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Abstract: System entropy describes the dispersal of a system’s energy and is an indication of the
disorder of a physical system. Several system entropy measurement methods have been developed for
dynamic systems. However, most real physical systems are always modeled using stochastic partial
differential dynamic equations in the spatio-temporal domain. No efficient method currently exists
that can calculate the system entropy of stochastic partial differential systems (SPDSs) in consideration
of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect
measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi
integral inequality (HJII)-constrained optimization method. In other words, we solve a nonlinear
HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic
partial differential systems (NSPDSs). To simplify the system entropy measurement of NSPDSs,
the global linearization technique and finite difference scheme were employed to approximate
the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained
optimization problem for the system entropy measurement to be transformed to an equivalent linear
matrix inequalities (LMIs)-constrained optimization problem, which can be easily solved using the
MATLAB LMI-toolbox (MATLAB R2014a, version 8.3). Finally, several examples are presented to
illustrate the system entropy measurement of SPDSs.

Keywords: entropy maximization principle; Hamilton–Jacobi integral inequality (HJII); linear matrix
inequalities (LMIs); stochastic partial differential system (SPDS); system entropy

1. Introduction

Information entropy is considered a measure of uncertainty and its maximization guarantees
the best solutions for the maximal uncertainty [1–5]. Information entropy characterizes uncertainty
caused by random parameters of a random system and measurement noise in the environment [6].
Entropy has been used for information retrieval such as systemic parametric and nonparametric
estimation based on real data, which is an important topic in advanced scientific disciplines such
as econometrics [1,2], financial mathematics [4], mathematical statistics [3,4,6], control theory [5,7,8],
signal processing [9], and mechanical engineering [10,11]. Methods developed within this framework
consider model parameters as random quantities and employ the informational entropy maximization
principle to estimate these model parameters [6,9].

System entropy describes disorder or uncertainty of a physical system and can be considered to be
a significant system property [12]. Real physical systems are always modeled using stochastic partial
differential dynamic equation in the spatio-temporal domain [12–17]. The entropy of thermodynamic
systems has been discussed in [18–20]. The maximum entropy generation of irreversible open systems
was discussed in [20–22]. The entropy of living systems was discussed in [19,23]. The system entropy of
stochastic partial differential systems (SPDSs) can be measured as the logarithm of system randomness,
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which can be obtained as the ratio of output signal randomness to input signal randomness from the
entropic point of view. Therefore, if system randomness can be measured, the system entropy can be
easily obtained from its logarithm. The system entropy of biological systems modeled using ordinary
differential equations was discussed in [24]. However, since many real physical and biological systems
are modeled using partial differential dynamic equations, in this study, we will discuss the system
entropy of SPDSs. In general, we can measure the system entropy from the system characteristics of a
system without measuring the system signal or input noise. For example, a low-pass filter, which is
a system characteristic, can be determined from its transfer function or system’s frequency response
without measuring its input/output signal. Hence, in this study, we will measure the system entropy
of SPDSs from the system’s characteristics. Actually, many real physical and biological systems are only
nonlinear, such as the large-scale systems [25–28], the multiple time-delay interconnected systems [29],
the tunnel diode circuit systems [30,31], and the single-link rigid robot systems [32]. Therefore, we will
also discuss the system entropy of nonlinear system as a special case in this paper.

However, because direct measurement of the system entropy of SPDSs in the spatio-temporal
domain using current methods is difficult, in this study, an indirect method for system entropy
measurement was developed through the minimization of its upper bound. That is, we first determined
the upper bound of the system entropy and then decreased it to the minimum possible value to achieve
the system entropy. For simplicity, we first measure the system entropy of linear stochastic partial
differential systems (LSPDSs) and then the system entropy of nonlinear stochastic partial differential
systems (NSPDSs) by solving a nonlinear Hamilton–Jacobi integral inequality (HJII)-constrained
optimization problem. We found that the intrinsic random fluctuation of SPDSs will increase the
system entropy.

To overcome the difficulty in solving the system entropy measurement problem due to the
complexity of the nonlinear HJII, a global linearization technique was employed to interpolate several
local LSPDSs to approximate a NSPDS; a finite difference scheme was employed to approximate a
partial differential operator with a finite difference operator at all grid points. Hence, the LSPDSs at all
grid points can be represented by a spatial stochastic state space system and the system entropy of
the LSPDSs can be measured by solving a linear matrix inequalities (LMIs)-constrained optimization
problem using the MATLAB LMI toolbox [12]. Next, the NSPDSs at all grid points can be represented
by an interpolation of several local linear spatial state space systems; therefore, the system entropy of
NSPDSs can be measured by solving the LMIs-constrained optimization problem.

Finally, based on the proposed systematic analysis and measurement of the system entropy of
SPDSs, two system entropy measurement simulation examples of heat transfer system and biochemical
system are given to illustrate the proposed system entropy measurement procedure of SPDSs.

2. General System Entropy of LSPDSs

For simplicity, we will first calculate the entropy of linear partial differential systems (LPDSs).
Then, the result will be extended to the measure of NSPDSs. Consider the following LPDS [15,16]:

Bypx, tq
Bt

“ κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq

zpx, tq “ Cypx, tq,
(1)

where x “ rx1 x2s
T
P U is the space variable, ypx, tq “ ry1px, tq, . . . , ynpx, tqsT P Rn is the state

variable, vpx, tq “ rv1px, tq, . . . , vlpx, tqsT P Rl is the random input signal, and z px, tq “ rz1 px, tq, . . .
zm px, tqsT P Rm is the output signal. x and t are the space and time variable, respectively. The space
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domain U is a two-dimensional bounded domain. The system coefficients are κ P Rnˆn, A P Rnˆn,
B P Rnˆl , and C P Rmˆn. The Laplace (diffusion) operator ∇2 is defined as follows [15,16]:

∇2ypx, tq :“
2
ř

k“1

B2ypx, tq
Bxk

2

B2ypx, tq
Bxk

2 :“
„

B2

Bxk
2 y1px, tq, ...,

B2

Bxk
2 ynpx, tq

T

P Rn.
(2)

Suppose that the initial value ypx, 0q :“ y0pxq. For simplicity, the boundary condition is usually
given by the Dirichlet boundary condition, i.e., ypx, tq “ a constant on B U, or by the Neumann
boundary condition ∇ypx, tq ¨

á
n “ 0 on BU, where

á
n is a normal vector to the boundary BU [15,16].

The randomness of the random input signal is measured by the average energy in the domain U and
the entropy of the random input signal is measured by the logarithm of the input signal randomness
as follows [1,2,24]:

´ log
1

U ¨ t f
E
"
ż

U

ż t f

0
vTpx, tqvpx, tqdtdx

*

,

where E denotes the expectation operator and t f denotes the period of the random input signal, i.e.,
vpx, tq P U ˆ r0, t f s. Similarly, the entropy of the random output signal zpx, tq is obtained as:

´ log
1

U ¨ t f
E
"
ż

U

ż t f

0
zTpx, tqzpx, tqdtdx

*

.

In this situation, the system entropy S of the LPDS given in Equation (1) can be obtained from the
differential entropy between the output signal and input signal, i.e., input signal entropy minus output
signal entropy, or the net signal entropy of the LPDS [33]:

S “ log
1

U ¨ t f
E
"
ż

U

ż t f

0
zTpx, tqzpx, tqdtdx

*

´ log
1

U ¨ t f
E
"
ż

U

ż t f

0
vTpx, tqvpx, tqdtdx

*

“ log
E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

E
!

ş

U
şt f

0 vTpx, tqvpx, tqdtdx
) “ ´log

E
!

ş

U
şt f

0 vTpx, tqvpx, tqdtdx
)

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
) .

(3)

Let us denote the system randomness as the following normalized randomness:

S0 “
E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

E
!

ş

U
şt f

0 vTpx, tqvpx, tqdtdx
) , if y0pxq “ 0. (4)

Then, the system entropy S “ logS0. That is, if system randomness can be obtained, the system
entropy can be determined from the logarithm of the system randomness. Therefore, our major work
of measuring the entropy of the LPDS given in Equation (1) first involves the calculation of the system
randomness S0 given in Equation (4). However, it is not easy to directly calculate the normalized
randomness S0 in Equation (4) in the spatio-temporal domain. Suppose there exists an upper bound of
S0 as follows:

S0 “
E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

E
!

ş

U
şt f

0 vTpx, tqvpx, tqdtdx
) ď S0, (5)
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and we will determine the condition with that S0 has an upper bound S0. Then, we will decrease the
value of the upper bound S0 as small as possible to approach S0, and then obtain the system entropy
using S “ logS0.

Remark 1. (i) From the system entropy of LPDS Equation (1), if the randomness of the input signal vpx, tq is
larger than the randomness of the output signal zpx, tq, i.e.,:

E
"
ż

U

ż t f

0
vTpx, tqvpx, tqdtdx

*

ą E
"
ż

U

ż t f

0
zTpx, tqzpx, tqdtdx

*

, (6)

then S0 ă 1 and S ă 0. A negative system entropy implies that the system can absorb external energy to increase
the structure order of the system. All the biological systems are of this type, and according to Schrödinger’s
viewpoint, biological systems consume negative entropy, leading to construction and maintenance of their system
structures, i.e., life can access negative entropy to produce high structural order. (ii) If the randomness of the
output signal zpx, tq is larger than the randomness of the input signal vpx, tq, i.e.,:

E
"
ż

U

ż t f

0
vTpx, tqvpx, tqdtdx

*

ă E
"
ż

U

ż t f

0
zTpx, tqzpx, tqdtdx

*

, (7)

then S0 ą 1 and S ą 0. A positive system entropy indicates that the system structure disorder increases and the
system can disperse entropy to the environment. (iii) If the randomness of the input signal vpx, tq is equal to the
randomness of the system signal zpx, tq, i.e.,:

E
"
ż

U

ż t f

0
vTpx, tqvpx, tqdtdx

*

“ E
"
ż

U

ż t f

0
zTpx, tqzpx, tqdtdx

*

, (8)

then S0 “ 1 and S “ 0. In this case, the system structure order is maintained constantly with zero system
entropy. (iv) If the initial value y0pxq ‰ 0, then the system randomness S0 in Equation (4) should be modified as:

S0 “
E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

ş

U
V py0pxqq

S
dx` E

!

