show that, for each of these states, the entropy production is constant. Indeed if
Tnp

Ñ
x , tq “ wnp

Ñ
x qe´k2µ2

nt, the derivative with respect to time of the entropy production, given by
Equation (17), is given by

.
σnptq “ ´2λk2µ2

n

ż
ˆ

∇wn

wn

˙ˆ

∇wn

wn
´

∇wn

wn

˙

dV “ 0 (29)

On the other hand, one needs to be careful about the constant values assumed by σn in these
cases. Indeed the solutions Tnp

Ñ
x , tq “ wnp

Ñ
x qe´k2µ2

nt may be unphysical, in the sense that some of
them may assume negative values in some region of space. It follows that in these cases the value
assumed by σ diverges since the denominator of the integrand has zeroes. It can be shown, under
certain conditions, that apart w1, all the other wns have at least one zero. In the cases when the value
of the entropy production associated to the states wnp

Ñ
x qe´k2µ2

nt is finite, the value is explicitly given by
the positive quantity

σn “ λ
´

αS´ µ2
nV

¯

(30)

where S is the surface of the solid and V its volume.
There is another state that has a constant entropy production, the steady state Tp

Ñ
x q “ Fp

Ñ
x q. In

this case, the value of the constant entropy production is given by

σ “ λα

ż
ˆ

1´
T0

F

˙

dS (31)

where the integral has to be performed over the surface of the solid and T0 is the environmental
temperature. If the system is isolated or the environmental temperature is constant the entropy
production of the steady state is zero.

It could be asked if the generalized Fourier states and the steady state are all the possible states
that have a constant entropy production. The answer is yes if the boundary conditions are specified by
Equation (21). Indeed, the Equation (17) for the entropy production can also be written as

σ “ ρc
ż

Tt

T
dV ` αλ

ż
ˆ

1´
T0

T

˙

dS (32)

where the first integral has to be performed on the volume of the solid and the second on its surface.
Since the temperature on the boundaries of the solid is constant in time, the surface integral is

constant as well. Then the entropy production is constant if and only if
Tt

T
is constant; that is, if

Tp
Ñ
x , tq “ wp

Ñ
x qebp

Ñ
x qt for some functions wp

Ñ
x q and bp

Ñ
x q. Since Tp

Ñ
x , tq also has to solve the Fourier

Equation (9), it follows that bp
Ñ
x q is a (negative) constant and so again we go back to the system

Equation (15) for wp
Ñ
x q.
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4. Characterization of the Entropy Production as a Function of Time

In this section, we consider Equation (17) for the entropy production in the solid. We would
like to characterize its behavior as a function of time. First of all, let us make the limit t Ñ8 of this
expression: we get, according to Equation (22)

lim
tÑ8

σptq “ λ

ż
ˆ

∇F
F

˙2
dV “ const (33)

Integrating by parts, this value can be expressed as in Equation (31) too. In the limit t Ñ8 , there
could be a constant entropy production different from zero: indeed the constant in Equation (33) is
equal to zero only in two cases: in the case of a constant function Fp

Ñ
x q; that is, a constant temperature

of the environment T0p
Ñ
x q “ const, or when the parameter α in Equation (21) is equal to zero,

corresponding to no heat exchange on the boundaries of the solid. In general, due to the temperature
gradients on the surface of the solid, there is also a convective heat exchange for t Ñ8 resulting in an
entropy production different from zero also at infinity.

The minimum entropy production principle states that the entropy production in diffusive
processes, if the temperature is fixed at the system boundary, tends to decrease with time and reaches a
minimum in a final steady state. It is important then to understand the behavior of the time derivative
of σ, since, accordingly to the principle, it should be always negative. A violation of the principle
is expressed by a positive value of the time derivative of σ. Taking into account Equation (22), the
derivative reads

.
σptq “ 2λ

ż
ˆ

∇T
T

˙ˆ

∇Yt

T
´

Yt∇T
T2

˙

dV (34)

From Equation (27), we see that the dominant term, in the limit t Ñ8 , is given by the exponential
function corresponding to the first eigenvalue, i.e., e´k2µ2

1t. Indeed, the lim
tÑ8

´ .
σptqek2µ2

1t
¯

is finite and,

from Equation (27), it is explicitly given by

lim
tÑ8

´ .
σptqek2µ2

1t
¯

“ 2λk2µ2
1c1

ż

˜

w1
p∇Fq2

F3 ´
∇F ¨∇w1

F2

¸

dV (35)