ş

U
şt f

0 vTpx, tqvpx, tqdtdx
)

ď S0 (9)

for a positive Lyapunov function Vpypx, tqq ą 0, and the randomness due to the initial condition y0pxq ‰ 0
should be considered a type of input randomness.

Based on the upper bound S0 of the system randomness as given in Equation (5), we get the
following result:

Proposition 1. For the LPDS in Equation (1), if the following HJII holds for a Lyapunov functio Vpypx, tqq ą 0
and with Vp0q “ 0:

ş

U

«

yTpx, tqCTCypx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Aypx, tq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
BBT

ˆ

BV pypx, tqq
By

˙

ff

dx ă 0,
(10)

then the system randomness S0 has an upper bound S0 as given in Equation (5).

Proof. See Appendix A.
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Since S0 is the upper bound of S0, it can be calculated by solving the following HJII-constrained
optimization problem:

S0 “ min
Vpypx,tqqą0

S0

subject to the HJII in Equation (10).
(11)

Consequently, we can calculate the system entropy using S “ logS0.

Remark 2. If the system in Equation (1) is free of a partial differential term ∇2ypx, tq, i.e., in the case of the
following conventional linear dynamic system:

dyptq
dt

“ Ayptq ` Bvptq

zptq “ Cyptq,
(12)

then the system entropy of linear dynamic system in Equation (12) is written as [24]:

S “ log
E
!

şt f
0 zTptqzptqdt

)

E
!

şt f
0 vTptqvptqdt

) . (13)

Therefore, the result of Proposition 1 is modified as the following corollary.

Corollary 1. For the linear dynamic system in Equation (12), if the following Riccati-like inequality holds for a
positive definite symmetric P ą 0:

PA` AT P` CTC`
1
S0

PBBT P ă 0, (14)

or equivalently (by the Schur complement [12]):
«

PA` AT P` CTC PB
BT P ´S0 I

ff

ă 0, (15)

then the system randomness S0 of the linear dynamic system in Equation (12) has an upper bound S0.

Proof. See Appendix B.

Thus, the randomness S0 of the linear dynamic system in Equation (12) is obtained by solving the
following LMI-constrained optimization problem:

S0 “ min
Pą0

S0

subject to the LMI in Equation (15).
(16)

Hence, the system entropy of the linear dynamic system in Equation (12) can be calculated using
S “ logS0. The LMI-constrained optimization problem given in Equation (16) is easily solved by
decreasing S0 until no positive definite solution P exists for the LMI given in Equation (15), which can
be solved using the MATLAB LMI toolbox [12]. Substituting S0 into S0 in Equation (14), we get:

CTC`
1
S0

PBBT P ă ´pPA` AT Pq. (17)

The right hand side of Equation (17) can be considered as an indication of the system stability. If
the eigenvalues of A are more negative (more stable), i.e., the right hand side is more large, then S0 and
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the system entropy S, are smaller. Obviously, the system entropy is inversely related to the stability of
the dynamic system. If A is fixed, then the increase in input signal coupling B may increase S0 and S.

Remark 3. If the LPDS in Equation (1) suffers from the following intrinsic random fluctuation:

Bypx, tq
Bt

“ κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq ` Hypx, tqwpx, tq

zpx, tq “ Cypx, tq,
(18)

where the constant matrix H P Rnˆn denotes the deterministic part of the parametric variation of system matrix
A and wpx, tq P R is a stationary spatio-temporal white noise to denote the random source of intrinsic parametric
variation [34,35], then the LSPDS in Equation (18) can be rewritten in the following Itô differential form:

Bypx, tq “
`

κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq
˘

Bt` Hypx, tqBWpx, tq
zpx, tq “ Cypx, tq,

(19)

where BWpx, tq “ wpx, tqBt with Wpx, tq being the Wiener process or Brownian motion in a zero mean Gaussian
random field with unit variance at each location x [15].

For the LSPDS in Equation (19), we get the following result.

Proposition 2. For the LSPDS in Equation (19), if the following HJII holds for a Lyapunov function
Vpypx, tqq ą 0 with Vp0q “ 0:

E

#

ş

U

«

yTpx, tqCTCypx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Aypx, tq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
BBT

ˆ

BV pypx, tqq
By

˙

`
1
2

yTpx, tqHT
ˆ

B2V pypx, tqq
By2

˙T

Hypx, tq

ff

dx

+

ă 0,

(20)

then the system randomness S0has an upper bound S0 as given in (5).

Proof. See Appendix C.

Since S0 is the upper bound of S0, it could be calculated by solving the following HJII-constrained
optimization problem:

S0 “ min
Vpypx,tqqą0

S0

subject to the HJII in Equation (20).
(21)

Hence, the system entropy of LSPDS in Equations (18) or (19) could be obtained using S “ logS0,
where S0 is the system randomness solved from Equations (21).

Remark 4. Comparing the HJII in Equation (20) with the HJII in Equation (10) and replacing S0 with S0,
we find that Equation (20) has an extra positive term p1{2qyTpx, tqHTpB2Vpypx, tqq{By2q

T Hypx, tq due to the
intrinsic random parametric fluctuation given in Equation (18). To maintain the left-hand side of Equation (20)
as negative, the system randomness S0 in Equation (20) must be larger than the randomness S0 in Equation (10),
i.e., the system entropy of the LPDS in Equations (18) or (19) is larger than that of the LPDS in Equation (1)
because the intrinsic random parametric variation Hpypx, tqqwpx, tq in Equation (18) can increase the system
randomness and the system entropy.
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Remark 5. If the LSPDS in Equation (18) is free of the partial differential term ∇2ypx, tq, i.e., in the case of the
conventional linear dynamic system:

dyptq
dt

“ Ayptq ` Bvptq ` Hyptqwptq

zptq “ Cyptq,
(22)

or the following Itô form:
dyptq “ pAyptq ` Bvptqq dt` HyptqdWptq
zptq “ Cyptq,

(23)

then we modify Proposition 2 as the following corollary.

Corollary 2. For the linear dynamic system in Equations (22) or (23), if the following Riccati-like inequality
holds for a positive definite symmetric P “ PT ą 0:

PA` AT P` CTC` HT PH `
1
S0

PBBT P ă 0 (24)

or equivalently:
«

PA` AT P` CTC` HT PH PB
BT P ´S0 I

ff

ă 0, (25)

then the system randomness S0 of the linear dynamic system in Equations (22) or (23) has a upper bound S0.

Proof. See Appendix D.

Therefore, the system randomness S0 of the linear stochastic system in Equations (22) or (23) can
be obtained by solving the following LMI-constrained optimization problem:

S0 “ min
Pą0

S0

subject to the LMI in Equation (25),
(26)

Hence, the system entropy Equation (13) of the linear stochastic system in Equations (22) or
(23) can be calculated using S “ logS0, where the system randomness S0 is the optimal solution of
Equation (26).

By substituting S0 calculated by Equation (26) into Equation (24), we can get:

CTC` HT PH `
1
S0

PBBT P ă ´
´

PA` AT P
¯

. (27)

Remark 6. Comparing Equation (27) with Equation (17), it can be seen that the
term HT PH due to the intrinsic random parametric fluctuation Hyptqwptq in Equation
(22) can increase the system randomness S0 which consequently increases the system
entropy S.

3. The System Entropy Measurement of LSPDSs via a Semi-Discretization Finite
Difference Scheme

Even though the entropy of the linear systems in Equations (12) and (22) can be easily measured
by solving the optimization problem in Equations (16) and (26), respectively, using the LMI toolbox in
MATLAB, it is still not easy to solve the HJII-constraint optimization problem in Equations (11) and
(21) for the system entropy of the LPDS in Equation (1) and the LSPDS in Equation (18), respectively.
To simplify this system entropy problem, the main method is obtaining a more suitable spatial state
space model to represent the LPDSs. For this purpose, the finite difference method and the Kronecker
product are used together in this study. The finite difference method is employed to approximate the
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partial differential term ∇2ypx, tq in Equation (1) in order to simplify the measurement procedure of
entropy [14,16].

Consider a typical mesh grid as shown in Figure 1. The state variable ypx, tq is represented
by yk,lptq P Rn at the grid node xk,lpx1 “ k∆x, x2 “ l∆xq, where k “ 1, . . . N1 and l “ 1, . . . N2, i.e.,

ypx, tq
ˇ

ˇ

ˇx“xk,l “ yk,lptq at the grid point xk,l , and the finite difference approximation scheme for the
partial differential operator can be written as follows [14,16]:

κ∇2ypx, tq » κ
yk`1,lptq ` yk´1,lptq ´ 2yk,lptq

∆2
x

` κ
yk,l`1ptq ` yk,l´1ptq ´ 2yk,lptq

∆2
x

. (28)

.
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Based on the finite difference approximation in Equation (28), the LPDS in Equation (1) can be
represented by the following finite difference system:

d
dt

yk,lptq» κ
1

∆2
x
ryk`1,lptq ` yk´1,lptq ` yk,l`1ptq ` yk,l´1ptq ´ 4yk,lptqs

`Ayk,lptq ` Bvk,lptq, k “ 1, . . . N1, l “ 1, . . . N2,
(29)

where yk,lptq “ ypx, tq
ˇ

ˇ

ˇx“xk,l , vk,lptq “ vpx, tq
ˇ

ˇ

ˇ

x“xk,l
.

Let us denote:

Tk,lyk,lptq “
1

∆2
x
ryk`1,lptq ` yk´1,lptq ` yk,l`1ptq ` yk,l´1ptq ´ 4yk,lptqs, (30)

then we get:
d
dt

yk,lptq » κTk,lyk,lptq ` Ayk,lptq ` Bvk,lptq

zk,lptq “ Cyk,lptq.
(31)

For the simplification of entropy measurement for the LPDS in Equation (1), we will define a
spatial state vector yk,lptq P Rn at all grid node in Figure 1. For the Dirichlet boundary conditions [16],
the values of yk,lptq at the boundary are fixed. For example, ypx, tq “ 0, where x P BU. We have
yk,lptq “ 0 at k “ 0, N1 ` 1 or l “ 0, N2 ` 1. Therefore, the spatial state vector yptq P RnN for state
variables at all grid nodes is defined as follows:

yptq “ ryT
1,1ptq, ..., yT

k,1ptq, ..., yT
N1,1ptq, ..., yT

k,lptq, ..., yT
1,N2

ptq, ..., yT
k,N2
ptq, ..., yT

N1,N2
ptqs, (32)

where N :“ N1 ˆ N2. Note that N is the dimension of the vector yk,lptq for each grid node and
N1 ˆ N2 is the number of grid nodes. For example, let N1 “ 2 and N2 “ 2, then we have
yptq “ ryT

1,1ptq, yT
1,2ptq,y

T
2,1ptq, yT

2,2ptqs
T P R4n. To simplify the index of the node yk,lptq P Rn in the spatial
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state vector yptq P RnN , we will denote the symbol yjptq P Rn to replace yk,lptq. Note that the index j is
from 1 to N, i.e.,:

y1ptq :“ y1,1ptq, y2ptq :“ y2,1ptq, ..., yjptq :“ yk,lptq, ..., yNptq :“ yN1,N2ptq,

where j “ pl ´ 1qN1 ` k in Equation (32). Thus, the linear difference model of two indices in
Equation (31) could be represented with only one index as follows:

d
dt

yjptq “ κTjyjptq ` Ayjptq ` Bvjptq, j “ 1, 2, ..., N

zjptq “ Cyjptq,
(33)

where vjptq “ vk,lptqwith j “ pl ´ 1qN1 ` k and Tj is defined as follows:

Tjy ptq “
1

∆2
x
rOn...On In On...On In ´ 4In In On...On In On...Ons

Position 1 j´ N1 j´ 1 j j` 1 j` N1 N1N2,
(34)

where On and IN denote the nˆ n zero matrix and N ˆ N identity matrix, respectively.
We will collect all states yjptq of the grid nodes given in Equation (33) to the spatial state vector

given in Equation (32). The Kronecker product can be used to simplify the representation. Using the
Kronecker product, the systems at all grid nodes given in Equation (33) can be represented by the
following spatial state space system (i.e., the linear dynamic systems of Equation (33) at all grid points
within domain U in Figure 1 are represented by a spatial state space system [14]):

dyptq
dt

“ trIN b κsT` rIN b Asu yptq ` rIN b Bsvptq

zptq “ rIN b Csyptq,
(35)

where T “ rTT
1 . . . TT

Ns P R
nNˆ nN , vptq “ pv1ptq . . . vNptqq

T
P RlN , and IN b κ denotes the Kronecker

product between IN and κ.

Definition 1. [17,36]: Let M P Raˆ b, N P Rcˆd. Then the Kronecker product of M and N is defined as
the following matrix:

Mb N “

»

—

–

m11N ¨ ¨ ¨ m1bN
...

. . .
...

ma1N ¨ ¨ ¨ mabN

fi

ffi

fl

P Racˆbd.

Remark 7. Since the spatial state vector yptq in Equation (32) is used to represent ypx, tq at all grid points,

in this situation, E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

, E
 ş

U Vpy0pxqqdx
(

, and E
"

ş

U
şt f

0 v
T
px, tqvpx, tq dtdxu in

the measurement of system randomness in Equations (5) or (9) could be modified by the temporal forms
E
!

şt f
0 zTptqzptq∆2

xdt
)

, E
 

Vpyp0qq∆2
x
(

, and E
!

şt f
0 vTptqvptq∆2

xdt
)

, respectively, for the spatial state space
system in (35), where the Lyapunov function Vpyptqq is related to the Lyapunov function Vpypx, tqq as
Vpyptqq “

řN
j“1 Vpyjptqq. Therefore, for the spatial state space system in Equation (35), the system randomness

in Equations (5) or (9) is modified as follows:

S0 “
E
!

şt f
0 zTptqzptqdt

)

E
!

şt f
0 vTptqvptqdt

) ď S0 (36)
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or:

S0 ď
E
!

şt f
0 zTptqzptqdt

)

E
"

V pyp0qq
S

`
şt f

0 vTptqvptqdt
* ď S0, for yp0q ‰ 0. (37)

Hence, our entropy measurement problem of the LPDS in Equation (1) becomes the measurement of the
entropy of the spatial state system Equation (35), as given below.

Proposition 3. For the linear spatial state space system in Equation (35), if the following Riccati-like inequality
holds for a positive definite matrix P ą 0:

PA` AT P` CTC` I `
1
S0

PBBT P ă 0 (38)

or equivalently:
«

PA` AT P` CTC PB
BT P ´S0 I

ff

ă 0, (39)

where A “ rIN b κsT` rIN b As, B “ rIN b Bs, C “ rIN bCs , then the system randomness S0 in Equations
(36) or (37) of linear spatial state space system in Equation (35) has the upper bound S0.

Proof. The proof is similar to the proof of Corollary 1 in Appendix B and can be obtained by replacing
A, B, C, and P with A, B, C, and P, respectively.

Therefore, the randomness S0 of the linear spatial state space system in Equation (35) can be
obtained by solving the following LMI-constrained optimization problem:

S0 “ min
Pą0

S0

subject to the LMI in Equation (39).
(40)

Hence, the system entropy S of the linear spatial state space system in Equation (33) can be
calculated using S “ logS0.

Remark 8. (i) The Riccati-like inequality in Equation (38) or the LMI in Equation (39) is an approximation of
the HJII in Equation (10) with the finite difference scheme given in Equation (28). If the finite difference, shown
in Equation (28), ∆x Ñ 0 , then S0 in Equation (40) will approach S0 in Equation (11). (ii) Substituting S0 into
Equation (38), we get:

CTC`
1
S0

PBBT P ă ´pPA` AT Pq. (41)

If the eigenvalues of A are more negative (more stable), the randomness S0 as well as the entropy S is
smaller. Similarly, the LSPDS in Equation (18) can be approximated by the following stochastic spatial state
space system via finite difference scheme [14]:

dyptq “ trIN b κsTyptqdt` rIN b Asyptqdtu ` rIN b Bsvptq ` rIN b Hsyptq ˝ dW
zptq “ rIN b Csyptq,

(42)

where dW “ rdW1ptq . . . dWNptqs P RnN , and the Hadamard product of matrices (or vectors) X “ rXijsmˆ n
and Y “ rYijsmˆn of the same size is the entry-wise product denoted as X ˝Y “ rXijYijsmˆn.

Then we can get the following result.
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Corollary 3. For the linear stochastic spatial state space system Equation (42), if the following Riccati-like
inequality holds for a positive definite symmetric P ą 0:

PA` AT P` CTC` HT PH `
1
S0

PBBT P ă 0, (43)

or equivalently, the following LMI has a positive definite symmetric solution P ą 0:

«

PA` AT P` CTC` HT PH PB
BT P ´S0 I

ff

ă 0, (44)

then the system randomness S0 of the stochastic state space system in Equation (42) has an upper bound S0,
where H “ rIN b Hs.

Proof. The proof is similar to the proof of Corollary 2 in Appendix D.

Therefore, the system randomness S0 of the linear stochastic state space system Equation (42) can
be obtained by solving the following LMI-constrained optimization problem:

S0 “ min
Pą0

S0

subject to the LMI in (44),
(45)

and hence the system entropy S of the stochastic spatial state space system in Equation (42) can be
obtained using S “ logS0. Substituting S0 into (43), we get:

CTC` HT PH `
1
S0

PBBT P ă ´pPA` AT Pq. (46)

Remark 9. Comparing Equation (41) with Equation (46), because of the term HT PH from the intrinsic random
fluctuation, it can be seen that the LSPDS with random fluctuations will lead to a larger S0 and a larger system
entropy S.

4. System Entropy Measurement of NSPDSs

Most partial dynamic systems are nonlinear; hence, the measurement of the system entropy of
nonlinear partial differential systems (NPDSs) will be discussed in this section. Consider the following
NPDSs in the domain U:

Bypx, tq
Bt

“ κ pypx, tqq∇2ypx, tq ` f pypx, tqq ` g pypx, tqq vpx, tq

zpx, tq “ C pypx, tqq ,
(47)

where f pypx, tqq P Rn, Cpypx, tqq P Rmˆ n and gpypx, tqq P Rnˆl are the nonlinear functions with
f p0q “ 0, Cp0q “ 0, and gp0q “ 0, respectively. The nonlinear diffusion functions κpypx, tqq P Rnˆn

satisfy κpypx, tqq ě 0, and κp0q “ 0. If the equilibrium point of interest is not at the origin, for the
convenience of analysis, the origin of the NPDS must be shifted to the equilibrium point (shifted to
zero). The initial and boundary conditions are the same as the LPDS in Equation (1); then, we get the
following result.
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Proposition 4. For the NPDS in Equation (47), if the following HJII holds for a Lyapunov function
Vpypx, tqq ą 0 with Vp0q “ 0:

E

#

ş

U
şt f

0

«

zTpx, tqzpx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ pypx, tqq∇2ypx, tq ` f pypx, tqq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
g pypx, tqq gT pypx, tqq

ˆ

BV pypx, tqq
By

˙

ff

dtdx

+

ă 0,
(48)

then the system randomness S0 of the NPDS in Equation (47) has an upper bound S0 as given in Equation (5).

Proof. See Appendix E.