On the right hand side of Equation (35) we have a constant: let us call it S. Thus, in the limit t Ñ8 ,
one has

.
σptq « Se´k2µ2

1t (36)

that is
.
σptq goes to zero from below or from above according to the sign of S (in the case the

environmental temperature T0 is constant, the value of S is zero and one has to look at the limit
lim

tÑ8

´ .
σptqe2k2µ2

1t
¯

). Thus, in principle, it could happen that in the course of evolution in time
.
σptq

can changes its sign, from negative to positive, or can stay negative (Prigogine principle) or can stay
positive. Now we will show, in the simplest of examples, that all these three cases indeed may occur.

Let us take the one-dimensional case; that is, a rod. Equation (35) gives

lim
tÑ8

´ .
σptqek2µ2

1t
¯

“ 2λk2µ2
1c1

L
ż

0

ˆ

w1
F2

x
F3 ´

Fx ¨ pw1qx
F2

˙

dx (37)

where F is a linear function of x since Fxx “ 0 and w1 solves pw1qxx ` µ2
1w1 “ 0. The two boundaries of

the rod are kept at temperatures T0 and T1 so that F “ T0 `
T1 ´ T0

L
x. With these boundary conditions

w1 is given by w1pxq “ sinp
πx
L
q and µ1 by µ1 “

π

L
, so we have
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lim
tÑ8

´ .
σptqek2µ2

1t
¯

“
2λk2π2c1

L2

L
ż

0

˜

sin
´πx

L

¯

pT1 ´ T0q
2

L2F3 ´ π
T1 ´ T0

L2F2 cos
´πx

L

¯

¸

dx (38)

Scaling the variable of integration as x “ yL and posing a “
T1 ´ T0

T0
we get

lim
tÑ8

´ .
σptqek2µ2

1t
¯

“
2λk2π2c1

L3T0

1
ż

0

˜

a2sin pπyq
p1` ayq3

´
πacos pπyq
p1` ayq2

¸

dy (39)

It is better to integrate the second addend on the right hand side to give

lim
tÑ8

´ .
σptqek2µ2

1t
¯

“ ´
2λk2π2a2c1

L3T0

1
ż

0

sin pπyq
p1` ayq3

dy (40)

Let us call f paq the integral
1
ş

0

sin pπyq
p1` ayq3

dy. We notice that f paq is a positive function since the

function
sin pπyq
p1` ayq3

is non-negative in the interval (0,1): indeed the constant α is constrained in the

interval (´1,8) since the temperatures T0 and T1 must be positive. Then, the constant S in Equation (36)
is explicitly given by

S “ ´
2λk2π2a2 f paq

L3T0
c1 (41)

and the sign of S is opposite to the sign of c1. If c1 is positive, surely the sign of
.
σptq cannot be always

negative. The constant c1 is given by the integral

c1 “
2
L

L
ż

0

ˆ

Tpx, 0q ´ T0 ´
T1 ´ T0

L
x
˙

sin
´πx

L

¯

dx (42)

and can be positive, for example, if the initial distribution Tpx, 0q is greater than the equilibrium

distribution T0 `
T1 ´ T0

L
x. As an example, let us take an initial distribution equal to

Tpx, 0q “ T0 `
T1 ´ T0

L
x` p

x
L

´

1´
x
L

¯

(43)

If p is positive, then the initial distribution Tpx, 0q is greater than the equilibrium distribution

T0 `
T1 ´ T0

L
x, otherwise is lower. In this case the temperature at time t is given explicitly by

Tpx, tq “ T0 `
T1 ´ T0

L
x`

8p
π3

ÿ

n“0

1

p2n` 1q3
sin

ˆ

p2n` 1qπx
L

˙

e
´

k2π2p2n` 1q2

L2 t
(44)

and the plots of the initial profile of temperature, of the entropy production and its derivative for two
different cases corresponding to p ą 0 and p ă 0 are reported in Figure 1. The values are scaled to the

a-dimensional quantities
σL
λ

for the entropy production, to
.
σL3

λk2 for its derivative and to
T
T0

for the

temperature. The parameters are set as T1 “ 10T0 and p “ ˘15T0. The plots are obtained truncating
the series at n “ 100. As can be seen, in the case p is positive the value of

.
σ approaches, as t becomes
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large, the value zero from below, whether in the case p is negative the value of
.
σ approaches the zero

from above.Entropy 2016, 18, 87 11 of 13 
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Another example is given by the distribution composed by just one Fourier component, that is

Tpx, tq “ T0 `
T1 ´ T0

L
x` qsin

´π

L
x
¯

e
´k2p

π

L
q

2

t
(45)

where |q| ď minpT0, T1q. From Equation (41) it follows directly that the sign of S is opposite to the sign
of q.