Based on the condition of upper bound S0 given in Equation (48), the system randomness S0

could be obtained by solving the following HJII-constrained optimization problem:

S0 “ min
Vpypx,tqqą0

S0

subject to the HJII in Equation (48).
(49)

Hence, the system entropy of NPDS in Equation (47) can be obtained using S “ logS0. If the
NPDS in Equation (47) is free of the diffusion operator ∇2ypx, tq as with the following conventional
nonlinear dynamic system:

dyptq
dt

“ f pyptqq ` g pyptqq vptq

zptq “ C pyptqq yptq,
(50)

then the result of Proposition 4 is reduced to the following corollary.

Corollary 4. For the nonlinear dynamic system Equation (50), if the following HJII holds for a positive Lyapunov
function Vpyptqq ą 0 with Vp0q “ 0:

E

#

şt f
0

«

zTptqzptq `
ˆ

BV pyptqq
By

˙T
p f pyptqqq

`
1

4S0

ˆ

BV pyptqq
By

˙T
g pyptqq gT pyptqq

ˆ

BV pyptqq
By

˙

ff

dt

+

ă 0,
(51)

then the system randomness S0 of the nonlinear dynamic system in Equation (50) has an upper bound S0

Proof. The proof is similar to that of Proposition 4 without consideration of the diffusion operator
∇2ypx, tq and spatial integration on the domain U.

Hence, the system randomness of the nonlinear dynamic system in Equation (50) can be obtained
by solving the following HJII-constrained optimization problem:

S0 “ min
Vpyptqqą0

S0

subject to the HJII in Equation (51),
(52)

and the system entropy is obtained using S “ logS0. If the NPDS in Equation (47) suffers from random
intrinsic fluctuations as with the NSPDSs:

Bypx, tq
Bt

“ κ pypx, tqq∇2ypx, tq ` f pypx, tqq ` g pypx, tqq vpx, tq

`H pypx, tqq ypx, tqwpx, tq

zpx, tq “C pypx, tqq ypx, tq,

(53)
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where Hpypx, tqqypx, tqwpx, tq denotes the random intrinsic fluctuation, then the NSPDS in Equation (53)
can be written in the following Itô form:

Bypx, tq“
´

κ pypx, tqq∇2ypx, tq ` f pypx, tqq ` g pypx, tqq vpx, tq
¯

Bt

`H pypx, tqq ypx, tqBWpx, tq

zpx, tq“ C pypx, tqq ypx, tq.

(54)

Therefore, we can get the following result:

Proposition 5. For the NSPDS in Equations (53) or (54), if the following HJII holds for a Lyapunov function
Vpypx, tqq ą 0 with Vp0q “ 0:

E

#

şt f
0

«

zTpx, tqzpx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ pypx, tqq∇2ypx, tq ` f pypx, tqq
˘

`
1
2

yTpx, tqHT pypx, tqq
ˆ

B2V pypx, tqq
B2y

˙T

H pypx, tqq ypx, tq

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
g pypx, tqq gT pypx, tqq

ˆ

BV pypx, tqq
By

˙

ff

dt

+

ă 0,

(55)

then the system randomness S0 of the NSPD S in Equations (53) or (54) can be obtained by solving the following
HJII-constrained optimization problem:

S0 “ min
Vpypx,tqqą0

S0

subject to the HJII in Equation (55).
(56)

Proof. See Appendix F.

Remark 10. By comparing the HJII in Equation (48) with the HJII in Equation (55), due to
the extra term p1{2qyTpx, tqHTpypx, tqqpB2Vpypx, tqq{By2q

T Hpypx, tqqypx, tq from the random intrinsic
fluctuation Hpypx, tqqypx, tqwpx, tq in Equation (53), it can be seen that the system randomness of the
NSPDS in Equation (53) must be larger than the system randomness of the NPDS in Equation (47).
Hence, the system entropy of the NSPDS in Equation (53) is larger than that of the NPDS in
Equation (47).

5. System Entropy Measurement of NSPDS via Global Linearization and Semi-Discretization
Finite Difference Scheme

In general, it is very difficult to solve the HJII in Equations (48) or (55) for the system entropy
measurement of the NPDS in Equation (47) or the NSPDS in Equation (53), respectively. In this study,
the global linearization technique and a finite difference scheme were employed to simplify the entropy
measurement of the NPDS in Equation (47) and NSPDS in Equation (53). Consider the following
global linearization of the NPDS in Equation (47), which is bounded by a polytope consisting of L
vertices [12,37]:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bκ py px, tqq
By

B f py px, tqq
By

Bg py px, tqq
By

BC py px, tqq
By

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P C0

¨

˚

˚

˚

˝

»

—

—

—

–

κ1

A1

B1

C1

fi

ffi

ffi

ffi

fl

¨ ¨ ¨

»

—

—

—

–

κi
Ai
Bi
Ci

fi

ffi

ffi

ffi

fl

¨ ¨ ¨

»

—

—

—

–

κL
AL
BL
CL

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

,@ypx, tq, (57)
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where C0 denotes the convex hull of a polytope with L vertices defined in Equation (57). Then, the
trajectories of ypx, tq for the NPDS in Equation (47) will belong to the convex combination of the
state trajectories of the following L linearized PDSs derived from the vertices of the polytope in
Equation (57):

Bypx, tq
Bt

“ κi∇2ypx, tq ` Aiypx, tq ` Bivpx, tq, i “ 1, 2, ..., L

zpx, tq “ Ciypx, tq.
(58)

From the global linearization theory [16,37], if Equation (57) holds, then every trajectory of the
NPDS in Equation (47) is a trajectory of a convex combination of L linearized PDSs in Equation (58), and
they can be represented by the convex combination of L linearized PDSs in Equation (58) as follows:

Bypx, tq
Bt

“
L
ř

i“1
αipyqrκi∇2ypx, tq ` Aiypx, tq ` Bivpx, tqs

zpx, tq “
L
ř

i“1
αipyqCiypx, tq,

(59)

where the interpolation functions are selected as αipyq “ p1{||yi ´ y||22q{p
řL

i“1 ||yi ´ y||22q and they
satisfy 0 ď αipyq ď 1 and

řL
i“1 αipyq “ 1. That is, the trajectory of the NPDS in Equation (47) can be

approximated by the trajectory of the interpolated local LPDS given in Equation (59).
Following the semi-discretization finite difference scheme in Equations (28)–(34), the spatial state

space system of the interpolated PDS in Equation (59) can be represented as follows:

dyptq
dt

“
L
ř

i“1
αipyq trIN b κisT` rIN b Aisu yptq ` rIN b Bisvptq

zptq “
L
ř

i“1
αipyqrIN b Cisyptq,

(60)

where yptq and vptq are defined in (35). That is, the NPDS in Equation (47) is interpolated through local
linearized PDSs in Equation (59) to approximate the NPDS in Equation (47) using global linearization
and semi-discretization finite difference scheme.

Remark 10. In fact, there are many interpolation schemes for approximating a nonlinear dynamic system with
several local linear dynamic systems such as Equation (60); for example, fuzzy interpolation and cubic spline
interpolation methods [13]. Then, we get the following result.

Proposition 6. For the linear dynamic systems in Equation (60), if the following Riccati-like inequalities hold
for a positive definite symmetric P ą 0:

PAi ` Ai
T P` CT

i Ci `
1
S0

PBiBi
T P ă 0, i, j “ 1, . . . L (61)

or equivalently:
«

PAi ` Ai
T P` CT

i Ci PBi

Bi
T P ´S0

ff

ă 0, i, j “ 1, ..., L, (62)

where Ai, Bi, and Ci are defined as Ai “ rIN b κisT ` rIN b Ais, Bi “ rIN b Bis, and Ci “ rIN b Cis,
respectively, then the system randomness S0 of the NPDSs in Equation (47) or the interpolated dynamic systems
in Equation (60) have an upper bound S0.

Proof. See Appendix G.
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Therefore, the system randomness S0 of the NPDSs in Equation (47) or the interpolated
dynamic systems in Equation (60) can be obtained by solving the following LMIs-constrained
optimization problem:

S0 “ min
Pą0

S0

subject to the LMI in Equation (62).
(63)

Hence, the system entropy S of the NPDSs in Equation (47) or the interpolated dynamic systems
in Equation (60) can be obtained using S “ logS0. By substituting S0 into the Riccati-like inequalities
in Equation (61), we can obtain:

CT
i Ci `

1
S0

PBiBi
T P ă ´pPAi ` Ai

T Pq. (64)

Obviously, if the eigenvalues of local system matrices Ai are more negative (more stable), the
randomness S0 is smaller and the corresponding system entropy S is also smaller, and vice versa.

The NSPDs given in Equation (54) can be approximated using the following global linearization
technique [12,37]:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bκ py px, tqq
By

B f py px, tqq
By

Bg py px, tqq
By

BH py px, tqq
By

BC py px, tqq
By

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P C0

¨

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

–

κ1

A1

B1

H1

C1

fi

ffi

ffi

ffi

ffi

ffi

fl

¨ ¨ ¨

»

—

—

—

—

—

–

κi
Ai
Bi
Hi
Ci

fi

ffi

ffi

ffi

ffi

ffi

fl

¨ ¨ ¨

»

—

—

—

—

—

–

κL
AL
BL
HL
CL

fi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‚

,@ypx, tq. (65)

Then, the NSPDs with the random intrinsic fluctuation given in Equation (53) can be approximated
by the following interpolated spatial state space system [14]:

dyptq
dt

“

L
ÿ

i“1

αipyq trIN b κisT` rIN b Aisu yptq ` rIN b Bisvptq

`rIN b Hisyptq ˝ dWptq

zptq “
L
ÿ

i“1

αipyqrIN b Cisyptq,

(66)

i.e., we could interpolate L local interpolated stochastic spatial state space systems to approximate the
NSPDs in Equation (53). Then, we get the following result.

Proposition 7. For the NSPDs in Equation (54) or the linear interpolated stochastic spatial state space systems
in (66), if the following Riccati-like inequalities hold for a positive definite symmetric P ą 0:

PAi ` Ai
T P` CT

i Ci ` Hi
T PHi `

1
S0

PBiBi
T P ă 0 i, j “ 1, ..., L (67)

or equivalently:
«

PAi ` Ai
T P` CT

i Ci ` Hi
T PHi PBi

Bi
T P ´S0 I

ff

ă 0, (68)
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where Hi “ rIN b His , then the system randomness S0 of the NSPDs in Equation (53) or the
interpolated stochastic systems in Equation (66) can be obtained by solving the following LMIs-constrained
optimization problem:

S0 “ min
Pą0

S0

subject to the LMIs in Equation p68q.
(69)

Then, the system entropy S of NSPD in Equation (53) or the interpolated stochastic systems in Equation (66)
could be obtained as S “ logS0.

Proof. See Appendix H.

Substituting S0 into in Equation (67), we get:

CT
i Ci ` HT

i PHi `
1
S0

PBiBi
T P ă ´pPAi ` Ai

T Pq. (70)

Comparing (64) with Equation (70), S0 of the NSPDS in Equation (53) is larger than S0 of the
NPDS in Equation (47), i.e., the random intrinsic fluctuation Hpypx, tqqypx, tqwpx, tqwill increase the
system entropy of the NSPDS. Based on the above analysis, the proposed system entropy measurement
procedure of NSPDSs is given as follows:

Step 1: Given the initial value of state variable, the number of finite difference grids, the vertices of
the global linearization, and the boundary condition.

Step 2: Construct the spatial state space system in Equation (60) by finite difference scheme.
Step 3: Construct the interpolated state space system Equation (66) by global linearization method.
Step 4: If the error between the original model Equation (54) and the approximated model

Equation (66) is too large, we could adjust the density of grid nodes of finite difference
scheme and the number of vertices of global linearization technique and return to Step 1.

Step 5: Solve the eigenvalue problem in Equation (69) to obtain P and S0, and then system entropy
S “ logS0.

6. Computational Example

Based on the aforementioned analyses for the system entropy of the considered PDSs, two
computational examples are given below for measuring the system entropy.

Example 1. Consider a heat transfer system in a 1 mˆ 0.5 m thin plate with a surrounding temperature
of 0 ˝C as follows [38]:

Bypx, tq
Bt

“ κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq

zpx, tq “ Cypx, tq,
(71)

ypx, 0q “ 20ˆ ep´10ˆ|0.5´x1|´0.6738q ˆ ep´30ˆ|0.5´2x2|q and y(x,t) = 0 ˝C, @ t, @ x on the boundary of
U = [0,1] ˆ [0,0.5]. Here, y(x,t) is the temperature function, location x is in meters, time t is in s,
κ “ 10´4 m2{s is the thermal diffusivity [4–7,9], and the term Aypx, tqwith A “ ´0.1 s´1 denotes the
thermal dissipation when the temperature of the plate is greater than the surrounding temperature,
i.e., ypx, tq ą 0 ˝C, or the thermal absorption when the temperature on the plate is less than the
surrounding temperature, i.e., ypx, tq ă 0 ˝C. The output coupling C “ 1. Bvpx, tq is the environmental
thermal fluctuation input with B “ 0.1. We can estimate the system entropy of the heat transfer
system in Equation (71). Based on Proposition 3 and the LMI-constrained optimization problem
Equation (40), we can calculate the system entropy of the heat transfer system in Equation (71) as
S “ logS0 “ logp0.0046q “ ´2.3372. In this calculation of the system entropy, the grid spacing ∆x of
the finite difference scheme was chosen as 0.125m such that there are N “ 7ˆ 3 “ 21 interior grid
points and 24 boundary points in U. The temperature distributions ypx, tq of the heat transfer system
in Equation (71) at t “ 1, 10, 30 and 50 s are shown in Figure 2 with vpx, tq“ 30sinptq. Due to the
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diffusion term κ∇2ypx, tq, the heat temperature of transfer system Equation (71) will be uniformly
distributed gradually. Even if the thin plate has initial value (heat source) or some other influences like
input signal and intrinsic random fluctuation, the temperature of the thin plate will gradually achieve
a uniform distribution to increase the system entropy. This phenomenon can be seen in Figures 2–5.
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Figure 2. The temperature distribution ypx, tq of the heat transfer system given in Equation (71) at t “ 1,
10, 30 and 50 s. Due to the diffusion term κ∇2ypx, tq, the temperature of heat system will be uniformly
distributed gradually to increase the system entropy.
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Figure 3. The temperature distribution ypx, tq of heat transfer system in Equation (72) at t “ 1, 10,
30 and 50 s. Obviously, the temperature distribution of stochastic heat transfer system in Equation
(72) is with more random fluctuations and with more system entropy than the heat transfer system
in Equation (71). The temperature distribution is also uniformly distributed gradually to increase the
system entropy as time goes on. In general, the temperature in Figure 3 is more random than Figure 2,
i.e., with more system randomness and entropy.
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Suppose that the heat transfer system in Equation (71) suffers from the following random
intrinsic fluctuation:

Bypx, tq
Bt

“ κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq ` Hypx, tqwpx, tq

zpx, tq “ Cypx, tq,
(72)

where the term Hypx, tqwpx, tq with H “ 0.02 is due to the random parameter variation of the term
Ay px, tq. Then, the temperature distributions ypx, tq of the heat transfer system in Equation (72) at t “ 1,
10, 30 and 50 s are shown in Figure 3. Based on the Corollary 3 and the LMI-constrained optimization
problem in Equation (45), we can calculate the system entropy of the stochastic heat transfer system
in Equation (72) as S “ logS0 “ logp0.0339q “ ´1.4698. Obviously, it can be seen that the system
entropy of the stochastic heat transfer system in Equation (72) is larger than the heat transfer system in
Equation (71) without intrinsic random fluctuation.
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Figure 4. (a) Spatial-time profiles of the real biochemical system in Equation (73); (b) Spatial-time
profiles of the approximated system in Equation (60) based on the finite difference scheme and global
linearization technique; (c) The error between the real biochemical system in Equation (73) and the
approximated system in Equation (60). Obviously, the approximated system based on finite difference
scheme and global linearization method can approximate the biochemical enzyme system quite well.

Example 2. A biochemical enzyme system is used to describe the concentration distribution of the
substrate in a biomembrane. For the enzyme system, the thickness ` of the artificial biomembrane is
1 µm. The concentration of the substrate is uniformly distributed inside the artificial biomembrane.
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Since the biomembrane is immersed in the substrate solution, the reference axis is chosen to be
perpendicular to the biomembrane. The biochemical system can be formulated as follows [13]:

Bypx, tq
Bt

“ κ pypx, tqq∇2ypx, tq ´VM
ypx, tq

KM ` ypx, tq ` y2px, tq{KS

`g pypx, tqq vpx, tq

zpx, tq “Cypx, tq,

(73)

where ypx, tq is the concentration of the substrate in the biomembrane, κ is the substrate diffusion
coefficient, VM is the maximum activity in one unit of the biomembrane, KM is the Michaelis constant,
and KS is the substrate inhibition constant. The parameters of the biochemical enzyme system are
given by κpypx, tqq “ eypx,tq, VM “ 0.5, KM “ 1, KS “ 1 and the output coupling C “ 1. Note that the
equilibrium point in Example 2 is at zero. The concentration of the initial value of the substrate is given
by y0pxq “ 0.3sinpπxq. The boundary conditions used to restrict the concentration are zero at x “ 0
and x “ 1, i.e., yp0, tq “ 0, yp1, tq “ 0. A more detailed discussion about the enzyme can be found
in [13]. Suppose that the biochemical enzyme system is under the effect of an external signal vpx, tq.
For the convenience of computation, the external signal vptq is assumed as a zero mean Gaussian noise
with a unit variance. The influence function of external signal is defined as gpypx, tqq “ 0.5ypx, tq at
x “ 4{9, 5{9, and 6{9 (µm). Based on the global linearization in Equation (57), we get A1 ´ A3 and
B1 ´ B3, as shown in detail in Appendix I. The concentration distributions ypx, tq of the real system
and approximated system are given in Figure 4 with ∆x “ 0.125, i.e., yiptq “ ry1ptq, y2ptq, ..., y9ptqs “
ry1p0, tq, y2p0.125, tq, y3p0.375, tq, y4p0.5, tq, y5p0.625, tq, y6p0.75, tq, y7p0.875, tq, y8p0.125, tq, y9p1, tqs.
Clearly, the approximated system based on the global linearization technique and finite difference
scheme efficiently approach the nonlinear function. Based on Proposition 6 and the LMIs-constrained
optimization given in Equation (63), we can obtain P as shown in detail in Appendix J and calculate the
system entropy of the enzyme system in Equation (73) as S “ logS0 “ logp7.6990ˆ 10´7q “ ´6.1136.

Therefore, it is clear that the approximated system in Equation (60) can efficiently approximate
biochemical enzyme system in Equation (73). In this simulation, ∆x “ 0.125. Suppose that the
biochemical system in Equation (73) suffers from the following random intrinsic fluctuation:

Bypx, tq
Bt

“κ pypx, tqq∇2ypx, tq ´VM
ypx, tq

KM ` ypx, tq ` y2px, tq{KS

`g pypx, tqq vpx, tq ` H pypx, tqq ypx, tqwpx, tq

zpx, tq “Cypx, tq,

(74)

where the term Hpypx, tqqypx, tqwpx, tqwith Hpypx, tqq “ ypx, tq is the random parameter variation from
the term VMypx, tq{pKM ` ypx, tq ` y2px, tq{KSq. Based on the global linearization in Equation (65), we
can get H1´H3 as shown in detail in Appendix K. Based on the Proposition 7 and the LMIs-constrained
optimization given in Equation (69), we can solve P as shown in detail in Appendix L and calculate the
system entropy of the enzyme system in Equation (74) as S “ logS0 “ logp1.3177ˆ 10´6q “ ´5.8802.