Now we will show also that it is possible to get, with a proper choice of the constants T0, T1 and q
in Formula (44), an initial value of

.
σptq; that is,

.
σptq

ˇ

ˇ

t“ 0, positive. We take a small value of q and make
the series in q in the expression for

.
σptq. At first order we get, for t “ 0,

.
σptq

ˇ

ˇ

t“0 “
2λk2π2aq

L3T0

1
ż

0

˜

asin pπyq
p1` ayq3

´
πcos pπyq
p1` ayq2

¸

dx`Opq2q (46)

where again we set a “
T1 ´ T0

T0
. Integrating by parts the second addend of the right hand side we have

.
σptq

ˇ

ˇ

t“0 “ ´
2λk2π2a2 f paq

L3T0
q`Opq2q (47)

where the positive function f(a) has been defined just after Equation (40). So, for small values of q,
the sign of

.
σptq

ˇ

ˇ

t“0 is opposite to the sign of q: it may be either positive or negative. From these two
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example, we see that it could happen that both the values of
.
σptq for t “ 0 and t Ñ8 may be positive.

Thus, in principle, it may happen that the function
.
σptq stay positive for all values of t; that is, the

entropy production is an increasing function of t in these cases. Indeed, an example is reported in
Figure 2, where the parameters are set as T1 “ 10T0 and q “ ´T0.
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Figure 2. From left to right: plots of the initial profile of temperature, of the entropy production and its
derivative corresponding to the temperature described by Equation (45). The parameters are set as
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Let us summarize the findings of this section: the behavior in time at infinity of the entropy
production is dominated by the exponential function corresponding to the first eigenvalue, i.e., e´k2µ2

1t:
by looking at the sign of the quantity S, defined in Equations (35) and (36), it is possible to determine if
.
σ approaches the zero from below or above; that is, if σ approaches its constant value as a decreasing
or an increasing function of time for large times. The entropy production has a minimum value for
some finite time t˚ if S is positive and the initial value of

.
σ is negative (Figure 1), in the second both

the signs are negative (positive) the entropy production may be a decreasing (increasing) function of
time. In the case S is zero (e.g., when the environmental temperature T0 has a constant value), the
entropy production is dominated by the exponential e´2k2µ2

1t and one has to look at the sign of the
limit lim

tÑ8

´ .
σptqe2k2µ2

1t
¯

instead of S.

5. Conclusions

We analyzed the evolution of the temperature inside a homogeneous solid according to the linear
Fourier equation. The quantity of interest in the paper is the entropy production given by Equation
(17). We showed how this quantity does not follow in general an extremum principle. It is important to
underline that in this paper we do not issue the general validity of the Prigogine’s minimum entropy
production principle: if on a system act forces and flows, if the relations among forces and flows are
linear, if the phenomenological coefficients are constant and if the Onsager reciprocal relations are valid
then undoubtedly the entropy production of the system reaches a minimum at the non-equilibrium
steady state (see, e.g., [2] or [6]). In the case of the heat diffusing in a solid according to the linear
Fourier law, what is missing is postulate (b); that is, the fact that the phenomenological coefficient
is not a constant but depends on the temperature itself: A constant phenomenological coefficient
and the linear Fourier law expressed by Equation (9) are two mutually exclusive possibilities. In
this work, we assumed the validity of the linear Fourier law showing in this case that the entropy
production, given by (17), cannot be characterized by an extremum principle: instead, the evolution of
this quantity can be characterized by looking at the coefficients of the generalized Fourier modes and
may be also an increasing function of time. In the language of system theory, we could say that the
entropy production, given by Equation (17), is not a Lyapunov function for the linear heat Equation (9).
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An example of a Lyapunov function for Equation (9) is given by Equation (14) but others could be
given. As a last remark, we would like to underline that the entropy production is closely related to the
exergy destruction of the system [14]; that is, with the “destruction” of the maximum theoretical useful
work that can be obtained by the solid in the process of bringing it to the thermodynamic equilibrium
with the environment. In this view, the possibility to identify states characterized by an interesting
exergy content seems to be new and will be the scope of next works.
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