Clearly, because of the intrinsic random parameter fluctuation, the system entropy of the stochastic
enzyme system given in Equation (74) is larger than that of the enzyme system given in Equation (73).

The computation complexities of the proposed LMI-based indirect entropy measurement method
is about Oprnpn` 1q{2q in solving LMIs, where n is the dimension of P, r is the number of global
interpolation points. We also calculate the elapsed time of the simulations examples by using
MATLAB. The computation times including the drawing of the corresponding figures to solve the LMI
constrained optimization problem are given as follows: in Example 1, the case of heat transfer system
in Equation (71) is 183.9 s; the case of heat transfer system with random fluctuation in Equation (72) is
184.6 s. In Example 2, the case of biochemical system in Equation (73) is 17.7 s, the case of biochemical
system with random fluctuation in Equation (74) is 18.6 s. The RAM of the computer is 4.00 GB,



Entropy 2016, 18, 99 20 of 30

the CPU we used is AMD A4-5000 CPU with Radeon(TM) HD Graphics, 1.50 GHz. The results are
reasonable. Because the dimension of grid nodes in Example 1 is 45ˆ 45 and the dimension of grid
nodes in Example 2 is 9ˆ 9, obviously, the computation time in Example 1 is much larger than in
Example 2. Further, the time spent of the system without the random fluctuation is slightly faster
than the system with the random fluctuation. The conventional algorithms of calculating entropy
have been applied in image processing, digital signal processing, and particle filters, like in [39–41].
The conventional algorithms for calculating entropy just can be used in linear discrete systems, but
in fact many systems are nonlinear and continuous. The indirect entropy measurement method we
proposed can deal with the nonlinear stochastic continuous systems. Though the study in [24] is
about the continuous nonlinear stochastic system, many physical systems are always modeled using
stochastic partial differential dynamic equation in the spatio-temporal domain. The indirect entropy
measurement method we proposed can be employed to solve the system entropy measurement in
nonlinear stochastic partial differential system problem.
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Figure 5. (a) Spatial-time profiles of the real biochemical system in Equation (74); (b) Spatial-time
profiles of the approximated system in Equation (66) based on the finite difference scheme and global
linearization technique; (c) The error between the real biochemical system in Equation (74) and the
approximated system in Equation (66). Obviously, the approximated system in Equation (66) could
approximate the real system in Equation (74) quite well.

7. Conclusions

In this study, the system entropy of stochastic partial differential systems (SPDSs) was introduced
as the difference between input signal entropy and output signal entropy and was found to be the
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logarithm of the output signal randomness-to-input signal randomness ratio. We found that the
system stability was inversely related to the system entropy and that intrinsic random fluctuation
could increase the system entropy. If the eigenvalues of the system matrices are further in the left-hand
side of the s-complex domain, then the SPDS has lower system entropy, and vice versa. If the output and
the input signal randomness values are equal and the system is independent of the initial value, then
the system entropy is zero. To estimate the system entropy of nonlinear stochastic partial differential
systems (NSPDSs), the global linearization technique and finite difference scheme were employed
to represent the NSPDS using the spatial state space system given in Equation (66). Therefore, the
system entropy measurement problem of NPDSs became the problem of solving the HJII-constrained
optimization problem given in Equation (55), which can be replaced by a simple LMIs-constrained
optimization problem given in Equation (69). Hence, using the LMI-toolbox of MATLAB, we could
easily calculated the system entropy of NSPDS. Finally, two examples were provided to illustrate the
measurement procedure of the system entropy and to confirm that the PDSs with intrinsic random
fluctuation possess greater system entropy.
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Appendixes

Lemma 1. [12]: For any matrices (or vectors) X, Y, and a symmetric matrix P “ PT ą 0 with appropriate
dimensions, we have:

XT PY`YT PX ď ξXT PX`
ˆ

1
ξ

˙

YT PY

for any positive constant ξ.

Lemma 2. [42]: Let Mi be any matrix with appropriate dimension and αipzq be the interpolation function for
the i th local system and P “ PT ą 0 . Then, we have:

˜

l
ÿ

i“1

αi pzqMi

¸

P

¨

˝

l
ÿ

j“1

αi pzqMj

˛

‚ď

l
ÿ

i“1

αi pzqMiPMi

With Lemma 2, the LMI-constrained optimization in Equations (62) or (68) can be
solved efficiently.

Appendix A.

Proof. of Proposition 1.

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

“ E
!

ş

U

”

V py0pxqq ´V
´

ypx, t f q
¯

`
şt f

0

ˆ

zTpx, tqzpx, tq `
BV pzpx, tqq

Bt

˙

dt


dx
*

.
(A1)

From the fact that Vpypx, t f qq ě 0, we have:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

ď E
 ş

U V py0pxqqdx `
ş

U
şt f

0
“

yTpx, tqCTCypx, tq

`

ˆ

BV pzpx, tqq
Bt

˙T
`

κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq
˘

ff

dtdx

+

.
(A2)
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From Lemma 1:
ˆ

BV pypx, tqq
By

˙T
Bvpx, tq

“
1
2

ˆ

BV pypx, tqq
By

˙T
Bvpx, tq `

1
2

vTpx, tqBT BV pypx, tqq
By

ď
1

4S0

ˆ

BV pypx, tqq
By

˙T
BBT BV pypx, tqq

By
` S0vTpx, tqvpx, tq.

(A3)

Substituting Equation (A3) into Equation (A2), we get:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

ď E
 ş

U rV py0pxqq

`
şt f

0

˜

yTpx, tqCTCypx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Aypx, tq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
BBT BV pypx, tqq

By
` S0vTpx, tqvpx, tq

¸

dt

ff

dx

+

.

(A4)

If the HJII in given Equation (10) holds, then the system randomness in Equation (9) holds.
If y0pxq “ 0 and Vpy0pxqq “ 0, then the HJII in Equation (10) will lead to the inequality in
Equation (5).

Appendix B.

Proof. Corollary 1

In the conventional linear dynamic system in Equation (12), which is independent on x, the HJII in
Equation (10) for the system randomness to have an upper bound S0 becomes the following inequality:

yTptqCTCyptq `
ˆ

BV pyptqq
By

˙T
Ayptq `

1
4S0

ˆ

BV pyptqq
By

˙T
BBT BV pyptqq

By
ă 0. (B1)

If we choose the Lyapunov function as Vpyptqq “ yTptqPyptq, then the HJII for the existence of the
upper bound S0 in (B1) becomes:

yTptqCTCyptq ` 2yTptqPAyptq `
1
S0

yTptqPBBT Pyptq ă 0 (B2)

or:

yTptq
ˆ

PA` AT P` CTC`
1
S0

PBBT P
˙

yptq ă 0. (B3)

Therefore, if the Riccati-like inequality in Equation (14) holds, then the inequality in Equation (B3)
also holds and the system randomness of the linear dynamic system in Equation (12) has an
upper bound S0.

Appendix C.

Proof. Proposition 2

For the LSPDS given in Equation (18), from the Itô formula [34,35], we get

BV pypx, tqq
Bt

“

ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Aypx, tq ` Bvpx, tq
˘

`Hypx, tqwpx, tq `
1
2

yTpx, tqHT B
2V pypx, tqq
By2 Hypx, tq.

(C1)
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In this situation, we will follow the proof procedure in Appendix A:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

“ E
!

ş

U

”

V py0pxqq ´V
´

ypx, t f q
¯

`E
şt f

0

ˆ

zTpx, tqzpx, tq `
BV pypx, tqq

Bt

˙

dt


dx
*

.
(C2)

From the fact that Vpypx, t f qq ě 0 and E tdWpx, tqu “ 0, substituting Equation (C1) into
Equation (C2), we get:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdxdt
)

ď E
 ş

U rV py0pxqq

`
şt f

0

˜

yTpx, tqCTCypx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Aypx, tq
˘

`

ˆ

BV pypx, tqq
By

˙T
Bvpx, tq `

1
2

yTpx, tqHT B
2V pypx, tqq
By2 Hypx, tq

¸

dtdx

+

.

(C3)

By using the inequality Equation (A3), we get:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdxdt
)

ď E
 ş

U rV py0pxqq

`
şt f

0

«

yTpx, tqCTCypx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ∇2ypx, tq ` Ay px, tq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
BBT BV pypx, tqq

By
` S0vTpx, tqvpx, tq

`
1
2

yTpx, tqHT B
2V pypx, tqq
By2 Hypx, tq



dt


dx
*

.

(C4)

Therefore, if the HJII given in Equation (20) holds, then the inequality of system randomness in
Equation (9) holds. If the initial condition y0pxq “ 0, then Vpy0pxqq “ 0, and the inequality of the
system randomness in Equation (5) holds.

Appendix D.

Proof. of Corollary 2

For the linear stochastic system in Equation (22), the HJII in Equation (20) for S0 with an upper
bound S0 becomes:

yTptqCTCyptq `
ˆ

BV pyptqq
By

˙T
Ayptq

`
1

4S0

ˆ

BV pyptqq
By

˙T
BBT BV pyptqq

By
`

1
2

yTptqHT B
2V pyptqq
By2 Hyptq ă 0.

(D1)

If we choose the Lyapunov function as Vpyptqq “ yTptqPyptq, then the condition Equation (D1) for
Vpyptqq “ yTptqPyptqwith an upper bound S0 becomes:

PA` AT P` CTC` HT PH `
1
S0

PBBT P ă 0.

Therefore, if the Riccati-like inequality in Equation (24) holds, then the system randomness S0 has
an upper bound S0.

Appendix E.

Proof. of Proposition 4.
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E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

“ E
!

ş

U

”

V py0pxqq ´V
´

ypx, t f q
¯

`
şt f

0

ˆ

zTpx, tqzpx, tq `
BV pypx, tqq

Bt

˙

dt


dx
*

.
(E1)

From the fact that

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdxdt
)

ď E
 ş

U V py0pxqqdx`
ş

U
şt f

0
“

zTpx, tqzpx, tq `
ˆ

BV pypx, tqq
By

˙T

¨
`

κ pypx, tqq∇2ypx, tq ` f pypx, tqq ` g pypx, tqq vpx, tq
˘‰

dtdx
(

.

(E2)

From Lemma 1:
ˆ

BV pypx, tqq
By

˙T
g pypx, tqq vpx, tq

“
1
2

ˆ

BV pypx, tqq
By

˙T
g pypx, tqq vpx, tq `

1
2

vTpx, tqgT pypx, tqq
BV pypx, tqq

By

ď
1

4S0

ˆ

BV pypx, tqq
By

˙T
g pypx, tqq gT pypx, tqq

BV pypx, tqq
By

` S0vTpx, tqvpx, tq.

(E3)

Substituting Equation (E3) into Equation (E2), we get:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdtdx
)

ď E
 ş

U V py0pxqqdx

`
ş

U
şt f

0
“

zTpx, tqzpx, tq `
ˆ

BV pypx, tqq
By

˙T
`

κ pypx, tqq∇2ypx, tq ` f pypx, tqq
˘

`
1

4S0

ˆ

BV pypx, tqq
By

˙T
g pypx, tqq gT pypx, tqq

BV pypx, tqq
By

` S0vTpx, tqvpx, tq

ff

dtdx.

(E4)

If the HJII in Equation (48) holds, then S0 has an upper bound S0 as shown in Equation (9).
If y0pxq “ 0, then Vpy0pxqq “ 0, and the HJII in Equation (48) and Equation (E4) will lead to
Equation (5).

Appendix F.

Proof. of Proposition 5

For the NPDS given in Equation (54), by using the Itô formula, we get:

BV pypx, tqq
Bt

“

ˆ

BV pypx, tqq
By

˙T
´

κ pypx, tqq∇2ypx, tq ` f pypx, tqq ` g pypx, tqq vpx, tq

` H pypx, tqq ypx, tqdWpx, tqq

`
1
2

yTpx, tqHT pypx, tqq
B2V pypx, tqq

By2 H pypx, tqq ypx, tq.

(F1)
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From the fact that E tdWpx, tqu “ 0 and by following a similar procedure explained in Appendix E,
we get:

E
!

ş

U
şt f

0 zTpx, tqzpx, tqdxdt
)

ď E
 ş

U V py0pxqqdx

`
ş

U
şt f

0

«

ˆ

BVpypx, tqq
By

˙T
`

κ pypx, tqq∇2ypx, tq ` f pypx, tqq
˘

` zTpx, tqzpx, tq

`
1
2

yTpx, tqHT pypx, tqq
ˆ

BVpypx, tqq
By

˙T
H pypx, tqq ypx, tq ` S0vTpx, tqvpx, tq

`
1

4S0

ˆ

BVpypx, tqq
By

˙T
g pypx, tqq gT pypx, tqq

ˆ

BVpypx, tqq
By

˙

ff

dtdx

+

ă 0.

(F2)

If the HJII in Equation (55) holds, then the system randomness S0 of the NSPDSs in Equations (53)
or (54) has an upper bound S0 as Equation (5) or Equation (9).

Appendix G.

Proof. of Proposition 6.

E
!

şt f
0 zTptqzptqdt

)

“ E

#

V pyp0qq ´V
´

ypt f q
¯

`
şt f

0

L
ř

i“1

L
ř

j“1
αipyqαjpyqyTptqCi

TCjyptq `
BV pyptqq
Bt

˙

dt
*

ď E

#

V pyp0qq `
şt f

0

˜

L
ř

i“1

L
ř

j“1
αipyqαjpyqyTptqCi

TCjyptq

`

ˆ

BV pyptqq
Bt

˙T
˜

L
ř

j“1
αipyqAiyptq ` Bivptq

¸¸

dt

+

pby fact that V pyptqq ě 0q .

(G1)

From the fact of the following inequality:

ˆ

BV pyptqq
By

˙T
Bivptq ď

1
4S0

ˆ

BV pyptqq
By

˙T
BiBj

T BV pyptqq
By

` S0vTptqv ptq , (G2)

from Lemma 2, and the choice of Vpyptqq “ yTptqPyptq, we get:

E
!

şt f
0 zTptqzptqdt

)

ď E
 

yTp0qPyp0q `
şt f

0

«

L
ř

i“1

L
ř

j“1
αipyqαjpyqyTptq

¨

„

Ci
TCj ` PAi ` Ai

T P`
1
S0

PBiBi
T P



yptq ` S0vTptqvptq


dt
*

.
(G3)

If the inequalities in Equations (61) or (62) holds, then we get Equation (36) if yp0q “ 0 or
Equation (37) if yp0q ‰ 0; i.e., S0 has an upper bound S0 as shown in Equations (36) or (37).

Appendix H.

Proof. of Proposition 7.

E
"
ż t f

0
zTptqzptqdt

*

“ E
!

Vp0q ´V
´

ypt f q
¯

`

ż t f

0

¨

˝

L
ÿ

i“1

L
ÿ

j“1

αipyqαjpyqyTptqCi
TCjyptq `

BV pyptqq
By

˛

‚dt

,

.

-

.
(H1)
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Using the It̂o formula [34,35]:

BV pyptqq
Bt

“
BV pyptqq
By

dyptq `
1
2

L
ÿ

i“1

αipyqyTptqHi
T B2V pyptqq

By2 Hiyptq

“

ˆ

BV pyptqq
Bt

˙T
˜

L
ÿ

i“1

αipyq
`

Aiyptq ` Bivptq ` Hiyptq ¨Wptq
˘

¸

`
1
2

L
ÿ

i“1

αipyqyTptqHi
T B2V pyptqq

By2 Hiyptq.

(H2)

From the fact that Vpypt f qq ě 0, E tdWpx, tqu “ 0, Equation (G2), Lemma 2, and the choice of
Vpyptqq “yTptqPyptq, we get:

E
!

şt f
0 yTptqyptqdt

)

ď E

#

Vpyp0qq `
şt f

0

«

L
ř

i“1

L
ř

j“1
αipyqαjpyq dt

`yTptq
„

Ci
TCj ` PAi ` Ai

T P` Hi
T PHi `

1
S0

PBiBi
T P



yptq ` S0vTptqvptq


dt
*

.
(H3)

From the Riccati-like inequalities in Equation (67), we get Equation (36) if yp0q “ 0 or Equation (37)
if yp0q ‰ 0. Then, we can find that S0 has an upper bound S0 given in Equations (36) or (37).

Appendix I. The Values of the Matrices A1 ´ A3, and B1 ´ B3 in Example 2

A1 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´248.5904 73.4140 6.3298 11.3422 13.6801 11.3705 6.2259 1.6850 0.0085
63.9888 ´306.2888 73.1145 ´10.7050 ´12.9056 ´10.7479 ´5.9590 ´1.6144 ´0.0008
´0.0155 72.3758 ´349.5368 89.6968 6.2517 5.2527 2.7918 0.6792 ´0.0062
0.0146 2.9022 89.4423 ´369.4511 109.1560 18.9602 10.3184 2.7872 0.0025
´0.0061 2.9075 10.8228 104.1017 ´377.9499 104.1334 10.8170 2.9033 0.0042
0.0056 3.2568 12.0847 22.2675 112.9763 ´366.1589 91.1738 3.2818 ´0.0045
0.0027 ´1.5983 ´5.5212 ´9.9943 ´12.0014 74.4233 ´357.7766 70.1692 0.0057
0.0021 ´1.4880 ´5.1789 ´9.2718 ´11.0895 ´9.2263 73.8587 ´306.0651 63.9957
´0.0031 ´0.4562 ´1.9859 ´3.6201 ´4.3747 ´3.7056 ´1.9064 71.2250 ´248.6023

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

A2 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´248.6356 77.5705 21.6610 40.7595 48.9249 40.8425 22.1227 5.7088 ´0.0148
63.9970 ´297.5356 108.7288 54.0796 65.1006 54.1566 29.6209 7.7505 ´0.0034
0.0148 77.7395 ´331.5775 123.5166 47.1578 39.1062 21.4110 5.7625 0.0122
´0.0137 ´4.8852 61.4647 ´420.3573 47.4347 ´32.2401 ´17.4056 ´4.6695 0.0172
0.0202 ´0.9506 ´2.8227 79.5339 ´407.6558 79.2352 ´2.9837 ´0.7131 ´0.0024
´0.0131 ´4.9633 ´18.9866 ´35.6314 44.1130 ´423.4611 60.1927 ´5.1723 0.0202
´0.0118 8.4312 30.9949 56.7717 67.9977 141.1667 ´322.2049 80.2604 ´0.0386
0.0090 10.0080 36.6276 66.7149 80.0874 66.7529 115.8006 ´295.6419 63.9684
´0.0205 3.8063 15.4396 28.0445 33.7817 28.3198 14.9776 75.8867 ´248.5651

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

A3 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´248.5929 61.8110 ´37.6184 ´70.3762 ´84.5701 ´70.4963 ´38.2200 ´9.8546 0.0113
64.0064 ´309.7453 60.6536 ´34.2427 ´41.2822 ´34.2495 ´18.5503 ´4.6302 0.0051
0.0092 66.0761 ´374.0286 45.3930 ´47.1019 ´39.0665 ´21.1461 ´5.5868 ´0.0076
´0.0070 9.7655 115.8537 ´321.4285 167.1271 66.9193 36.3552 9.6716 ´0.0226
´0.0211 3.1529 10.8493 104.0141 ´377.9706 104.3839 11.0994 2.7932 0.0005
0.0086 8.5989 33.1513 61.7400 159.9973 ´327.0113 112.2483 8.8910 ´0.0247
0.0221 ´5.8946 ´22.0825 ´40.8491 ´48.8130 43.6805 ´374.7487 65.8380 0.0468
´0.0129 ´8.5827 ´31.6336 ´58.0069 ´69.7027 ´58.1225 47.4858 ´313.3645 64.0353
0.0283 ´1.7713 ´8.0733 ´14.4285 ´17.4896 ´14.7019 ´7.4802 69.7287 ´248.6651

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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B1 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0000 ´0.0003 ´0.0009 ´0.0018 ´0.0023 ´0.0020 ´0.0012 ´0.0003 0.0000
0.0000 ´0.0012 ´0.0043 ´0.0079 ´0.0094 ´0.0079 ´0.0043 ´0.0011 0.0000
0.0000 ´0.0004 ´0.0017 ´0.0030 ´0.0036 ´0.0030 ´0.0017 ´0.0004 0.0000
0.0000 0.0000 0.0000 0.1385 ´0.0001 ´0.0000 ´0.0001 ´0.0000 0.0000
0.0000 0.0010 0.0038 0.0068 0.1583 0.0068 0.0038 0.0010 0.0000
0.0000 ´0.0002 ´0.0009 ´0.0015 ´0.0019 0.1370 ´0.0008 ´0.0002 0.0000
0.0000 0.0000 0.0003 0.0005 0.0006 0.0004 0.0002 0.0000 0.0000
0.0000 0.0002 0.0008 0.0013 0.0015 0.0013 0.0008 0.0003 0.0000
0.0000 ´0.0003 ´0.0013 ´0.0023 ´0.0028 ´0.0023 ´0.0012 ´0.0003 0.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

B2 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0000 0.0004 0.0007 0.0017 0.0023 0.0021 0.0012 0.0003 ´0.0001
0.0000 0.0025 0.0093 0.0167 0.0201 0.0168 0.0093 0.0023 ´0.0001
0.0000 0.0018 0.0067 0.0119 0.0144 0.0121 0.0066 0.0017 0.0000
0.0000 0.0008 0.0030 0.1441 0.0065 0.0054 0.0031 0.0007 0.0000
0.0000 ´0.0029 ´0.0108 ´0.0197 0.1263 ´0.0198 ´0.0109 ´0.0028 0.0000
0.0000 0.0009 0.0034 0.0057 0.0069 0.1443 0.0031 0.0008 0.0000
0.0000 ´0.0008 ´0.0035 ´0.0064 ´0.0077 ´0.0063 ´0.0034 ´0.0008 0.0000
0.0000 0.0020 0.0063 0.0121 0.0147 0.0124 0.0065 0.0017 0.0000
0.0000 ´0.0004 ´0.0012 ´0.0022 ´0.0025 ´0.0022 ´0.0013 ´0.0004 0.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

B3 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0000 0.0005 0.0028 0.0047 0.0054 0.0044 0.0023 0.0007 0.0001
0.0000 ´0.0017 ´0.0067 ´0.0118 ´0.0144 ´0.0121 ´0.0066 ´0.0016 0.0000
0.0000 ´0.0023 ´0.0086 ´0.0156 ´0.0188 ´0.0158 ´0.0086 ´0.0022 0.0000
0.0000 ´0.0007 ´0.0025 0.1339 ´0.0054 ´0.0045 ´0.0025 ´0.0006 0.0000
0.0000 0.0024 0.0090 0.0164 0.1699 0.0166 0.0091 0.0023 0.0000
0.0000 ´0.0009 ´0.0033 ´0.0057 ´0.0069 0.1328 ´0.0031 ´0.0008 0.0000
0.0000 0.0009 0.0038 0.0069 0.0083 0.0069 0.0038 0.0010 0.0000
0.0000 ´0.0030 ´0.0098 ´0.0187 ´0.0224 ´0.0190 ´0.0100 ´0.0028 0.0001
0.0000 0.0013 0.0048 0.0088 0.0103 0.0087 0.0048 0.0013 0.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Appendix J. The Values of the Matrix P in Example 2 without the Random Fluctuation
Hpypx, tqqwpx, tq

P »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1.8901 0.4570 0.0541 ´0.0081 0.0004 ´0.0150 0.1708 0.1305 0.0528
0.4570 1.3381 ´0.2589 0.0123 0.0009 0.0017 0.0051 ´0.0779 ´0.0963
0.0541 ´0.2589 0.2453 ´0.0228 0.0003 0.0031 0.0031 ´0.0866 ´0.1054
´0.0081 0.0123 ´0.0228 0.0063 ´0.0003 ´0.0002 ´0.0008 0.0161 ´0.0157
0.0004 0.0009 0.0003 ´0.0003 0.0034 0.0000 ´0.0032 0.0093 ´0.0238
´0.0150 0.0017 0.0031 ´0.0002 0.0000 0.0076 ´0.0324 0.0237 ´0.0049
0.1708 0.0051 0.0031 ´0.0008 ´0.0032 ´0.0324 0.3140 ´0.3007 ´0.2484
0.1305 ´0.0779 ´0.0866 0.0161 0.0093 0.0237 ´0.3007 1.2421 0.2637
0.0528 ´0.0963 ´0.1054 ´0.0157 ´0.0238 ´0.0049 ´0.2484 0.2637 1.8658

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Appendix K. The Values of the Matrices H1 ´ H3 is in Example 2

H1 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0037 0.0825 0.5457 0.9808 1.1872 0.9620 0.6517 0.1674 0.0080
0.0000 ´0.0006 ´0.0021 ´0.0037 ´0.0045 ´0.0038 ´0.0020 ´0.0005 0.0000
0.0000 ´0.0016 ´0.0060 ´0.0108 ´0.0131 ´0.0109 ´0.0060 ´0.0016 0.0000
0.0000 0.0002 0.0008 0.0016 0.0019 0.0016 0.0009 0.0002 0.0000
0.0000 ´0.0002 ´0.0007 ´0.0014 ´0.0016 ´0.0014 ´0.0007 ´0.0002 0.0000
0.0000 0.0009 0.0033 0.0059 0.0071 0.0060 0.0032 0.0008 0.0000
0.0000 ´0.0004 ´0.0013 ´0.0023 ´0.0029 ´0.0023 ´0.0012 ´0.0003 0.0000
0.0000 ´0.0004 ´0.0013 ´0.0023 ´0.0027 ´0.0024 ´0.0012 ´0.0003 0.0000
0.0083 ´0.2632 ´1.2275 ´2.1739 ´2.6014 ´2.0976 ´1.2483 ´0.3517 0.0076

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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H2 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0092 0.5677 1.3331 2.6171 3.2422 2.6149 1.2459 0.2840 ´0.0249
0.0000 0.0001 ´0.0005 ´0.0007 ´0.0004 ´0.0004 ´0.0002 0.0000 0.0000
0.0000 0.0031 0.0119 0.0213 0.0256 0.0214 0.0120 0.0031 0.0000
0.0000 ´0.0008 ´0.0033 ´0.0061 ´0.0073 ´0.0061 ´0.0034 ´0.0008 0.0000
0.0000 0.0009 0.0031 0.0059 0.0068 0.0058 0.0031 0.0007 0.0000
0.0000 ´0.0023 ´0.0081 ´0.0149 ´0.0178 ´0.0151 ´0.0181 ´0.0021 0.0000
0.0000 ´0.0003 ´0.0013 ´0.0022 ´0.0025 ´0.0021 ´0.0016 ´0.0004 0.0000
0.0001 0.0011 0.0038 0.0066 0.0080 0.0068 0.0036 0.0008 0.0000
´0.0117 1.7045 6.9326 12.4667 14.9464 12.2852 6.9683 1.8089 ´0.0294

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

H3 »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´0.0131 ´0.7755 ´2.1170 ´4.1004 ´5.0706 ´4.0306 ´2.1002 ´0.4409 0.0221
0.0000 0.0017 0.0072 0.0130 0.0150 0.0127 0.0069 0.0017 0.0000
0.0000 ´0.0032 ´0.0122 ´0.0219 ´0.0263 ´0.0219 ´0.0123 ´0.0032 0.0000
0.0000 0.0006 0.0026 0.0046 0.0056 0.0045 0.0026 0.0005 0.0000
0.0000 ´0.0012 ´0.0044 ´0.0081 ´0.0095 ´0.0080 ´0.0043 ´0.0010 0.0000
0.0000 0.0015 0.0053 0.0097 0.0117 0.0098 0.0052 0.0013 0.0000
0.0000 0.0008 0.0030 0.0052 0.0062 0.0050 0.0033 0.0008 0.0000
0.0001 ´0.0011 ´0.0035 ´0.0059 ´0.0073 ´0.0060 ´0.0033 ´0.0006 0.0001
0.0140 ´2.1995 ´8.8562 ´15.9906 ´19.1852 ´15.8464 ´8.8599 ´2.3156 0.0024

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Appendix L. The Value of the Matrix P is in Example 2 with the Random Fluctuation
Hpypx, tqqwpx, tq

P »

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.9065 0.2235 0.0382 ´0.0043 0.0012 ´0.0074 0.1056 ´0.0015 ´0.0784
0.2235 0.5981 ´0.1408 0.0073 ´0.0004 0.0002 0.0024 ´0.0512 ´0.0181
0.0382 ´0.1408 0.0826 ´0.0073 ´0.0001 0.0005 ´0.0026 0.0067 ´0.0036
´0.0043 0.0073 0.0826 0.0017 ´0.0002 0.0000 ´0.0008 0.0012 0.0003
0.0012 ´0.0004 ´0.0001 ´0.0002 0.0009 0.0000 ´0.0016 0.0015 ´0.0002
´0.0074 0.0002 0.0005 0.0000 0.0000 0.0022 ´0.0093 0.0052 0.0004
0.1056 0.0024 ´0.0026 ´0.0008 ´0.0016 ´0.0093 0.0761 ´0.0434 ´0.0077
´0.0015 ´0.0512 0.0067 0.0012 0.0015 0.0052 ´0.0434 0.1011 ´0.0013
´0.0784 ´0.0181 ´0.0036 0.0003 ´0.0002 0.0004 ´0.0077 ´0.0013 0.0081

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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